LECTURE MARCH 16: SPLITTING FIELDS

1. SOME EXAMPLES

Remember that Aut F' is the group of automorphisms of a field F', and if E/F
is an extension of fields, then Aut(E/F) is the group of automorphisms o: £ — E
which fix all elements of F.

o AutQ = {e}.

o AutQ(v2) = Z/2Z.

o Aut Q(2'3) = {e}.

o Aut Q(2'3,w) = S3, where w = ¢27%/3,

e Aut Q(2'3,w)/Q(w) =~ Z/3Z.

o Aut Q(+v2,V3) = Z/2Z x Z/2Z.

o Aut Q(+v/2,V3, \/(2 +4/2)(3 +v/3)) = Qs, the quaternion group of order
8.

o AutQ(v2,vV3,V5,V7,...) = [1,Z/2Z.

e AutQ is a large, rich, interesting, uncountable group.

If F is a field, and F is the splitting field of an irreducible polynomial of degree
n, then
n<[E:F]<n

2. SPLITTING FIELDS

Let F be a field. Let {f;(x)} be a collection of polynomials in F[x]. Then the
splitting field of {f;(x)} is the smallest algebraic extension of F', such that all the
fi(x) factor into linear factors. (To create the splitting field, adjoin all roots of each
fi(z).)

Example: the splitting field of 22 — 2 over Q is Q(v/2, —v2) = Q(v/2).

Example: the splitting field of 22 —2 over Q is Q(2'/3, w23, w?2'/3) = Q(2/3, w).
This has degree 6 = 3! over Q.

An algebraic extension E/F is a splitting field if it is the splitting field of some
collection of polynomials.

For instance, Q(2%/3) is not a splitting field over Q.

Theorem 2.1. Let F be a field, and let F be an algebraic closure of F. Let
E c F be an extension of F. Let ¢: E — F be a homomorphism of fields, which
fizes all elements of F. Then there exists an automorphism o: F — F, such that

o(a) =¢(a) forallae E.

Remark: when I say that ¢ “fixes all elements of F”, it means 1(«) = « for all
a€eF.



Example: Let F = Q, and let E = Q(2'/3). Let ¢ = thyis yo15: E — Q
send 23 to w2'/3. The theorem says that there exists ¢ € AutQ, such that
o (21/3) — w2113,

Theorem 2.2. Let F be a field, F an algebraic closure, and let F « E c F be a
subfield. Then E/F is a splitting field if and only if for all o € Aut(F/F), we have
o(E)=E.

Remark: o(F) = E means that for all a« € F, o(a) € E. It does not mean that
ola) = a.

Example: F = Q(2'2) must not be a splitting field over Q, since we just
observed that there exists a ¢ € Aut Q, such that 0(21/ 3) = w23 and therefore
o(E) # E.

Splitting fields are important in Galois theory: if you want this important equal-
ity to hold:

#Auwt(E/F)=[E: F],
then you need (a) E/F to be a splitting field, and (b) E/F to be separable.

Proof. Assume that E/F is the splitting field of {f;(z)}, where f;(z) € F[z]. Let
o € Aut(F/F). I want to show that o(E) = E.

WLOG all the f;(x) are irreducible. Let S be the set of all elements of F which
are roots of one of the f;. Then E = F(S), essentially by definition of splitting
field.

Let « € S, say « is a root of f;(x). Then o(a) is also a root of f;(x). (This
is because f;(x) has coefficients in F, and o fixes F.) Therefore o(a) € S, and
therefore o(a) € E. We have shown that o(E) = E.

In the other direction, assume that E/F has this property. I want to show that
E/F is a splitting field. Let f(z) be an irreducible polynomial in F[z] having a
root « € E. Let B € F be another root of f(z). There exists an isomorphism
Ya,3: F(a) = F(B), which sends « to 8. By the isomorphism extension theorem,
there exists an automorphism o € Aut(F/F), such that o(a) = 3.

By hypothesis, 0(FE) = E. Therefore o(«) = € E. This means that F is a
splitting field, namely, it is the splitting field of the set of all irreducible polynomials
in F[z] with at least one root in E. O

3. FINITE GALOIS EXTENSIONS

Working definition of a Galois extension:
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Let E/F be a finite extensions of fields. I define E/F to be Galois if
[E: F] =#Aut(E/F).

Lots of nice properties follow from this. For instance, there is a bijection between
fields K intermediate between E and F', and subgroups of Aut(E/F).

Example 3.1. C/R, Q(1/2)/Q, Q(¥/2,w)/Q are all Galois extensions. Q(/2)/Q

18 not.

Another example: If F/Z, is a finite extension of degree n, then F = Z,(a) for
some element o of degree n over Z,. We have Aut(F/Z,) is the cyclic group of
order n generated by the Frobenius element o, where o(a) = of. Thus F/Z, is
Galois.

Sometimes we call the finite field of order p™ the Galois field GF(p").

Here’s a consequence. If E/F is finite Galois, I claim that F/F has to be a
splitting field. T'm just going to examine the case that F = F(a). Observe that if
o € Aut(E/F), then o(a) must be F-conjugate to a. But also o(«) € E. We now
have a map

Aut(E/F) — {F-conjugates of « lying in E}
which is just ¢ — o(a). This map has to be injective, for if o(a) = o'(«), then
o’ = o (reason: every element of E is a polynomial in « with coefficients in F'). By
assumption, # Aut(E/F) = [E : F]. But there can only be as many conjugates as
the degree [E : F], so that E must contain all F-conjugates of a. As a result, F
must be a splitting field.

4. THE NIGHTMARE EXAMPLE

Let F' = Z,(t). Thus F is the field of rational functions in an indeterminate ¢.
The polynomial «P — ¢ is irreducible in F[t]. We can use it to create an extension
of F of degree p:

E = Flz]/(zP — t).
Then E = F(«), where a € E satisfies a? = t. Does every root of the polynomial
aP —t belong to E? How does the polynomial P — t factor in E[z]? (Certainly «
is a root....) The polynomial z? — ¢ factors this way:

2 —t=(x—a)

because (x — )P = 2P — P = 2P —t. So, E/F is a splitting field, because a? — ¢
splits in to linear factors over E.

What is Aut(E/F)? Let 0 € Aut(E/F). What could o(«) be? Since o(a) is
F-conjugate to «, and the only element conjugate to « is « itself, we must have
o(a) = a. Therefore Aut(E/F) = {e}. So E/F is a splitting field which is not
Galois.

5. SEPARABLE EXTENSIONS

Let E/F be an algebraic extension. Say that an element « € E is separable over

F if the irreducible polynomial f(z) of « over F' has « as a root with multiplicity
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1. Call the whole extension E/F separable, if every element of E is separable over
F.
If f(x) has a root « of multiplicity greater than one, it means that f(z) factors
this way:
f(a) = (z — a)’g(x).
It turns out that you can formally take the derivative of a polynomial in F[z]. The
derivative is an F-linear map D: F[z] — F[xz], sending 2™ to nz"~!. We need to do
this definition because the usual definition in terms of limits may not be available
for general fields F'.
Exercise: D: F[z] — F[x] satisfies the properties:
e D(fg) = fD(g) + gD(f) (the Leibniz rule),
e D(f") = nf"'D(f).
If f(x) has « as a root of multiplicity at least 2, then

Df(z) = 2(z — a)g(z) + (z — a)*D(g(x)).

so f'(a) = 0.

Now assume that f(z) € F[z] is irreducible, and that F/F contains an element
«, which is a root of f(x) of multiplicity at least 2. Then f’(«) = 0, and so « is
also a root of f'(x).

Easy to see that deg f/(z) < deg f(x). Since f(z) was the nonzero polynomial
of minimal degree with « as a root, we must have that f/(z) is identically 0!

But, it is possible that f’(x) is identically 0, without f(z) being constant. For
instance, f(x) = 2P —t € F[x] from before, has derivative f’(z) = pz?~! = 0. How-
ever, if F' has characteristic 0, and f(z) has degree n, then deg f'(x) = deg f(z)—1.
Reason: if f(x) = 2" +a,_12" *+..., then f'(z) = nz" 1+ (n—1)a,_12" 2 +...,
and since we're in characteristic 0, this really does have degree n — 1.

Theorem 5.1. Let F be a field of characteristic 0, and let E/F be an algebraic
extension. Then E/F is separable.

6. PERFECT FIELDS

We call a field F' perfect if all algebraic extensions E/F are separable. Certainly,
all fields of characteristic 0 are perfect.

From the above discussion, a field F is perfect if its irreducible polynomials f(x)
never have the property that f/(z) = 0 (identically).

What would it mean for f’(z) to be zero identically, in a field of characteristic p?
It would mean that each nonzero term a,x™ appearing in the polynomial satisfies
nay, = 0 in F. This would mean that p|n.

Theorem 6.1. A field F' of characteristic p is perfect if and only if for every a € F,
there exists B € F', such that BP = «.

Another way of saying this is that the Frobenius map o: F — F, which sends
a — aP, is an automorphism of F'. (A priori it is only an injective homomorphism.)

Proof. Let F be a field of characteristic p.
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Suppose « € F' is not a pth power in F. Consider the polynomial f(x) = 2P — .
We claim that f(x) is irrededucible in F[z]. Assume otherwise: f(z) = g(x)h(z),
where g(x),h(z) € F[z] are monic and 1 < degg < p — 1. Now in an algebraic
closure F, there exists a root 3 of f(z), so that 37 = a. Then f(x) factors in F[z]
this way:

f(@) =a? —a=(z—p)"
Since g(x) is supposed to divide f(x), it must be of the form g(x) = (z— )%, where
1 < a < p—1. The coefficient of x4~ in g(x) is —af. Since g(x) € F[z], this means
—af € F. Since a # 0 in F (!), it must be a unit, and so by cancellation, 8 € F.
This contradicts the fact that « is not a pth power in F.

We have shown that if « € F' is not a pth power in F, then f(z) = 2P —a € F|[x]
is irreducible. If such an « exists, then f(z) is an irreducible polynomial with
f'(z) =0, and so F cannot be perfect.

Conversely, suppose every element of F' is a pth power. Suppose f(x) € F[x] is
a polynomial with f’(z) = 0. By our observation about derivatives above, this can
only happen if every exponent appearing in f(x) is divisible by p:

f(@) = ana?™ + a1 2?7 4 a2+ ay,

with a; € F. By hypothesis, there exists ; € F' with 7 = a;. Then

f(@) = Y ana™ = <2_ 5)

cannot be irreducible in F[z]! O
Theorem 6.2. Fvery finite field is perfect.

Proof. Let I be a finite field of characteristic p. The Frobenius homomorphism
F — F is injective automatically, since F' is a field. Since F' is finite, this is
automatically surjective as well. O

An example of a nonperfect field is Z,(t). There are examples of infinite perfect
fields of characterist p. For instance, the field Zp(t,tl/p,tl/p2, ...) (with all pth
power roots of ¢ adjoined) is perfect.
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