
LECTURE MARCH 16: SPLITTING FIELDS

1. Some examples

Remember that AutF is the group of automorphisms of a field F , and if E{F
is an extension of fields, then AutpE{F q is the group of automorphisms σ : E Ñ E

which fix all elements of F .

‚ AutQ “ teu.
‚ AutQp

?
2q – Z{2Z.

‚ AutQp21{3q “ teu.
‚ AutQp21{3, ωq – S3, where ω “ e2πi{3.
‚ AutQp21{3, ωq{Qpωq – Z{3Z.
‚ AutQp

?
2,
?
3q – Z{2Zˆ Z{2Z.

‚ AutQp
?
2,
?
3,
b

p2`
?
2qp3`

?
3qq “ Q8, the quaternion group of order

8.
‚ AutQp

?
2,
?
3,
?
5,
?
7, . . . q –

ś

p Z{2Z.
‚ AutQ is a large, rich, interesting, uncountable group.

If F is a field, and E is the splitting field of an irreducible polynomial of degree
n, then

n ď rE : F s ď n!.

2. Splitting fields

Let F be a field. Let tfipxqu be a collection of polynomials in F rxs. Then the
splitting field of tfipxqu is the smallest algebraic extension of F , such that all the
fipxq factor into linear factors. (To create the splitting field, adjoin all roots of each
fipxq.)

Example: the splitting field of x2 ´ 2 over Q is Qp
?
2,´

?
2q “ Qp

?
2q.

Example: the splitting field of x3´2 overQ isQp21{3, ω21{3, ω221{3q “ Qp21{3, ωq.
This has degree 6 “ 3! over Q.

An algebraic extension E{F is a splitting field if it is the splitting field of some
collection of polynomials.

For instance, Qp21{3q is not a splitting field over Q.

Theorem 2.1. Let F be a field, and let F be an algebraic closure of F . Let
E Ă F be an extension of F . Let ψ : E Ñ F be a homomorphism of fields, which
fixes all elements of F . Then there exists an automorphism σ : F Ñ F , such that
σpαq “ ψpαq for all α P E.

Remark: when I say that ψ “fixes all elements of F ”, it means ψpαq “ α for all
α P F .

1



F
σ // F

E
ψ
//

OO

ψpEq

OO

F
“
//

OO

F

OO

Example: Let F “ Q, and let E “ Qp21{3q. Let ψ “ ψ21{3,ω21{3 : E Ñ Q

send 21{3 to ω21{3. The theorem says that there exists σ P AutQ, such that
σp21{3q “ ω21{3.

Theorem 2.2. Let F be a field, F an algebraic closure, and let F Ă E Ă F be a
subfield. Then E{F is a splitting field if and only if for all σ P AutpF {F q, we have
σpEq “ E.

Remark: σpEq “ E means that for all α P E, σpαq P E. It does not mean that
σpαq “ α.

Example: E “ Qp21{3q must not be a splitting field over Q, since we just
observed that there exists a σ P AutQ, such that σp21{3q “ ω21{3, and therefore
σpEq ‰ E.

Splitting fields are important in Galois theory: if you want this important equal-
ity to hold:

#AutpE{F q “ rE : F s,

then you need (a) E{F to be a splitting field, and (b) E{F to be separable.

Proof. Assume that E{F is the splitting field of tfipxqu, where fipxq P F rxs. Let
σ P AutpF {F q. I want to show that σpEq “ E.

WLOG all the fipxq are irreducible. Let S be the set of all elements of F which
are roots of one of the fi. Then E “ F pSq, essentially by definition of splitting
field.

Let α P S, say α is a root of fipxq. Then σpαq is also a root of fipxq. (This
is because fipxq has coefficients in F , and σ fixes F .) Therefore σpαq P S, and
therefore σpαq P E. We have shown that σpEq “ E.

In the other direction, assume that E{F has this property. I want to show that
E{F is a splitting field. Let fpxq be an irreducible polynomial in F rxs having a
root α P E. Let β P F be another root of fpxq. There exists an isomorphism
ψα,β : F pαq Ñ F pβq, which sends α to β. By the isomorphism extension theorem,
there exists an automorphism σ P AutpF {F q, such that σpαq “ β.

By hypothesis, σpEq “ E. Therefore σpαq “ β P E. This means that E is a
splitting field, namely, it is the splitting field of the set of all irreducible polynomials
in F rxs with at least one root in E. �

3. Finite Galois extensions

Working definition of a Galois extension:
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Let E{F be a finite extensions of fields. I define E{F to be Galois if

rE : F s “ #AutpE{F q.

Lots of nice properties follow from this. For instance, there is a bijection between
fields K intermediate between E and F , and subgroups of AutpE{F q.

Example 3.1. C{R, Qp
?
2q{Q, Qp 3

?
2, ωq{Q are all Galois extensions. Qp 3

?
2q{Q

is not.
Another example: If F {Zp is a finite extension of degree n, then F “ Zppαq for

some element α of degree n over Zp. We have AutpF {Zpq is the cyclic group of
order n generated by the Frobenius element σ, where σpαq “ αp. Thus F {Zp is
Galois.

Sometimes we call the finite field of order pn the Galois field GF ppnq.
Here’s a consequence. If E{F is finite Galois, I claim that E{F has to be a

splitting field. I’m just going to examine the case that E “ F pαq. Observe that if
σ P AutpE{F q, then σpαq must be F -conjugate to α. But also σpαq P E. We now
have a map

AutpE{F q Ñ tF -conjugates of α lying in Eu

which is just σ ÞÑ σpαq. This map has to be injective, for if σpαq “ σ1pαq, then
σ1 “ σ (reason: every element of E is a polynomial in α with coefficients in F ). By
assumption, #AutpE{F q “ rE : F s. But there can only be as many conjugates as
the degree rE : F s, so that E must contain all F -conjugates of α. As a result, E
must be a splitting field.

4. The nightmare example

Let F “ Zpptq. Thus F is the field of rational functions in an indeterminate t.
The polynomial xp ´ t is irreducible in F rts. We can use it to create an extension
of F of degree p:

E “ F rxs{pxp ´ tq.

Then E “ F pαq, where α P E satisfies αp “ t. Does every root of the polynomial
xp ´ t belong to E? How does the polynomial xp ´ t factor in Erxs? (Certainly α
is a root....) The polynomial xp ´ t factors this way:

xp ´ t “ px´ αqp

because px ´ αqp “ xp ´ αp “ xp ´ t. So, E{F is a splitting field, because xp ´ t

splits in to linear factors over E.
What is AutpE{F q? Let σ P AutpE{F q. What could σpαq be? Since σpαq is

F -conjugate to α, and the only element conjugate to α is α itself, we must have
σpαq “ α. Therefore AutpE{F q “ teu. So E{F is a splitting field which is not
Galois.

5. Separable extensions

Let E{F be an algebraic extension. Say that an element α P E is separable over
F if the irreducible polynomial fpxq of α over F has α as a root with multiplicity
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1. Call the whole extension E{F separable, if every element of E is separable over
F .

If fpxq has a root α of multiplicity greater than one, it means that fpxq factors
this way:

fpxq “ px´ αq2gpxq.

It turns out that you can formally take the derivative of a polynomial in F rxs. The
derivative is an F -linear map D : F rxs Ñ F rxs, sending xn to nxn´1. We need to do
this definition because the usual definition in terms of limits may not be available
for general fields F .

Exercise: D : F rxs Ñ F rxs satisfies the properties:
‚ Dpfgq “ fDpgq ` gDpfq (the Leibniz rule),
‚ Dpfnq “ nfn´1Dpfq.

If fpxq has α as a root of multiplicity at least 2, then

Dfpxq “ 2px´ αqgpxq ` px´ αq2Dpgpxqq.

so f 1pαq “ 0.
Now assume that fpxq P F rxs is irreducible, and that E{F contains an element

α, which is a root of fpxq of multiplicity at least 2. Then f 1pαq “ 0, and so α is
also a root of f 1pxq.

Easy to see that deg f 1pxq ă deg fpxq. Since fpxq was the nonzero polynomial
of minimal degree with α as a root, we must have that f 1pxq is identically 0!

But, it is possible that f 1pxq is identically 0, without fpxq being constant. For
instance, fpxq “ xp´ t P F rxs from before, has derivative f 1pxq “ pxp´1 “ 0. How-
ever, if F has characteristic 0, and fpxq has degree n, then deg f 1pxq “ deg fpxq´1.
Reason: if fpxq “ xn`an´1x

n´1`. . . , then f 1pxq “ nxn´1`pn´1qan´1x
n´2`. . . ,

and since we’re in characteristic 0, this really does have degree n´ 1.

Theorem 5.1. Let F be a field of characteristic 0, and let E{F be an algebraic
extension. Then E{F is separable.

6. Perfect fields

We call a field F perfect if all algebraic extensions E{F are separable. Certainly,
all fields of characteristic 0 are perfect.

From the above discussion, a field F is perfect if its irreducible polynomials fpxq
never have the property that f 1pxq “ 0 (identically).

What would it mean for f 1pxq to be zero identically, in a field of characteristic p?
It would mean that each nonzero term anx

n appearing in the polynomial satisfies
nan “ 0 in F . This would mean that p|n.

Theorem 6.1. A field F of characteristic p is perfect if and only if for every α P F ,
there exists β P F , such that βp “ α.

Another way of saying this is that the Frobenius map σ : F Ñ F , which sends
α ÞÑ αp, is an automorphism of F . (A priori it is only an injective homomorphism.)

Proof. Let F be a field of characteristic p.
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Suppose α P F is not a pth power in F . Consider the polynomial fpxq “ xp´α.
We claim that fpxq is irrededucible in F rxs. Assume otherwise: fpxq “ gpxqhpxq,
where gpxq, hpxq P F rxs are monic and 1 ď deg g ď p ´ 1. Now in an algebraic
closure F , there exists a root β of fpxq, so that βp “ α. Then fpxq factors in F rxs
this way:

fpxq “ xp ´ α “ px´ βqp.

Since gpxq is supposed to divide fpxq, it must be of the form gpxq “ px´βqa, where
1 ď a ď p´1. The coefficient of xa´1 in gpxq is ´aβ. Since gpxq P F rxs, this means
´aβ P F . Since a ‰ 0 in F (!), it must be a unit, and so by cancellation, β P F .
This contradicts the fact that α is not a pth power in F .

We have shown that if α P F is not a pth power in F , then fpxq “ xp´α P F rxs

is irreducible. If such an α exists, then fpxq is an irreducible polynomial with
f 1pxq “ 0, and so F cannot be perfect.

Conversely, suppose every element of F is a pth power. Suppose fpxq P F rxs is
a polynomial with f 1pxq “ 0. By our observation about derivatives above, this can
only happen if every exponent appearing in fpxq is divisible by p:

fpxq “ αnx
pn ` αn´1x

ppn´1q ` ¨ ¨ ¨ ` α1x
pn ` α0,

with ai P F . By hypothesis, there exists βi P F with βpi “ αi. Then

fpxq “
ÿ

i

αnx
pn “

˜

ÿ

i

βnx
n

¸p

cannot be irreducible in F rxs! �

Theorem 6.2. Every finite field is perfect.

Proof. Let F be a finite field of characteristic p. The Frobenius homomorphism
F Ñ F is injective automatically, since F is a field. Since F is finite, this is
automatically surjective as well. �

An example of a nonperfect field is Zpptq. There are examples of infinite perfect
fields of characterist p. For instance, the field Zppt, t

1{p, t1{p
2

, . . . q (with all pth
power roots of t adjoined) is perfect.
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