
LECTURE APRIL 3: A CRASH COURSE IN ALGEBRAIC NUMBER THEORY

Algebraic number theory is the fusion of abstract algebra with number theory. It is largely about the
structure of finite extensions of Q.

1. The Gaussian integers

Let Zris “ ta` bi|a, b P Zu. This is a subring of Qpiq, and thus it is an integral domain.
For an α “ a ` bi P Zris, I let Npαq “ a2 ` b2 “ αᾱ. Then Npαq is the squared length of α, considered

as a vector. This is called the norm of α.

Theorem 1.1 (Division algorithm). Given α, β P Zris with β ‰ 0, then there exist q, r P Zris such that

α “ qβ ` r,

where Nprq ă Npβq.

Proof. Consider where α{β lies in the complex plane. The nearest Gaussian integer, call it q, is no more
than distance 1 away: Npα{β ´ qq ă 1, or Npα´ qβq ă Npβq. Let r “ α´ qβ, you get the result. �

The units in Zris are 1,´1, i,´i. A nonunit, nonzero element in Zris is irreducible if it can’t be factored
into a product of nonunits.

The same strategy we used to prove that Z has unique factorization into primes, can be applied to Zris.
(Recall that in Z, everything flowed from the division algorithm.)

Theorem 1.2. Every nonunit in Zris can be factored uniquely into irreducibles, up to units.

In particular, irreducibles are prime: if π is irreducible and it divides a product αβ, then it must divide
α or β.

The (rational) primes in Z sometimes factor in Zris:

2 “ p1` iqp1´ iq

3 “ 3

5 “ p1` 2iqp1´ 2iq

7 “ 7

11 “ 11

13 “ p2` 3iqp2´ 3iq

The factors appearing on the right side are all irreducible.
There is a simple pattern governing this behavior.

Theorem 1.3. Let p be an odd (rational) prime. Then p remains prime in Zris if p ” 3 pmod 4q. Otherwise,
p “ ππ, where π is a prime in Zris.

Proof. Suppose p ” 1 pmod 4q. Then pp ´ 1q{2 is an even number. Therefore p´1qpp´1q{2 “ 1. From your
HW: if a is not divisible by p, then app´1q{2 ” 1 pmod pq if a is a square modulo p, and is ´1 otherwise.
Therefore ´1 is a square modulo p: there exists n with n2 ` 1 ” 0 pmod pq.

Thus p divides n2 ` 1. In Zris, we have that p divides pn` iqpn´ iq. If p were still prime in Zris, then it
would divide n` i or n´ i, but this is impossible. Therefore p is not prime in Zris, it factors p “ αβ. Take
norms and get Nppq “ p2 “ NpαqNpβq, so Npαq “ p. Let π “ α, and then p “ Npπq “ ππ. �
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As a corollary, we get that if p ” 1 pmod 4q, then p “ a2 ` b2 is a sum of two perfect squares (Fermat).

2. The Legendre symbol

Given an odd prime p, and an integer a not divisible by p, we set
ˆ

a

p

˙

“

#

1 if a is a square modulo p

´1 if not.

Euler’s criterion is:

a
p´1
2 ”

ˆ

a

p

˙

pmod pq.

Some rules about this:
ˆ

´1

p

˙

“ p´1qpp´1q{2.

ˆ

ab

p

˙

“

ˆ

a

p

˙ˆ

b

p

˙

.

3. Some other quadratic rings

Consider R “ Zr
?
´3s “

 

a` b
?
´3|a, b P Z

(

. This is a subring of Qp
?
´3q. Division algorithm fails in

R, as does unique factorization:

4 “ 2 ¨ 2 “ p1`
?
´3qp1´

?
´3q

expresses 4 as a product of irreducibles in two different ways.
I can enlarge R a little bit:

Zrωs “ ta` bω|a, b P Zu

where

ω “
´1`

?
´3

2
Then R Ă Zrωs. Then unique factorization holds in Zrωs!

The relevant theorem about this is:

Theorem 3.1. Let p be a prime other than 3. If p ” 1 pmod 3q, then p “ ππ for a prime π in Zrωs. If
p ” 2 pmod 3q, then p is still prime.

Zrωs is called the ring of Eisenstein integers.
How did I know to consider Zrωs?

Definition 3.2. Let R be a subring of a ring S. Let α P S. We say that α is integral over R if it is the root
of a monic polynomial fpxq P Rrxs.

Therefore ω P C is integral over Z, since it is a root of x2 ` x` 1.

Definition 3.3. A finite extension of Q is called an algebraic number field. Given an algebraic number field
K, the set of elements which are integral over Z is called OK , the ring of algebraic integers in K.

(It is not completely obvious that OK is a ring.) For instance, if K “ Qp
?
´3q, then OK “ Zrωs.

If K “ Qp
?
´5q, then OK “ Zr

?
´5s. If K “ Qp

?
5q, then

OK “ Zrφs,

where

φ “
´1`

?
5

2
.
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We can investigate whether these rings have the unique factorization property. In fact Zrφs has this
property. But Zr

?
´5s does not have it:

6 “ 2 ¨ 3 “ p1`
?
´5qp1´

?
´5q.

Big question: which rings of quadratic integers have the unique factorization property?
Gauss conjectured: among the imaginary ones, there are only nine of them! The “last” one is

Z

„

´1`
?
´163

2



.

This was proved by Baker, Stark, Heegner (1967).
Gauss recognized that the real quadratic rings were more likely to have unique factorization. It is con-

jectured, but not known, whether there are infinitely many number fields K for which OK has unique
factorization.

4. Some generalities on rings of integers in number fields

Let K{Q be a finite extension. Then K is called an algebraic number field.
Let OK be the set of elements of K which are roots of monic polynomials with integer coefficients. Then

OK is called the ring of integers of K.
For example, if K “ Qpiq, then OK “ Zris.

Theorem 4.1. OK is a free abelian group of rank n, where n “ rK : Qs.

This means that the underlying abelian group of OK under addition is isomorphic to Zn.
In fact, it’s know that if I Ă OK is a nonzero ideal, then I is also a free abelian group of rank n. Thus if

I is nonzero then OK{I is a finite ring.

Theorem 4.2. Let P be a nonzero prime ideal of OK . Then P is maximal.

Proof. If P is a nonzero prime ideal, then OK{P is a finite integral domain. But then OK{P is also a field,
and so P is maximal. �

Recall that it is not always the case that OK has unique factorization. For instance, in Zr
?
´5s we have

6 “ 2 ¨ 3 “ p1`
?
´5qp1´

?
´5q.

Theorem 4.3. Every nonzero ideal I in OK admits a unique factorization into prime ideals in OK .

If α, β P OK , I let pα, βq be the ideal generated by those elements. For instance, if K “ Q, then OK “ Z,
and then

p8, 12q “ p4q

with 4 as the gcd of 8 and 12. But in general, not every ideal is principal. Thus in Zr
?
´5s, the ideal

P2 “ p2, 1`
?
´5q

is not principal. You cannot solve the equation

2x` p1`
?
´5qy “ 1

for x, y P OK . In fact we have in OK :

p2q “ P 2
2 “ p2, 1`

?
´5qp2, 1`

?
´5q.
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The right hand side is

p2, 1`
?
´5qp2, 1`

?
´5q “ p4, 2p1`

?
´5q,´4` 2

?
´5q

“ p2qp2, 1`
?
´5,´2`

?
´5q

“ p2qp2, 1`
?
´5,

?
´5q

“ p2qp2, 1,
?
´5q

“ p2q.

Let

P3 “ p3, 1`
?
´5q

P 3 “ p3, 1´
?
´5q

Then
p3q “ P3P 3.

How does the ideal 6 factor?
p6q “ p2qp3q “ P 2

2P3P 3.

Note that p1`
?
´5q “ P2P3 and p1´

?
´5q “ P2P 3 (check this!). Thus unique factorization is “saved” by

introducing prime ideals.
Kummer invented the notion of “ideal number” in this context, the right setting for unique factorization.
In some cases, such as K “ Qp

?
5q, the ring of integers OK is a principal ideal domain, meaning that

every ideal is principal. In such rings, elements have the property of unique factorization into irreducibles.
Given two nonzero ideals I and J in OK , we say that I and J are equivalent if there exists an α, β P OK

such that pβqI “ pαqJ . For instance

p3qp2, 1`
?
´5q “ p1´

?
´5qp1`

?
´5, 3q

Multiplying this out gives
p6, 3p1`

?
´5qq “ p6, 3p1´

?
´5qq.

Therefore P2 and P3 are equivalent ideals.
The principal ideals are just the ones which are equivalent to the unit ideal.

Theorem 4.4. The set of equivalence classes of nonzero ideals of OK is a finite set. It forms a finite group
under mutliplication.

The group of nonzero ideals modulo equivalence is called the class group HK of K. It is a finite abelian
group. If HK “ teu, it means that OK is a principal ideal domain.

‚ If K “ Qp
?

5q, then HK “ teu.
‚ If K “ Qp

?
´5q, then HK – Z2.

‚ K “ Qp
?
´23q then HK – Z3.

Theorem 4.5. (Kummer, 1850) Let p be an odd prime. Let K “ Qpζpq. Consider the group HK . Assume
that p does not divide the order of HK . Then xp ` yp “ zp has no solutions in nonzero integers x, y, z.

If p does not divide the order of HK , we call p a regular prime. Otherwise, it’s irregular. The first irregular
prime is 37.

Kummer also found an easy way to check whether a number is regular, using Bernoulli numbers.

5. Cyclotomic rings

If m ě 3, we have the field Qpζmq, where ζm “ e2πi{m.

Theorem 5.1. The ring of integers in Qpζmq is just Zrζms.
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Let’s focus on the case that m “ p is an odd prime. Then Zrζps consists of elements, which can be written
as linear combinations

a1ζp ` a2ζ
2
p ` ¨ ¨ ¨ ` ap´1ζ

p´1
p ,

with a1, . . . , ap´1 P Z. We have GalpQpζpq{Qq – Zˆp . Recall that if a P Zˆp , we have an automorphism σa,
which has the effect:

σapζpq “ ζap .

Thus the Galois group acts on Zrζps.
There is a unique subgroup H Ă Zˆp of index 2, namely the squares. We have #H “ pp ´ 1q{2. If I let

K “ Qpζpq
H , then rK : Qs is degree 2.

Theorem 5.2. (Gauss) K “ Qp
?
p˚q, where p˚ “ p if p ” 1 pmod 4q, and p˚ “ ´p if p ” ´1 pmod 4q.

In other words,
p˚ “ p´1qpp´1q{2p.

In fact, Gauss proved the following:

a

p˚ “
p´1
ÿ

a“1

ˆ

a

p

˙

ζap .

Let q be an odd prime distinct from p.

Theorem 5.3. Let α P Zrζps. Then
σqpαq ” αq pmod qq

Proof. The idea is that modulo q, raising to the power of q distributes over addition.
Given an element

α “ a1ζp ` a2ζ
2
p ` ¨ ¨ ¨ ` ap´1ζ

p´1
p ,

we have

αq “ pa1ζp ` a2ζ
2
p ` ¨ ¨ ¨ ` ap´1ζ

p´1
p qq

” aq1ζ
q
p ` a

q
2ζ

2q
p ` ¨ ¨ ¨ ` aqp´1ζ

pp´1qq
p pmod qq

” a1ζ
q
p ` a2ζ

2q
p ` ¨ ¨ ¨ ` ap´1ζ

pp´1qq
p pmod qq

” a1σqpζpq ` a2σqpζpq
2 ` ¨ ¨ ¨ ` ap´1σqpζpq

p´1 pmod qq

” σqpa1ζp ` a2ζ
2
p ` ¨ ¨ ¨ ` ap´1ζ

p´1
p q

” σqpαq pmod qq

�

In particular,
σqp

a

p˚q ” p
a

p˚qq ”
a

p˚
a

p˚
q´1

”
a

p˚pp˚qpq´1q{2 pmod qq

By Euler’s criterion:

σqp
a

p˚q ”

ˆ

p˚

q

˙

a

p˚ pmod qq

Now let’s figure out what σqp
?
p˚q is, using Galois theory. Since σq must take

?
p˚ to a conjugate, we

must have σqp
?
p˚q “ ˘

?
p˚.

We have σqp
?
p˚q “

?
p˚ if and only if σq lies in the subgroup H of Zˆp consisting of the squares modulo

q. Thus this happens if any only if q is a square modulo p. Otherwise, we get the minus sign appearing.
Thus:

σqp
a

p˚q “

ˆ

q

p

˙

a

p˚.
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We can equate the two signs appearing here:
ˆ

q

p

˙

“

ˆ

p˚

q

˙

(This takes a small amount of justification: you need to know that 2
?
p˚ is invertible modulo q. This is true

because 2p is invertible mod q, as 2p and q are relatively prime.) Let’s remember that

p˚ “ p´1qpp´1q{2p.

We get
ˆ

q

p

˙

“

ˆ

p´1qpp´1q{2p

q

˙

“

ˆ

´1

q

˙pp´1q{2ˆ
p

q

˙

Now recall that
ˆ

´1

q

˙

“ p´1qpq´1q{2.

We get
ˆ

q

p

˙

“ p´1q
q´1
2

p´1
2

ˆ

p

q

˙

.

This is called the Law of Quadratic Reciprocity. It says that
´

q
p

¯

“

´

p
q

¯

happens exactly when at least one

of p or q is 1 modulo 4, and otherwise
´

q
p

¯

“ ´

´

p
q

¯

.

6. Diophantine equations

Challenge: find all solutions to
y2 “ x3 ´ 2

in integers x and y. An equation where you are looking for only integer solutions is called Diophantine.
An example is

5x` 7y “ 1.

That’s a linear equation – easily solved using the Euclidean algorithm. Second-degree equations are more
subtle, but mathematicians have methods of solving them. Third-degree equations like y2 “ x3 ´ 2 require
special techniques, often tailored to the situation at hand.

Let’s return to y2 “ x3´ 2. We can observe that if x is even, then so is y, and so y2 is divisible by 4. But
then x3 is divisible by 4 as well, and so x3´ 2 is not divisible by 4, contradiction. So any integer solution to
y2 “ x3 ´ 2 must have x and y odd.

Rewrite the first equation as

x3 “ y2 ` 2 “ py ´
?
´2qpy `

?
´2q.

We are now working in the ring of integers Zr
?
´2s in Qp

?
´2q. Facts about this ring:

‚ The units in this ring are just ˘1.
‚ The division algorithm holds in this ring.
‚ Therefore, so does unique factorization.
‚ If α and β share no nonunit common factor, and αβ is a perfect cube, then both α and β are perfect
cubes.

Proving these facts is a matter of repeating what we have done for Z and Zris.
We now argue that y `

?
´2 and y ´

?
´2 share no nonunit common factor. Any such common factor

would have to divide the difference 2
?
´2. But the only irreducible factor 2

?
´2 is

?
´2. This cannot divide

y`
?
´2, as then it would have to divide the odd number y. (I invite you to rigorously work out the details.)

By the last bullet point, we must have

y `
?
´2 “ pa` b

?
´2q3
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for some a, b P Z. Expanding, we get

y `
?
´2 “ a3 ` 3a2b

?
´2´ 6ab2 ´ 2b3

?
´2.

Equate like terms:

y “ a3 ´ 6ab2

1 “ 3a2b´ 2b3 “ bp3a2 ´ 2b2q

Therefore b “ ˘1. Let’s first examine b “ 1. Then 1 “ 3a2 ´ 2. Thus a “ ˘1. Then y “ ´5 or y “ 5. I
get the solutions p3,˘5q. The case b “ ´1 leads to contradiction (check this!) and so p3,˘5q are the only
solutions to y2 “ x3 ´ 2.

The Diophantine equation y2 “ x3´k is called Mordell’s equation. It is known to have only finitely many
solutions for each value of k. However, deciding whether it has solutions for a given k is generally a tricky
business, especially if the class group of Qp

?
´kq has order divisible by 3.
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