
LECTURE MARCH 23: THE MAIN THEOREM OF GALOIS THEORY

1. Review of Galois extensions and fixed fields

Recall the definition of Galois:

Definition 1.1. Let E{F be an algebraic extension of fields. E{F is Galois if both conditions hold:

‚ E{F is a splitting field.
‚ E{F is separable.

Under these circumstances, we use the special notation GalpE{F q to mean AutpE{F q. It is the Galois
group of the extension E{F .

If E{F is a finite extension of fields, then

E{F is Galois ðñ rE : F s “ AutpE{F q.

We had also said that if E{F is any extension of fields, and if H Ă AutpE{F q is a subgroup, then

EH “

"

α P E

ˇ

ˇ

ˇ

ˇ

σpαq “ α@σ P H

*

is a field lying between F and E, called the fixed field of H.
So we might ask about EAutpE{F q, the fixed field of all symmetries of E{F . Generally this is unstable,

but when E{F is Galois, it must be the ground field F :

Theorem 1.2. Let E{F be a Galois extension. Then EGalpE{F q “ F .

Proof. The containment F Ă EGalpE{F q is “obvious”. In the other direction, suppose α P EGalpE{F q. Assume
for the purposes of contradiction that α R F . This means that the degree of α over F must be ą 1. Let
fpxq P F rxs be the minimal polynomial of α over F , so that deg f ą 1. Since E{F is separable, fpxq must
not have repeated roots. There must be another root β P F , β ‰ α. Since E{F is a splitting field, β P E.

There exists an isomorphism ψαβ : F pαq Ñ F pβq, which is the identity on F and which satisfies ψαβpαq “
β. By the isomorphism extension theorem, we have a diagram

F
φ // F

F pαq
ψαβ // F pβq

F
“

// F

where φ is an automorphism of F fixing F . Since E{F is a splitting field, φpEq “ E. Let σ be the restriction
of φ to E, so that σ P GalpE{F q. We have σpαq “ β by construction. But this contradicts the fact that
α P EGalpE{F q. Thus α P F . �

2. Intermediate extensions to a Galois extension E{F

Theorem 2.1. Let E{F be a Galois extension, and let K be intermediate: F Ă K Ă E. Then E{K is also
Galois, and GalpE{Kq Ă GalpE{F q is a subgroup.
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Proof. Let α P E. We must show that (a) α is separable over K, and (b) all K-conjugates of α lie in E.
Let fpxq P F rxs be the minimal polynomial of α over F . Let also fKpxq P Krxs be the minimal polynomial

of α over K. Since fpαq “ 0, and fKpxq must divide every polynomial in Krxs with α as a root, we must
have fKpxq|fpxq.

Since E{F is separable, fpxq is separable, and therefore so is fKpxq. Thus E{K is separable.
Since fKpxq|fpxq, the set of K-conjugates of α is a subset of the set of F -conjugates of α, and since all of

the latter lie in E, so do all of the former. Thus E{K is a splitting field.
The containment GalpE{Kq Ă GalpE{F q is by definition. �

Theorem 2.2 (The primitive element theorem). Let E{F be a separable finite extension. Then there exists
α P E such that E “ F pαq.

Example 2.3. Qp
?
2,
?
3q “ Qp

?
2`

?
3q.

Example 2.4. The counterexample is this: Let F “ Zppt, uq. Let E “ Zppt
1{p, u1{pq. Note that E{F has

degree p2. Then E{F cannot be generated by one element! For instance F pt1{p ` u1{pq is not equal to E,
because t1{p ` u1{p only has degree p: it is the root of xp ´ t´ u.

Assume forever that E{F is a finite Galois extension. We can now describe functions in both directions
between the sets:

(1) Fields K intermediate to E{F .
(2) Subgroups of GalpE{F q.

To a field K we can associate the subgroup

GalpE{Kq Ă GalpE{F q.

And then in the other direction, to a subgroup H Ă GalpE{F q, we can associate the fixed field EH .

Theorem 2.5. These two operations cancel each other out. That is:
(1) Given K intermediate to E{F , we have EGalpE{Kq “ K.
(2) Given a subgroup H Ă GalpE{F q, we have

GalpE{EHq “ H.

Taken together, these two statements show that there is a bijection between intermediate fields and
subgroups of E{F . (It isn’t even obvious that there are only finitely many intermediate fields!)

Proof. We already proved the first assertion (with F instead of K, but it doesn’t matter). So suppose
H Ă GalpE{F q is a subgroup. The containment H Ă GalpE{EHq is “obvious”: elements of H fix elements
of EH by definition.

Since E{EH is finite and separable, the primitive element theorem says that E “ EHpαq, for some α P E.
Consider the polynomial

fpxq “
ź

σPH

px´ σpαqq

Since e P H, α is a root of fpxq. What’s a little harder to see is that the coefficients of fpxq are in EH .
As an example, suppose that H “ t1, σu has order 2. Then our polynomial is

fpxq “ px´ αqpx´ σpαqq “ x2 ´ pα` σpαqqx` ασpαq.

The claim was that the coefficients α ` σpαq and ασpαq must be fixed by H, which is the same as saying
that they are fixed by σ. Now observe:

σpα` σpαqq “ σpαq ` σ2pαq “ α` σpαq

σpασpαqq “ σpαqσ2pαq “ ασpαq

By the way, these elements α` σpαq and ασpαq are called the trace and norm, respectively.
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I will leave it to you to see why fpxq P EH rxs in general. This polynomial has α as a root. The
degree of fpxq is just #H, so that #GalpE{EHq “ rEHpαq : EH s ď #H. Together with the fact that
H Ă GalpE{EHq, this shows that H “ GalpE{EHq. �

Example 2.6. Let E{Q be the splitting field of the polynomial x8 ´ 1. Find all subfields of E.

First let’s observe that the roots of x8 ´ 1 in C are exactly 1, z, z2, . . . , z7, where z “ e2πi{8 is a primitive
8th root of 1. Thus the splitting field of x8 ´ 1 is exactly Qpzq. Note the factorization

x8 ´ 1 “ px4 ´ 1qpx4 ` 1q.

Since z4 “ eπi “ ´1, so that z is a root of the second factor, x4 ` 1.
I claim x4 ` 1 this is irreducible over Q, and thus the minimal polynomial of z. This follows from

Eisenstein’s criterion at the prime 2, applied to

px` 1q4 ` 1 “ x4 ` 4x3 ` 6x2 ` 4x` 2.

Thus rQpzq : Qs “ 4. The full set of roots of x4`1 are
 

z, z3, z5, z7
(

. Since we’re in characteristic 0, Qpzq{Q
is necessarily separable. Therefore it is Galois.

What is GalpQpzq{Qq? It is certainly a group of order 4. Each σ P GalpQpzq{Qq must carry z onto either
z, z3, z5, z7. So

GalpQpzq{Qq “ te, σ3, σ5, σ7u ,

wnhere σjpzq “ zj . Note that
σjσj1pzq “ σjpz

j1

q “ σjpzq
j1

“ zjj
1

The rule is that σjσj1 “ σjj1 , where the product is considered modulo 8, and σ1 is the identity. Thus
GalpQpzq{Qq is isomorphic to the group of units in the ring Z8. We have 32 ” 52 ” 72 ” 1 pmod 8q, so that
GalpQpzq{Qq is isomorphic to Z2 ˆ Z2.

The subgroups of GalpQpzq{Qq are:

(1) GalpQpzq{Qq

(2) H3 “ te, σ3u

(3) H5 “ te, σ5u

(4) H7 “ te, σ7u

(5) teu

For each of these subgroups H, we can try to figure out QpzqH . First let’s compute the fixed field of H7.
Looking for an element of Qpzq which doesn’t change when you apply σ7. First note that σ7pz7q “ z49 “ z.
If α “ z` z7, then σ7pαq “ z7` z “ α. Therefore α P QpzqH7 . What is α? (Note that z8 “ 1, so z7 “ z´1.)

α “ z ` z7 “ e2πi{8 ` e´2πi{8 “ 2 cosp2π{8q “
?
2.

We could have also argued:

pz ` z7q2 “ z2 ` 2zz7 ` z14 “ z2 ` 2` z´2 “ i` 2` p´iq “ 2.

The result is that QpzqH7 “ Qp
?
2q.

The same argument shows that QpzqH3 “ Qpβq, where β “ z ` z3. We note here that

z “

?
2

2
` i

?
2

2

and

z3 “ ´

?
2

2
` i

?
2

2
.

Thus β “ i
?
2 “

?
´2. Thus QpzqH3 “ Qp

?
´2q. The remaining field has to be Qp

?
´1q, because i “ z2.

We can see that
σ5piq “ i5 “ i.



Qpzq

Qp
?
2q Qp

?
´2q Qp

?
´1q

Q

Since
?
´2,

?
2 P Qpzq, we must have

?
´4 “ 2

?
´1 P Qpzq as well.

3. Inseparable extensions are a nightmare

Let F “ Zppt, uq, and let E “ F pt1{p, u1{pq. Then E{F has degree p2. We had already observed that E{F
is not a primitive extension: there is no α P E for which E “ F pαq. It is also the case that AutpE{F q “ teu,
the trivial group. It gets worse than this:

Theorem 3.1. There are infinitely many distinct intermediate fields between F and E.

Indeed, K “ F pt1{p ` ua{pq, as a ranges through integers not divisible by p, gives an infinite family of
distinct intermediate extensions.

Thus, nothing like the main theorem of Galois theory holds for inseparable extensions.

4. But finite fields are a dream

Let F be a finite field, with q elements. Thus q is a power of a prime. If F is an algebraic closure of F ,
then F is the set of roots of xq ´ x in F .

For each integer n ě 1, there is exactly one extension of F of degree n. Namely, let E be the set of roots
of xq

n

´x in F . Then E{F is an extension of degree n. We have #E “ qn. We have that GalpE{F q is cyclic
of order n, generated by the Frobenius element σ. For all α P E, σpαq “ αq. Note that σ really does have
order n, since σnpαq “ αq

n

“ α.
Fields intermediate to E{F are in correspondence with subgroups of GalpE{F q – Zn. There is one

subgroup for each divisor d of n, namely the subgroup generated by σn{d. For each d, we have the subgroup
generated by σd, of order n{d but index d. The fixed field of σd is the set of all α P E satisfying αq

d

“ α,
which is to say, the roots of xq

d

´ x. These form a subfield K, of degree d over F .

5. The relation between normal extensions and normal subgroups

In this section we’re going to add some details to the Main Theorem of Galois Theory. Let E{F be a
finite Galois extension. Then there is a bijection between the following two sets:

‚ Intermediate fields K between E and F .
‚ Subgroups of GalpE{F q.

The bijection carries K onto the subgroup GalpE{Kq, and in the reverse direction, it carries a subgroup
H Ă GalpE{F q onto its fixed field EH .

Also recall that for an intermediate field K, the extension E{K is Galois, but there’s no guarantee about
K{F :
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E

Galois

K

???

F

So when is K{F Galois? If so, what is its group?

Theorem 5.1. Assume that E{F is a finite Galois extension. Let H Ă GalpE{F q, with fixed field K “ EH .
Then K{F is Galois if and only if H is a normal subgroup of GalpE{F q. If this is the case, then we have
an isomorphism

GalpK{F q – GalpE{F q{H.

We remark that splitting fields are also sometimes called normal extensions. So this theorem says that
normal subgroups correspond to normal fields.

Example 5.2. Consider the splitting field E of x3 ´ 2 over Q.

Let θ “ 3
?
2. Then the roots of x3 ´ 2 are θ, ωθ, ω2θ, where

ω “ e2πi{3 “ ´
1

2
`

?
´3

2
.

Thus E “ Qpθ, ωθ, ω2θq “ Qpθ, ωq. We found earlier that GalpE{Qq – S3,

GalpE{Qq “
 

e, σ, σ2, τ, στ, σ2τ
(

.

Here, τ takes ω to ω2 but fixes θ, while σ fixes ω but takes θ to ωθ.
The only nontrivial proper normal subgroup is A3 “

 

e, σ, σ2
(

. The fixed field of A3 is Qpωq, which is
Galois over Q. The Galois group of Qpωq{Q is S3{A3 – Z2.

Meanwhile, H “ te, τu is a non-normal subgroup. The fixed field of H is Qpθq, and this is not Galois over
Q (it is not a splitting field).
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