MA746 Midterm, due Wednesday, 3/21

- 1. (Ex 2.4 in Hartshorne) Let A be a ring and X a scheme. Show that there is a bijection between the set of morphisms of schemes $X \to \operatorname{Spec} A$ and the set of ring homomorphisms $A \to \Gamma(X, \mathcal{O}_X)$.
- 2. Read the proof of Thm. 7.1 in Hartshorne, which describes when a tuple of global sections $s_0, \ldots, s_n \in \Gamma(X, \mathscr{L})$ of an invertible sheaf on a scheme X over a ring A can be used to give a morphism $\phi: X \to \mathbf{P}_A^n$. At the end of the proof, Hartshorne says "It is clear from the construction...that $\mathscr{L} \cong \phi^*(\mathcal{O}(1))$, and that the sections s_i correspond to $\phi^*(x_i)$ under this isomorphism." This is an important point. Write up a proof of these claims.
- 3. Let k be an algebraically closed field, and let $i: C \hookrightarrow \mathbf{P}_k^2$ be a cubic curve. That is, C is the closed subscheme of the projective plane cut out by a homogeneous polynomial $f \in k[x, y, z]$ of degree 3. Assume that C is nonsingular. Let ∞ be a *flex point* of C, meaning a point whose tangent line meets C to order 3. (If the characteristic of k is not 2 or 3, one can do a change of variables so that C is the curve $y^2z = x^3 + axz^2 + bz^3$, and that $\infty = [0:1:0]$. You may assume this if it helps.)
 - (a) Let $\mathscr{L} = i^*(\mathcal{O}_{\mathbf{P}^2_{k}}(1))$. Show that $\mathscr{L} \cong \mathscr{L}(3\infty)$.
 - (b) Show that $P \sim Q$ in Cl(C) if and only if P = Q.
 - (c) Let P, Q, R be distinct closed points in $C \setminus \{\infty\}$. Show that in $Cl(C), P + Q + R \sim 3\infty$ if and only if P, Q, R are collinear. (Of course there is a natural generalization to the case that P,Q and R are not all distinct.)
 - (d) Let $\operatorname{Cl}^{\circ}(C)$ be the kernel of the degree homomorphism $\operatorname{Cl}(C) \to \mathbb{Z}$. Show that $P \mapsto P - \infty$ is a bijection from the set of closed points

of C onto $Cl^{\circ}(C)$. This is an explanation for the classical group law on the points of an elliptic curve.

This also shows that $\operatorname{Pic}^{\circ}(C) = \operatorname{Cl}^{\circ}(C)$, a priori only a group, carries the structure of a projective variety. This is true for all nonsingular projective curves C; $\operatorname{Pic}^{\circ}C$ is called the Jacobian variety of C, a so-called "abelian variety".