MA746 Final, due Tuesday, May 8

- 1. Let X be a curve over an algebraically closed field k (meaning a nonsingular projective variety of dimension 1). Assume that the genus of X is 2. You may also assume that the characteristic of k is 0.
 - (a) Let K be the canonical divisor of X. Show that $\ell(K) = 2$ and that K determines a morphism $f: X \to \mathbf{P}^1$ of degree 2.
 - (b) Use the Riemann-Hurwitz formula to show that f is branched over six points in \mathbf{P}^1 , with ramification degree 2 at each one.
 - (c) Show that X does not admit a closed immersion into \mathbf{P}^2 .
 - (d) Show that if D is a divisor of degree 5 on X, then D induces a closed immersion $X \to \mathbf{P}^3$.
- 2. For this exercise, you may use the following fact: Let $r_i \ge 2$ be a finite collection of integers, and let $R = \sum_i (1 1/r_i)$. Then if R > 2, then $R 2 \ge 1/42$.

Let X be a curve of genus $g \ge 2$ over an algebraically closed field of characteristic 0, and let G be a finite group of automorphisms of X. Assume the existence of a quotient curve $f: X \to Y$, meaning that the fibers of f are exactly the orbits of G. Use the Riemann-Hurwitz formula to show that $\#G \le 84(g-1)$.

(The bound is sharp for infinitely many g. For instance, if X is the Klein quartic $x^3y + y^3z + z^3x = 0$, then X has genus 3, and the automorphism group of X is isomorphic to $PSL_2(\mathbf{F}_7)$, a simple group of order 168.)