
LECTURE MARCH 27: ILLUSTRATIONS OF GALOIS THEORY

1. Quadratic extensions

Theorem 1.1. Let F be a field of characteristic not 2. Then any extension E{F of degree 2 is Galois. We
have E “ F p

?
aq for some a P F which is not a square in F .

Proof. Let E{F be an extension of degree 2. Then if α P E does not belong to F , we have E “ F pαq. This
element has some minimal polynomial over F , say x2 ` bx ` c. Therefore α2 ` bα ` c “ 0. Complete the
square:

α2 ` bα` b2{4` c “ b2{4,

so that
pα` b{2q2 “ b2{4´ c.

If β “ α ` b{2, then E “ F pβq “ F p
?
b2 ´ 4cq “ F p

?
dq, where d “

?
b2 ´ 4c. The F -conjugate of

?
d is

just ´
?
d, so E{F is a splitting field. Since 2 ‰ 0 in F , so that means that

?
d ‰ ´

?
d, since otherwise

2
?
d “ 0. �

Example 1.2. Classify all quadratic extensions of Q.

Any quadratic extension of Q has to be Qp
a

p{qq, where p, q P Z, q ‰ 0, and p{q is not the square of any
rational number. We have

a

p{q “
?
pq{q. So we restrict our attention to Qp

?
mq, where m P Z is not a

perfect square. I only care about the case where m is not divisible by any square (m is square-free). So the
complete list of quadratic extensions is:

Qp
?

2q,Qp
?

3q,Qp
?

5q,Qp
?

6q,Qp
?

7q,Qp
?

10q, . . . ,

and also:
Qp
?
´1q,Qp

?
´2q,Qp

?
´3q,Qp

?
´5q, . . . ,

Remember our definition of a constructible number:

Definition 1.3. An algebraic number α P C is constructible if Qpαq sits atop a tower of field extensions of
Q, each a quadratic extension of the last.

This was the same as saying that the point α in the complex plane is constructible using a compass and
ruler (and also a unit measure). Note that if α is constructible, then rQpαq : Qs must be a power of 2.

Another way of saying this is that you can write down α as an expression with nested square root signs.

2. Cyclotomic extensions

The central question here is:

Example 2.1. For m ě 3, investigate the splitting field of xm ´ 1 over Q.

Such fields (and their subfields) are called cyclotomic. The complex roots of xm ´ 1 lie on the unit circle,
dividing it into m equal parts. “Cyclotomic” means “circle-cutting”.

Let us fix m and write ζ “ e2πi{m. Then ζ is a root of xm ´ 1. In fact all roots of xm ´ 1 are
 

1, ζ, ζ2, . . . , ζm´1
(

.

These form a finite group under multiplication, and in fact a cyclic group. Any generator of this group is
called a primitive mth root of 1.
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Example 2.2. Thus i and ´i are primitive 4th roots of 1, but 1 and ´1 are not.

If ζ is a primitive mth root of unity, then the other primitive mth roots of unity are ζa, where 1 ď a ď m

are those numbers with gcdpa,mq “ 1. Thus in total there are φpmq primitive mth roots of 1.

Theorem 2.3. Let ζ be a primitive mth root of 1. Then Qpζq is the splitting field of xm ´ 1.

Proof. All the roots of xm ´ 1 are powers of ζ, and these obviously belong to Qpζq. �

Since Q is perfect, Qpζq{Q is separable. It’s also a splitting field, and therefore it’s Galois. What is
GalpQpζq{Qq?

Given an automorphism σ P GalpQpζq{Qq, let’s consider σpζq. We have σpζqm “ σpζmq “ σp1q “ 1.
Therefore σpζq is another mth root of 1, and so we have

σpζq “ ζj ,

for some j “ 0, 1, 2, . . . ,m´ 1. Since ζ was primitive, so is σpζq, and therefore gcdpj,mq “ 1. Let’s call this
automorphism σj . Furthermore,

σjσj1 “ σjj1 ,

where the product jj1 is taken modulo m.
Recall the group Zˆm of units modulo m. We have just described a group homomorphism GalpQpζq{Qq Ñ

Zˆm.

Theorem 2.4. There is an isomorphism GalpQpζq{Qq Ñ Zˆm. Thus rQpζq : Qs “ φpmq.

Proof. (Sketch.) First of all, GalpQpζq{Qq Ñ Zˆm sends σj to j; it is clearly injective. I’m going to prove
surjectivity in the case that m “ p is a prime number.

In that case φppq “ p ´ 1. It’s enough to show that the degree rQpζq : Qs “ p ´ 1. The element ζ is a
root of xp ´ 1, but not of x´ 1, so it is a root of

xp ´ 1

x´ 1
“ xp´1 ` xp´2 ` ¨ ¨ ¨ ` x` 1.

This polynomial is irreducible, you can apply the Eisenstein criterion at the prime p to this polynomial after
shifting x to x` 1. �

Question: if m is not a prime number, what is the minimal polynomial of ζ over Q? It must be some
polynomial of degree φpmq, called the cyclotomic polynomial. The mth cyclotomic polynomial takes this
form:

Φmpxq “
ź

a

px´ ζaq,

where a ranges over integers between 1 and m, relatively prime with m. It has integer coefficients!
For instance,

Φ4pxq “ px´ iqpx` iq “ x2 ` 1.

3. Constructibility of the 5-gon

Consider the extension Qpζq{Q in the case m “ 5. We have GalpQpζq{Qq – Zˆ5 “ t1, 2, 3, 4u. This is a
cyclic group with generators 2 and 3.

What are all the subfields of Qpζq? By the main theorem of Galois theory, subfields of Qpζq are in
correspondence with subgroups of Zˆ5 . There is one proper nontrivial subgroup, namely t1, 4u. Which is the
subfield corresponding to this? We’re looking for elements of Qpζq which are fixed under the automorphism
ζ ÞÑ ζ4.

Let
τ “ ζ ` ζ4 “ e2πi{5 ` e´2πi{5 “ 2 cosp2π{5q,

then τ lies in the subfield K fixed by σ4. (By the way, σ4 is complex conjugation. Thus τ is a real number.)
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We know that K{Q is a quadratic extension. So it must be K “ Qp
?
mq for some integer m. Let’s square

τ :
τ2 “ ζ2 ` 2` ζ3.

Now add τ to τ2:

τ2 ` τ “ ζ ` ζ2 ` ζ3 ` ζ4 ` 2

“ p1` ζ ` ζ2 ` ζ3 ` ζ4q ` 1

“ 1

We have τ2 ` τ ´ 1 “ 0, so that

τ “
´1`

?
5

2
(we can reject the minus sign since τ ą 0.)

Let’s go all the way and given an explicit formula for ζ. We have ζ ` ζ´1 “ τ , so that ζ2 ´ τζ ` 1 “ 0

You can now come up with a formula for ζ:

ζ “
1

2
pτ `

a

τ2 ´ 4q “
1

2

¨

˝

1

2
p´1`

?
5q `

d

´5´
?

5

2

˛

‚

4. Fermat primes

Gauss discovered which regular polygons were constructible. For instance he noted that

16 cos
2π

17
“ ´1`

?
17`

b

34´ 2
?

17

`2

c

17` 3
?

17´

b

34´ 2
?

17´ 2

b

34` 2
?

17,

and therefore that the regular 17-gon is constructible. What’s the pattern?
Let’s first handle the case of a regular p-gon, where p is a prime number. Let ζ “ e2πi{p be a pth root of

1. If ζ is constructible, it implies that rQpζq : Qs is a power of 2: p´ 1 “ 2n. Primes of the form 2n ` 1 are
called Fermat primes.

Since 7 is not a Fermat prime, the regular 7-gon is not constructible.
If p “ 2n` 1 is a Fermat prime, then GalpQpζq{Qq – Zˆp . This is a cyclic group of order p´ 1 “ 2n. This

group contains one subgroup for each power of 2 between 1 and 2n. By the main theorem of Galois theory,
there exist fields

Qpζq{Kn´1{Kn´2{ ¨ ¨ ¨ {K1{Q,

where each field is quadratic over the next. Therefore ζ is constructible.
Cool exercise: if p “ 2n ` 1 is a Fermat prime, then n itself is a power of 2.
So which numbers 22

n

` 1 are prime? First few: 3, 5, 17, 257, 65537. It is unknown whether there are any
others!
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5. The hard midterm problems

Example 5.1. Let F be a field of characteristic not 2 or 3, and suppose that a P Fˆ is not a perfect cube in
F . (a) Show that fpxq “ x3 ´ a is irreducible in F . (b) Let E be the splitting field of fpxq. Carefully show
that if ´3 is a square in F , then rE : F s “ 3, and otherwise, rE : F s “ 6.

Proof. (a) If a cubic polynomial factors, then it must have a root, but that would contradict the fact that a
is not a cube in F .

(b) Suppose that ´3 is a square in F , so that we can talk about an element
?
´3 P F . Since F does not

have characteristic 2, it makes sense to write

ω “
´1`

?
´3

2
.

Then ω is a root of x2 ` x ` 1 and hence of x3 ´ 1. Furthermore we have ω ‰ 1, since otherwise
?
´3 “ 3

and then ´3 “ 9 or 12 “ 0 impossible since F does not have characteristic 2 or 3. Thus ω is a primitive 3rd
root of 1: we have ω3 “ 1, but ω ‰ 1.

Now let r P E be a root of x3 ´ a. Then ωr and ω2r are also roots of x3 ´ a, and they lie in F prq.
Therefore E “ F prq is already the splitting field of x3 ´ a; it has degree 3.

Conversely, suppose ´3 is not a square in F . The polynomial x3 ´ a is separable over F (because F has
characteristic not 3); let r1, r2, r3 be the three distinct roots of x3 ´ a in E. Let ω “ r2{r1, so that ω ‰ 1.
We have ω3 “ r32{r

3
1 “ a{a “ 1, so that ω is a root of

x3 ´ 1

x´ 1
“ x2 ` x` 1.

So ω2 ` ω ` 1 “ 0, and therefore

p2ω ` 1q2 “ 4ω2 ` 4ω ` 1 “ 4pω2 ` ω ` 1q ´ 3 “ ´3,

which means that
?
´3 P E. On the other hand,

?
´3 R F , so it must have degree 2 over F , and therefore

rE : F s is divisible by 2. It is also divisible by 3 (since F pr1q Ă E), so therefore it is divisible by 6. Since we
know rE : F s ď 3! “ 6, we must have rE : F s “ 6. �

Example 5.2. Let F be a field of characteristic not 2 or 3, and let fpxq “ x3 ` px ` q be an irreducible
cubic polynomial with coefficients in F . Let r1, r2, r3 be the roots of fpxq in an algebraic closure of F . It can
be shown that the element

D “ pr1 ´ r2q
2pr1 ´ r3q

2pr2 ´ r3q
2

belongs to F . In fact it is equal to ´4p3 ´ 27q2. Let E “ F pr1, r2, r3q be the splitting field of fpxq. Show
that if D is a square in F , then rE : F s “ 3, and that if D is not a square in F , then rE : F s “ 6.

The computational way. We have a tower of fields

E{F pr1q{F,

where E “ F pr1, r2, r3q. We claim that
E “ F pr1,

?
Dq.

Let’s see how this solves the problem. If
?
D P F , then immediately we get E “ F pr1q, which has degree 3

over F . If
?
D R F , then rF p

?
Dq : F s “ 2, and since this F p

?
Dq Ă E, we have rE : F s “ 6 by the same

reasoning as the last proof.
We have

x3 ` px` q “ px´ r1qpx´ r2qpx´ r3q,

so that

r1 ` r2 ` r3 “ 0,

r1r2r3 “ ´q
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Therefore
px´ r2qpx´ r3q “ x2 ` r1x´

q

r1
.

Then
?
D “ pr1 ´ r2qpr1 ´ r3qpr2 ´ r3q “ p2r

2
1 ´

q

r1
qpr2 ´ r3q

We get that r2 ´ r3 P F pr1,
?
Dq. But also r2 ` r3 “ ´r1 P F pr1q Ă F pr1,

?
Dq. Therefore the sum and

difference of these two elements, namely 2r2, 2r3, also lies in F pr1,
?
Dq. Since 2 ‰ 0 in F , we can conclude

that r2, r3 P F pr1,
?
Dq. We have shown that E “ F pr1, r2, r3q “ F pr1,

?
Dq, which is what we needed for

the proof. �

The better way, using Galois theory. Let G “ GalpE{F q. Then G permutes the three roots r1, r2, r3. There-
fore we can think of it as a subgroup of S3: G Ă S3.

Think of what an element of G does to the discriminant:

D “ pr1 ´ r2q
2pr1 ´ r3q

2pr2 ´ r3q
2.

It’s pretty clear that permuting the roots doesn’t change D! Therefore D P F . Now let’s examine what an
element of G does to

?
D “ pr1 ´ r2qpr1 ´ r3qpr2 ´ r3q.

Let τ be a transposition (say, p12q). Then τ
?
D “ ´

?
D. Let σ be a 3-cycle (say p123q). Then σ

?
D “

?
D.

Suppose
?
D P F . Then

?
D is fixed by all elements of G. Then G must not contain any transpositions.

We conclude that G “ A3 – Z3. Whereas if
?
D R F , then there must be a transposition in G. We already

know that #G is divisible by 3; therefore G “ S3. �

6. A coda on cyclotomic fields

If m ě 3, we let
ζm “ e2πi{m

be a primitive mth root of 1. The field Qpζmq is called a cyclotomic field. We have seen that GalpQpζmq{Qq

is isomorphic to Zˆm.
Let’s assume that m “ p is an odd prime. Then Zˆp is a cyclic group of order p ´ 1. The main theorem

of Galois theory says that subfields of Qpζpq are in bijection with subgroups of Zˆp . In turn, subgroups of
Zˆp are in correspondence with divisors of p´ 1.

In particular, since 2|p´ 1, there exists a unique quadratic extension of Q, call it K, contained in Qpζpq.
We have K “ Qp

?
mq, where m is a squarefree integer.

Theorem 6.1 (Gauss, 1798, 21 years old). m “ p if p ” 1 pmod 4q, and m “ ´p if p ” 3 pmod 4q.

As an example, if p “ 5, the theorem says that
?

5 P Qpζ5q. Actually, we knew this already, since

ζ5 ` ζ
4
5 “

´1`
?

5

2
.

We can even rewrite this as
ζ5 ´ ζ

2
5 ´ ζ

3
5 ` ζ

4
5 “

?
5.

The unique subgroup H Ă Zˆp of index 2 is the subgroup of squares modulo p. For instance, if p “ 5, the
subgroup H is t1, 4u Ă t1, 2, 3, 4u. Gauss designed an element of Qpζpq to be fixed under H.

To write it down, we need the Legendre symbol. For an integer a not divisible by p, we let
ˆ

a

p

˙

“

#

1 a is a square mod p

´1 otherwise

Gauss’ theorem is then:



p´1
ÿ

a“1

ˆ

a

p

˙

ζap “

#?
p p ” 1 pmod 4q,

?
´p p ” ´1 pmod 4q

We know that GalpQpζmq{Qq is an abelian group, namely Zˆm. Since every subgroup of an abelian group
is normal, we have that every K Ă Qpζmq has to be Galois over Q. Furthermore, GalpK{Qq has to be
abelian, since it is a factor group of Zˆm.

Definition 6.2. E{F is an abelian extension of fields if it is Galois and if GalpE{F q is abelian.

Theorem 6.3 (Kronecker-Weber theorem). Let K{Q be an abelian extension. Then K is contained in
Qpζmq for some m.

(Complete proof given by Hilbert in 1896. This might be considered the first result in class field theory.)

7. Symmetric functions

Let n ě 1 be an integer, and let K be a field. Let

E “ Kpr1, r2, . . . , rnq

be the field generated over K by n indeterminates. The group Sn acts on E, by permuting the ris. Thus
Sn Ă AutpE{Kq.

Let
F “ ESn .

This is the field of symmetric functions in the r1, . . . , rn. Thus, elements of F are rational functions in the
r1, . . . , rn which are symmetric in those variables. For instance, the elements r21 ` ¨ ¨ ¨ ` r2n P F and r1 ¨ ¨ ¨ rn
belong to F .

Here’s a way to cook up a bunch of elements of F . Let

fpxq “ px´ r1qpx´ r2q ¨ ¨ ¨ px´ rnq.

A priori, this lies in Erxs. But since any permutation of the ri doesn’t change fpxq, all of the coefficients of
fpxq must be symmetric. Let’s give names to those coefficients, by putting

fpxq “ xn ´ s1x
n´1 ` ¨ ¨ ¨ ˘ sn´1x¯ sn

(the signs alternate). Then

s1 “ r1 ` r2 ` ¨ ¨ ¨ ` rn

s2 “ r1r2 ` r1r3 ` ¨ ¨ ¨ ` rn´1rn
...

sn “ r1r2 ¨ ¨ ¨ rn

all belong to F . They are called the elementary symmetric polynomials in r1, . . . , rn.

Theorem 7.1. We have F “ Kps1, . . . , snq. Thus, every symmetric function in r1, . . . , rn is a rational
function in the elementary symmetric polynomials s1, . . . , sn. The extension E{F is Galois, and GalpE{F q “

Sn.
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Proof. For now we let L “ Kps1, . . . , snq, so that we have a tower of fields:

E “ Kpr1, . . . , rnq

F “ ESn

L “ Kps1, . . . , snq

The polynomial fpxq lies in Lrxs, and its splitting field is Lpr1, . . . , rnq “ E. The roots are distinct, so that
E{L is separable. Thus E{L is Galois. Since E{L is the splitting field of a polynomial of degree n, we have
the inequality rE : Ls ď n!. But also, Sn is a subgroup of GalpE{Lq, so that rE : Ls ě n!. Thus we have
rE : Ls “ n!, and therefore GalpE{Lq “ Sn. By the main theorem of Galois theory, the fixed field of Sn is
just L, so that L “ ESn “ F . �

For example, let n “ 2, so that F “ Kps1, s2q and E “ Kpr1, r2q, with

s1 “ r1 ` r2

s0 “ r1r2.

The theorem states that any element of E which is unchanged by swapping r1 and r2 must be an element
of F . For instance

r21 ` r
2
2 “ s21 ´ 2s0.

Theorem 7.2. Let G be any finite group. Then G – GalpE{F q, for some field extension E{F .

Proof. There exists an n such that G is isomorphic to a subgroup of Sn (Cayley’s theorem). We just saw
that Sn is a Galois group, and therefore by the main theorem of Galois theory, so is G. �

Question: Given a finite group G, does there exist an extension K{Q such that GalpK{Qq – G? This is
called the inverse Galois problem, and it is wide open. It is known however for finite abelian groups, and
also for Sn.
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