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1 Motivation

Drinfeld introduced his so-called elliptic modules in an important 1973 paper1

of the same title. He introduces this paper by observing the unity of three
phenomena that appear in number theory:

1. The theory of cyclotomic extensions of Q, and class field theory over
Q.

2. The theory of elliptic curves with complex multiplication, relative to
an imaginary quadratic field.

3. The theory of elliptic curves in the large, over Q.

To these, Drinfeld added a fourth:

4. The theory of Drinfeld modules over a function field.

Thus, Drinfeld modules are some kind of simultaneous generalization of
groups of roots of unity (which are rank 1), but also of elliptic curves (which
are rank 2, in the appropriate sense). Furthermore, Drinfeld modules can
be any rank whatsoever; there is no structure that we know of which is an
analogue of a rank 3 Drinfeld module over Q.

In later work, Drinfeld extended his notion to a rather more general gad-
get called a shtuka2. Later, Laurent Lafforgue used the cohomology of moduli
spaces of shtukas to prove the Langlands conjectures for GL(n), generalizing

1Try not to think too hard about the fact that Drinfeld was 20 years old that year.
2Russian slang for “thingy”, from German Stück, “piece”.
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what Drinfeld had done for n = 2, and receiving a Fields medal in 2002
for those efforts. Whereas the Langlands conjectures are still wide open for
number fields, even for GL(2) and even for Q!

Before stating the definition of a Drinfeld module, it will be helpful to
review items (1)-(3) above and highlight the common thread.

1.1 Cyclotomic fields

Let n ≥ 1. We begin with the observation that the algebraic number ζn =
e2πi/n happens to be an algebraic number, in fact a root of xn − 1. This
is a small miracle and you should think deeply about why this is so. One
interpretation is that the multiplicative group Gm, a priori just an algebraic
group over Z, admits a complex uniformization C→ Gm(C) given by z 7→ ez,
whose kernel is the discrete subgroup 2πiZ ⊂ C. Multiplication by n on C
translates over to the map z 7→ zn on Gm(C), which just happens to come
from an endomorphism of the algebraic groups Gm.

All of this is very basic, so let’s move on to the arithmetic of cyclotomic
extensions. The number field Q(ζn) is abelian over Q, and there is an iso-
morphism

r : Gal(Q(ζn)/Q)→ (Z/nZ)×

characterized by the equation σ(ζn) = ζ
r(n)
n , for all σ ∈ Gal(Q(ζn)/Q). This

relation makes plain the following reciprocity law: For a prime p not dividing
n, let Frobp be the Frobenius element of Gal(Q(ζn)/Q); then

r(Frobp) = p (mod n).

This law tells you how primes decompose in Q(ζn)/Q. For instance, p splits
completely if and only if Frobp = 1, which is true if and only if p ≡ 1
(mod n).

The reciprocity law can be phrased in terms of L-series. If χ is a Dirichlet
character modulo n, then χ ◦ r is a continuous homomorphism Gal(Q/Q)→
C×; that is, χ ◦ r is an Artin character of dimension 1. The reciprocity
law states that L(χ ◦ r, s) = L(χ, s). Furthermore, the Kronecker-Weber
theorem states that every abelian extension of Q is contained in Q(ζn) for
some n. From this one can derive the fact that there is a bijection between
Artin characters of dimension 1 and primitive Dirichlet characters, and this
bijection preserves L-series. What we have here is a connection between a
class of Galois representations (in this case, 1-dimensional Artin characters)
and automorphic representations (in this case, Dirichlet characters).
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1.2 Elliptic curves with complex multiplication

Hilbert’s 12th problem asks whether special values of transcendental functions
can be used to systematically construct abelian extensions of a given number
field K, as the exponential function exp(2πiz) does for Q. When K is an
imaginary quadratic field, Kronecker’s Jugendtraum provides an affirmative
answer, in the form of modular functions. In modern language, we say that
abelian extensions of K come from adjoining the torsion of elliptic curves
with CM by (an order in) K.

Recall that a lattice in C is a discrete subgroup Λ ⊂ C which is free of rank
2 as an abelian group. Another way of saying this is that Λ = Zα⊕Zβ, where
{α, β} is a basis for C/R. Given a lattice Λ, there exists a corresponding
elliptic curve EΛ/C which is uniformized by C, in the sense that there is an
isomorphism of complex tori

C/Λ → EΛ(C)

z 7→ (℘(z), ℘′(z)).

Explicitly, EΛ is the projective cubic curve with affine equation

y2 = 4x3 − g2(Λ)x− g3(Λ),

where

g2(Λ) = 60
∑

λ∈Λ\{0}

λ−4

g4(Λ) = 140
∑

λ∈Λ\{0}

λ−6

and

℘(z) =
1

z2
+

∑
λ∈Λ\{0}

[
1

(z − λ)2
− 1

λ2

]
.

It is something of a miracle that the abstractly defined complex torus C/Λ
should admit an algebraic description, and it is exactly this miracle that is
exploited for the Jugendtraum.

The association Λ 7→ EΛ induces an equivalence between the following
two Z-linear categories:

1. Lattices Λ ⊂ C, where Hom(Λ,Λ′) is defined as

{
α ∈ C

∣∣∣∣ αΛ ⊂ Λ′
}

,

and the composition law is multiplication in C,
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2. Elliptic curves over C.

It is a good exercise to remind yourself why Λ 7→ EΛ really is a functor,
and why it is fully faithful. The functoriality means that if α ∈ C satisfies
αΛ ⊂ Λ′, then the induced map of complex analytic groups EΛ(C)→ EΛ′(C)
actually arises from a morphism EΛ → EΛ′ of elliptic curves; the full faith-
fulness means that every such morphism arises this way.

Now let K be an imaginary quadratic field, considered as a subfield of
C, and let OK be its ring of integers. The above equivalence of categories
restricts to a bijection between:

1. Homothety class of lattices Λ ⊂ C which are stable under multiplication
by OK ; i.e. OKΛ = Λ,

2. Elliptic curves over C with complex multiplication (CM) by OK (mean-
ing that there exists OK → EndE whose derivative is the inclusion
OK → C).

But the first set is finite: it is in bijection with the ideal class group of OK .
Therefore so is the second set. Now we apply the miracle: having CM by
OK is a purely algebraic property, so that if E has CM by OK , and σ is an
automorphism of C/K, then Eσ = E ×C,σ C also has CM by OK . Therefore
Eσ only runs through finitely many isomorphism classes of elliptic curves,
and thus E can be defined over a finite extension of K.

In fact E can be defined over the Hilbert class group H/K, and H =
K(j(E)). Now, just as the torsion in Gm generated abelian extensions of Q,
the torsion in E generates abelian extensions of K. This is essentially because
E[n] is a free OK/n-module of rank 1. The analogue of the Kronecker-Weber
theorem states that every abelian extension of K is contained in H(E[n]) for
some n.

As with cyclotomic fields, there is also a reciprocity law. One version
of this is that if p is a nonzero prime ideal of OK , and Λ is a lattice with
OKΛ = Λ, then Frobp(j(EΛ)) = j(Ep−1Λ). There is a consequence for L-
functions, too: we have an equality

L(E/H, s) = L(ψ, s)L(ψ, s)

where ψ is a certain Hecke character of H, and L(E/H, s) is the Hasse-Weil
L-series.
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1.3 Elliptic curves in the large

When we drop the CM assumption, there are infinitely many isomorphism
classes of elliptic curves. So we consider the moduli space of elliptic curves,
as a variety (actually a stack, but don’t worry about this now) Y/Q. Y by
itself isn’t all that interesting: the j-invariant gives an isomorphism of it onto
the affine line. We add level structures to make it interesting. For instance,
let Y (N) be the moduli space of pairs (E,α), where E is an elliptic curve
and α : E[N ] ∼= Z/NZ × Z/NZ is an isomorphism. Y and Y (N) are called
modular curves. Note that we have a morphism Y (M)→ Y (N) whenever N
divides M . The curve Y (N) is not complete; let X(N) be the completion of
Y (N).

There is once again a reciprocity law, and also an equality between L-
series, but it takes some time to set up, and the details are outside the scope
of this lecture. What follows is the ultra-brief version.

Modular curves are closely linked with modular forms. For instance, a
cusp form of weight 2 for Γ(N) is the same thing as a holomorphic differential
on X(N). Spaces of modular forms admit actions by a commutative ring of
Hecke operators, so we may talk of eigenforms. Let f(z) =

∑
n≥1 anq

n be
a (new) cuspidal eigenform. Then the an generate a number field E. A
theorem of Eichler-Shimura and Deligne associates to f a family of Galois
representations ρf : Gal(Q/Q) → Q` (one for each embedding E → Q`,
where ` is a prime), satisfying the equality

L(f, s) = L(ρf , s),

where L(f, s) =
∑

n≥1 ann
−s and L(ρf , s) is a product of Euler factors, almost

all of which are of the form det(1− ρf (Frobp)p
−s)−1 (this last expression lies

in E and is independent of the choice of E → Q`).
The theorem of Eichler-Shimura and Deligne above may be interpreted

as a “non-abelian reciprocity law”. Its proof involves a study of the étale
cohomology H1(X(N)Q,Q`), which is a finite-dimensional Q`-vector space

admitting an action of Gal(Q/Q).

1.4 Elliptic modules?

Admittedly there are few data points to work with, but the above three
examples point to a general phenomenon, which goes like this: Start with a
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number field K ⊂ C and an integer d ≥ 1. Consider discrete rank d OK-
modules Λ ⊂ C, and for each one, try to consider C/Λ as an algebraic group.
Call such an algebraic group an elliptic OK-module of rank d. Thus Gm is an
elliptic Z-module of rank 1, an elliptic curve is an elliptic Z-module of rank
2, and an elliptic curve with CM by OK is an elliptic OK-module of rank 1.

It is really not clear how to give any other examples of elliptic modules
than these, essentially for the reason that dimR C = 2. It is impossible to
have a discrete rank d OK-submodule of C unless d[K : Q] ≤ 2; and if K 6= Q
it must be imaginary quadratic. We are therefore in one of the cases (1)-(3)
as above.

2 Drinfeld modules: definition and first ex-

amples

2.1 Global fields

The situation is quite different when K is replaced with a function field. Re-
call that a function field is a finite extension K/Fp(T ), where p is prime. More
intrinsically, SpecK is the generic point of a curve X (curve = nonsingular
projective integral scheme of dimension 1) over a finite field.

Also recall the following basic definitions: a global field K is a number
field or a function field. A place of K is a nontrivial metric, up to equivalence;
these are either nonarchimedean (ultrametric) or else they are archimedean,
in which case they are either real or complex. Let |K| be the set of places
of K. If K is the function field of a curve X, then |K| consists only of
nonarchimedean places; it may be identified with the set of closed points ofX.
If v ∈ |K|, there is a usual choice of norm |f |v onK. If v is nonarchimedean, it
corresponds to a discrete valuation ν : K → Z∪{∞}, and then |f |v = q−ν(f),
where q is the cardinality of the residue field of v. An important special case
is K = Fq(T ), v = ∞, in which case |f(x)| = qdeg f for f(x) ∈ Fq[T ]. If v
is archimedean, it corresponds to an embedding ι : K → C (up to complex
conjugation), and then |x|v = |ι(x)|a, where a = 1 or 2 depending on whether
ι is real or complex.

Under these normalizations, we have the global product formula∏
v∈|K|

|f |v = 1,
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valid for all f ∈ K×. It might be worthwhile to review the proof of this fact:
for the fields Q and Fp(T ), this can be worked out rather amusingly by hand,
and then the result can be extended to general K once you know how norms
interact with finite extensions.

Let S ⊂ |K| be a nonempty finite set of places containing the archimedean
places. We define

OK,S =

{
x ∈ K

∣∣∣∣ |x|v ≤ 1, v 6∈ S
}
.

Because we included all archimedean places in S, OK,S is closed under addi-
tion. In fact OK,S is a Dedekind ring. Note that if K is a number field and
S is the set of archimedean places, then OK = OK,S. Also note that if K is
the function field of a curve X, then OK , S = H0(X\S,OX) is the ring of
functions which are regular outside S. The Dirichlet unit theorem describes
the unit group O×K,S; up to torsion it is free of rank #S − 1.

For a place v ∈ |K|, we have the completion Kv, a locally compact field.
If v is archimedean, then Kv is either R or C; if v is nonarchimedean then
Kv it is a finite extension of either Qp or Fp((T )). Furthermore, if K is
characteristic p, then Kv

∼= Fq((T )), where Fq is the residue field of v.
We would like to carry the notion of an elliptic module over to the case of

a general global field. For an analogue of C, we might choose a place v ∈ |K|,
and let C be the completion of an algebraic closure Kv of Kv. Recall that
if v is nonarchimedean, Kv is not complete. For instance, if Kv = Qp, the
completion C of Qp (this is often called Cp) has infinite transcendence degree
over Qp. This is in stark contrast to the case Kv = R, C = C.

The next step is to consider a discrete finite-rank OX,S-submodule of C to
serve as our lattice Λ. This can only exist if OX,S is itself a discrete subring
of C.

Exercise. Show that OX,S ⊂ C is discrete if and only if S = {v}.
Thus if a theory of elliptic modules is to get off the ground, we need

S = {v}. In the case that K is a number field, this forces S = {∞}, which
means that K has only one archimedean place; i.e. K = Q or else K is an
imaginary quadratic field. In that case C = C and OK,S = OK , and then the
rank of a discrete OK-submodule of C can only be 1 or 2 (if K = Q) or 1 (if
K is imaginary quadratic). I call this the tyranny of the archimedean place3.

3For his part, Drinfeld defines an admissible triple as a pair (K,∞, d), where ∞ ∈ |K|
is a place such that all places except possibly ∞ are nonarchimedean, and d ≤ [K : K];
the number field examples are those enumerated above.
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No such tyranny exists in the world of function fields: we are free to choose

any place v ∈ |K|, and then C = K̂v contains discrete OK,{v}-submodules of
arbitrary finite rank.

2.2 Drinfeld modules: Analytic point of view

Now we are in the function field setting only: let X be a curve over Fq, and
let K be its function field. We choose a closed point of X, corresponding to
a place of K; we call this point∞, and let A = OK,{∞} = H0(X\ {∞} ,OX).

We have the completion K∞, and C = K̂∞.
Warm-up exercise. Show that the map x 7→ xq − x =

∏
a∈Fq(x − a)

induces an isomorphism of topological groups C/Fq ∼= C.
We are interested in quotients C/Λ, where Λ ⊂ C is a discrete finite-rank

A-module. If A happens to be a PID, this means that Λ =
⊕d

i=1 Aαi, where
{α1, . . . , αd} are Kv-linearly independent elements of C.

Theorem 2.2.1 (Drinfeld). For z ∈ C, let

℘Λ(z) = z
∏

λ∈Λ\{0}

(
1− z

λ

)
.

1. The product defining ℘Λ(z) converges in C.

2. ℘Λ : C → C is a surjective continuous homomorphism of topological Fq-
vectors spaces, whose kernel is exactly Λ. Thus C/Λ ∼= C as topological
Fq-vector spaces.

Some remarks before the proof: note that ℘Λ has been designed to have
a simple root at each element of Λ. This is in analogy with the Weierstrass
℘-function, which is designed to have a simple pole at every point of a lattice.

Generally in complex analysis, one has a Weierstrass product for an en-
tire function; the product will match the function up to a nonvanishing entire
function. The situation is a bit simpler in the nonarchimedean world: no ex-
ponential factors are needed to make a Weierstrass product converge. What’s
more, we have the following analogue of Picard’s theorem from complex anal-
ysis: There are no nonconstant nonvanishing entire functions. (This can be
proven by analyzing Newton polygons [cite, probably BGR].)
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Proof. (1) will follow from the discreteness of Λ: for every N > 0, there exist
only finitely many λ ∈ Λ with |λ| < N . Thus for every ε > 0, there exist
only finitely many λ with |z/λ| < ε. In the nonarchimedean world, this is
enough to ensure convergence of the product (exercise!).

For (2), let Λ0 ⊂ Λ be a finite Fq-submodule, and let

℘Λ0 = z
∏

λ∈Λ0\{0}

(
1− z

λ

)
∈ C[z],

a polynomial in z. We claim that ℘Λ0(x + y) = ℘Λ0(x) + ℘Λ0(y) in C[x, y].
Let f(x, y) = ℘Λ0(x + y) − ℘Λ0(x) − ℘Λ0(y). Evidently f(λ, λ′) = 0 for
all λ, λ′ ∈ Λ0. For all λ ∈ Λ0, f(x, λ) ∈ C[x] has at least #Λ0 roots,
but deg f(x, λ) < #Λ0, therefore f(x, λ) = 0 identically. Now consider
f(x, y) ∈ C(x)[y]; as a polynomial in y this has at least #Λ0 roots (namely
y ∈ Λ0) but once again its degree in y is < #Λ0. Therefore f(x, y) = 0
indentically. A similar argument shows that f(az) = af(z) for a ∈ Fq.

Since C/Λ is an A-module, the isomorphism ℘Λ : C/Λ → C gives C an
exotic A-module structure, one quite distinct from the structure arising from
the inclusion A→ C. The set C endowed with this exotic A-module structure
is the Drinfeld module associated to Λ. Now, the new Fq-module structure
on C is the same as the usual one, since ℘Λ is Fq-linear. What is really new is
the endomorphism φα : C → C carried over from the action of multiplication
by α on C/Λ.

Theorem 2.2.2. Let α ∈ A. There exists a polynomial φα(x) ∈ C[x] making
the following diagram commute:

C/Λ
℘Λ //

α

��

C

φα

��
C/Λ ℘Λ

// C.

This polynomial is Fq-linear; that is, it takes the form

φα(x) = a0 + a1x
q + a2x

q2

+ . . . , ai ∈ C

Finally, φαβ = φα ◦ φβ (composition of polynomials in C[x] for all α, β ∈ A.
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Proof. We may assume α 6= 0. A priori we have a Fq-linear entire map
φα : C → C which makes the diagram commute, but we need to know that it
is a polynomial. Its kernel is the image under ℘Λ of ker(α|C/Λ) = α−1Λ/Λ,
which is finite (because Λ is a finite-rank A-module, and because A/a is
finite). We claim that

φα(z) = az
∏

λ∈α−1Λ/Λ\{0}

(
1− z

℘Λ(λ)

)
.

Indeed, both sides are entire functons with the same set of simple zeros; thus
by the nonarchimedean Picard theorem the quotient is constant. Examining
coefficients of z shows that this constant is 1.

The rest of the claims about φα follow formally from the corresponding
properties of multiplication by α on C/Λ.

In light of Theorem 2.2.2, the association

A → C[z]

α 7→ φα

has the following properties:

1. φ′α(0) = α.

2. φα is an Fq-linear polynomial; that is,

φα(z) = αz + a1z
q + a2z

q2

+ . . . .

3. φα+β = φα + φβ.

4. φαβ = φα ◦ φβ.

Properties (2)-(4) mean that α 7→ φα defines an Fq-algebra homomorphism
A → EndFq Ga,C , where Ga,C = SpecC[z] is the additive Fq-vector space
scheme over C, and EndFq means endomorphisms in the category of Fq-
vector space schemes over C. Property (1) means that the derivative of this
action agrees with the inclusion A→ C.

Yet another interpretation: Let C[z]Fq-lin be the set of polynomials in C[z]
which are Fq-linear. This set becomes a noncommutative C-algebra, if we de-
fine the C-vector space structure as usual, but the multiplication operation is
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interpreted as composition. (Check that these satisfy the ring axioms.) With
this Fq-algebra structure, C[z]Fq-lin is isomorphic to the twisted polynomial
ring C {τ}, whose underlying C-vector space is C[τ ], but which is subject to
the rule τa = aqτ , for a ∈ C. Then φ may be recast as a ring homomorphism
A→ C {τ}.

3 The Carlitz module

It is enlightening to work out some details of the following special case, which
was worked out by Carlitz in the 1930s (long before Drinfeld). Let

K = Fq(T )

A = Fq[T ]

K∞ = Fq((1/T ))

Λ = A.

Thus ∞ is the point at infinity in the projective line over Fq. Recall that if
f ∈ A then |f |∞ = qdeg f .

We would like to investigate the A-module structure on C induced by the
isomorphism ℘A : C/A→ C, where

℘A(z) = z
∏

a∈A\{0}

(
1− z

a

)
.

For α ∈ Fq[x], let φA,α for the polynomial appearing in Theorem 2.2.2.
To know what φA,α is for general α, it is enough to know φA,T . Now kerφA,T
is isomorphic to the kernel of multiplication by T on C/A, which is in turn
isomorphic to A/T = Fq. Thus deg φA,T = q, which means that

φA,T (z) = Tz + βzq

for some nonzero β ∈ C.
What we will now do is rescale the lattice Λ = A ⊂ C to get rid of

β above. For a nonzero element ξ ∈ C, consider the lattice ξA ⊂ C; by
inspection we have φξA(ξz) = ξφA(z) and φξA,α(ξz) = ξφA,α(z), so that
φξA,T (z) = Tz + ξ1−qβ. Since C is algebraically closed, we may choose ξ so
that ξq−1 = β, and then

φξA,T (z) = Tz + zq.
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The Carlitz module C is the A-module whose underlying Fq-vector space is
C, for which the action of α ∈ A is through φξA,α. Note that φξA,α(z) ∈ A[T ]
for all α ∈ A.

The power series eC(z) = ℘ξA(z) is called the Carlitz exponential. It is an
Fq-linear power series with the properties e′C(z) = 1 and eC(T ) = TeC(T ) +
eC(T )q. These properties determine eC(z) completely:

eC(z) =
∞∑
n=0

xq
n

Dn

, (1)

where the Dn are determined by the recursion D0 = 1, Dn = (T q
n−T )Dq

n−1.
It is a fun exercise to verify that Dn is the product of all monic polynomials
in Fq[T ] of degree n. Therefore

z
∏

α∈Fq [T ]\{0}

(
1− z

ξα

)
=
∞∑
n=0

zq
n

Dn

∈ KJzK (2)

This picture lines up beautifully with the archimedean story. The quo-
tient C/Z may be identified with C× by means of a power series exp(2πz) ∈
CJzK. After renormalizing Z to 2πiZ, the power series has rational coeffi-
cients exp(z) ∈ QJzK. After examining the Weierstrass product form for the
entire function exp(z)− 1, we arrive at the familiar product formula

sin(z) = z
∏
n≥1

(
1− z2

π2n2

)
,

from which follows Euler’s calculation that ζ(2k) ∈ π2kQ for k = 1, 2, . . . .
Evidently the element ξ ∈ C is a characteristic p analogue for 2πi. With

a little more analysis, one can even show that ξ ∈ K∞ ·K, just as 2πi ∈ R ·Q.

4 Drinfeld modules: algebraic approach

As usual, K is a function field, ∞ ∈ |K|, A = OK,{∞}. For α ∈ A, write
degα = −v∞(α), where v∞ is the (Z-valued) valuation on K corresponding
to ∞. By the product formula, degα ≥ 0 for all nonzero α ∈ A.

We are ready to define Drinfeld modules over a field (the generalization
to arbitrary scheme bases will come later). Let L be an A-field; that is, a
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field L equipped with a ring homomorphism ι : A → L. We do not require
that ι be injective; the prime ideal p = ker ι is called the characteristic of the
A-field L. Define the twisted polynomial ring L {τ} = EndFq Ga,L.

Definition 4.0.3. A Drinfeld A-module φ over L is a homomorphism of Fq-
algebras A → L {τ}, α 7→ φα, such that for all α ∈ A, the constant term of
φα is ι(α). It is required that φ be something other than the map α 7→ ι(α).

A morphism φ → φ′ between Drinfeld modules is an element f ∈ L {τ}
such that for all α ∈ A, fφα = φ′αf .

We could have also defined a Drinfeld A-module over L this way: it is an
A-module scheme over L, whose underlying Fq-vector space scheme is Ga,L,
such that the derivative of A→ EndFq Ga,L at the origin is ι : A→ L.

In important observation is that Drinfeld modules form an A-linear cat-
egory: that is, all Hom sets Hom(φ, φ′) are A-modules (and composition is
A-bilinear). Indeed, for f : φ → φ′ and β ∈ A, one defines β · f = φ′βf ; this
also lies in Hom(φ, φ′) because for all α ∈ A,

(β · f)φα = φ′βfφα = φ′βφ
′
αf = φ′αφ

′
βf = φ′α(β · f).

This is in line with the philosophy of elliptic A-modules for general A: these
shouls always constitute an A-linear category.

4.1 Rank and height

Our first order of business is to define the rank of a Drinfeld module φ.
For every α ∈ A, we have the degree deg φα, where φα is considered as a
polynomial in τ . This function A 7→ Z≥0 ∪ {−∞} satisfies the properties

1. deg φαβ = deg φα + deg φβ,

2. deg φα+β ≤ max {deg φα, deg φβ},

3. There exists α with deg φα > 0.

This means that α 7→ exp deg φα extends to a place of K, which is ≤ 1 on
A; this place must be equivalent to ∞. Therefore there exists d ∈ Q>0 such
that for all α ∈ A,

deg φα = d degα.

In fact d is an integer, known as the rank of φ.
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We can play a similar game with the number of times τ divides φα (rather
than its degree). For each α, let m(α) = m be the least integer for which τm

appears in φα or ∞ if φα = 0. Now, if the characteristic of L is 0, then φα
has constant term ι(α), so that m(α) = 0 for all nonzero α. Now suppose
p = ker ι is nonzero. Then α 7→ exp(−m(α)) extends to a nontrivial real-
valued function K → R≥0 which is multiplicative and ultrametric; i.e. it is
a place of K. Since m(α) > 0 for α ∈ p, this place must be equivalent to
the one associated to p. Thus there exists h ∈ Q≥0 such that m(α) = hvp(α)
for all α ∈ A. In fact h is an integer, known as the height of φ. If L has
A-characteristic 0 then the height of φ is defined to be 0.

The significance of the rank and height becomes apparent when we con-
sider the A-torsion in the Drinfeld module φ. Let L be an algebraic closure
of L. For α ∈ A, let

φ[α] =

{
x ∈ L

∣∣∣∣ φα(x) = 0

}
,

so that φ[α] is an A/α-module. Now, note that if α 6∈ p then φα(z) ∈ Fq[z] is
a separable polynomial (its derivative is ι(α) 6= 0), and so #φ[α] = qdeg φα =
qd degα. Otherwise, #φ[α] will be strictly less than qdeg φα .

For an ideal I ⊂ A we may define φ[I] as the intersection of φ[α] for all
α ∈ I.

Theorem 4.1.1. Suppose I is relatively prime to p. Then φ[I] is a free A/I-
module of rank d. Furthermore, for all e ≥ 1, φ[pe] is a free A/pe-module of
rank d− h. (In particular d and h are integers.)

Proof. Let P ⊂ A be a nonzero prime ideal, and consider φ[P∞] = ∪n≥1φ[P n].
Also let AP be the localization of A at P , a DVR. Since φ[P n] is a module
over A/P n = AP/P

n, φ[P∞] is a module over AP . In fact it is a divisible
AP -module, essentially because z 7→ φα(z) is surjective on C for each nonzero
α ∈ A. By the structure theorem for divisible modules over a DVR4, AP is
isomorphic to a direct sum of r copies of KP/AP , where r is some cardinal.
Now suppose P e = (α) is principal. Then φα(z) ∈ C[z]Fq-lin is a polynomial
of separable degree qd degα if P 6= p (resp., q(d−h) degα if P = p), so that #φ[α]
is qd degα (resp., q(d−h) degα). This implies that r = d (resp., r = d− h).

4If you are reading this – do you know a reference for this structure theorem? Sketch:
every element of such a module is contained in a copy of KP /AP , which (being divisible,
hence injective) must be a direct summand. Apply Zorn’s lemma.
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This proves the theorem in the case that I is a prime power; the general
case reduces to this case by a suitable Chinese remainder theorem.

5 Moduli of Drinfeld modules over C

5.1 Drinfeld modules and lattices

As usual, K is a function field with residue field Fq, ∞ ∈ |K| is a place, and
A = OK,{∞}. In time we will define a moduli stack Md of Drinfeld A-modules
of rank d. We cannot do this quite yet (we need to define Drinfeld modules
over general scheme bases first), but we can make sense of Md(C), where

C = K̂∞, as a rigid-analytic space over C. Happily, this situation bears a
strong analogy to the classical situation of elliptic curves over C, where one
can identify the moduli space of complex elliptic curves with the quotient
H/ SL2(Z), where H is the complex upper half-plane.

Theorem 5.1.1. Let d ≥ 1. The functor Λ 7→ ψΛ is an equivalence between
the following A-linear categories:

1. A-lattices Λ ⊂ C of rank d (meaning discrete A-submodules which are

locally free of rank d), where Hom(Λ,Λ′) =

{
α ∈ C

∣∣∣∣ αΛ ⊂ Λ′
}

.

2. Drinfeld A-modules over C.

Proof. Let us at least sketch the proof that this functor is essentially surjec-
tive. Suppose ψ : A → C {τ} is a Drinfeld A-module of rank d. The idea
is to find an entire Fq-linear function ℘ : C → C which is periodic in Λ and
which satisfies

℘(αz) = ψα(℘(z)), all α ∈ A and ℘′(0) = 0. (3)

We may interpret (3) as a functional equation to be solved in the ring CJτK of
noncommutative formal power series (satisfying the usual relation τa = aqτ .
To wit, we are looking for an element ℘ in CJτK for which satisfies

℘−1ψα℘ = α (4)

for all α ∈ A, and also the constant term of ℘‘ is 1.
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Let α ∈ A. By completely formal means, one may find a ℘α ∈ CJτK with
constant term 1 satisfying (4); its coefficients can be defined recursively. If
℘′α is another such element, then ℘′α℘

−1
α commutes with α. If we assume that

α is transcendental over Fq, then it is easy to see that the centralizer of α is
C itself, so that in fact ℘α = ℘′α.

Let β ∈ A be another transcendental element. Since φα commutes with
φβ, ℘−1

β φα℘β commutes with ℘−1
β φβ℘β = β, and thus must be a constant;

examining constant terms gives ℘−1
β φαβ = α, and so in fact ℘α = ℘β.

Letting ℘ be the common value of the ℘α for the transcendental α ∈ A,
we have an Fq-linear power series which at least formally satisfies (3). Now
one has to do a calculation to verify that the recursion giving the coefficients
of ℘ decay rapidly enough to ensure that ℘ defines an entire function C → C.

Let Λ = ℘−1(0). Then (3) ensures that Λ is an A-module. By a general
fact about zero sets of analytic functions (analogous with the complex ver-
sion), Λ is discrete. Also one finds that for all α ∈ A nonzero, ℘ descends to
an isomorphism α−1Λ/Λ ∼= φ[α]. Since φ has rank d, α−1Λ/Λ is a free A/α-
module of rank d. This forces the rank of Λ to be d. Finally, since ℘ : C → C
is an entire Fq-linear function vanishing simply on Λ, the uniqueness of the
Weierstrass product shows that ℘ = ℘Λ, and so φ = φΛ.

Let us define Md(C) to be the set of isomorphism classes of Drinfeld
A-modules of rank d, leaving Md undefined for the moment. By the above
theorem, Md(C) is in bijection with the set of homothety classes of A-lattices
Λ ⊂ C of rank d. From there it is possible to give Md(C) the structure of a
rigid analytic space over C. Before doing this, let us identify some invariants
of lattices and examine some special cases.

5.2 Eisenstein series

Let Λ ⊂ C be an A-lattice of rank d. For k ≥ 1 we define the Eisenstein
series

Ek(Λ) =
′∑

λ∈Λ

λ−k,

where
∑′ means that 0 has been omitted. Then Ek(Λ) = 0 unless k ≡ 0

(mod q − 1), owing to the scalars F×q ⊂ A×. Furthermore we have the
properties Ek(λΛ) = λ−kEk(Λ) for λ ∈ C× and Eqk(Λ) = Ek(Λ)q.
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As with the classical Weierstrass ℘-function, the Eisenstein series appear
as Taylor coefficients of the entire function

℘Λ(z) = z
′∏

λ∈Λ

(
1− z

λ

)
.

Lemma 5.2.1. We have

z

℘Λ(z)
= 1−

∑
k≥1

Ek(Λ)zk.

Proof. Formally taking the logarithmic derivative of ℘Λ(z) and noting that
℘′Λ(z) = 1 gives

z/℘Λ(z)−1 = z
∑
λ∈Λ

1

z − λ

=
∑
λ∈Λ

1

1− λ/z

= 1−
∑

λ∈Λ\{0}

z

λ

1

1− z/λ

= 1−
∑
k≥1

Ek(Λ)zk.

5.3 The case d = 1

Recall that A is a Dedekind ring, and as such the following groups are nat-
urally isomorphic:

1. Isomorphism classes of locally free A-modules of rank 1, under tensor
product.

2. The class group of A, defined as fractional ideals modulo principal
ideals.

3. The quotient K×\A∞,×K /
∏

vO×v , where A∞ is the adele ring (away
from ∞) and v runs over places of K other than ∞.
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Theorem 5.3.1. There is a bijection M1(C) → PicA which sends Λ ⊂ C
to the isomorphism class of Λ as a locally free A-module of rank 1.

Proof. For injectivity: Suppose we have A-lattices Λ,Λ′ ⊂ C and an iso-
morphism of (abstract) A-modules f : Λ → Λ′. Let i : K → Λ ⊗A K be an
isomorphism of K-vector spaces. Then we have two embeddings of K-vector
spaces K ↪→ C, namely i and f ◦ i. These must differ by a nonzero constant
α, which then satisfies αΛ = Λ′.

For surjectivity: every abstract Λ is isomorphic to a fractional ideal of K,
which is naturally a lattice in C.

As a variation on this idea, there is a functor Λ 7→
∧d Λ from locally free

A-modules of rank d to locally free A-modules of rank 1, which induces a
map Md(C) → M1(C) ∼= PicA. This shows that we cannot expect Md(C)
to be connected in general.

5.4 The Carlitz module revisited: d = 1, A = Fq[T ]

Recall the transcendental element ξ ∈ C, which is the A-analogue of 2πi.
Recall that eC(z) = ℘ξA(z) is the Carlitz exponential. Lemma 5.2.1 shows
that

z/eC(z) = 1 + Eq−1(ξA)zq−1 + . . . ,

so that
eC(z) = z − Eq−1(ξA)zq + . . . .

Comparing with (1) shows that

Eq−1(A) =
∑

α∈Fq [T ]\{0}

1

αq−1
= − ξq−1

T q − T
,

which is something of an analogue of ζ(2) = π2/6.

5.5 The case d = 2, A = Fq[T ]

In the case d = 2, A = Fq[T ] there are many beautiful parallels to the
theory of classical (elliptic) modular forms and modular functions. Note
that PicA = 0, so that every A-lattice is a free A-module.

Using (5.2.1), we find that the first few terms of ℘Λ are

℘Λ(z) = z + Eq−1(Λ)zq + [Eq2−1(Λ) + Eq−1(Λ)q+1]zq
2

+ . . . . (5)
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We have the Drinfeld module φ = φΛ, which is characterized by ℘(Tz) =
φT (℘(z)). Let us write

φT = T + g(Λ)τ + ∆(Λ)τ 2,

for elements g(Λ),∆(Λ) ∈ C. Note that ∆(Λ) 6= 0, since φ must be rank
2. Comparing (5) with the functional equation ℘Λ(Tz) = φT (℘Λ(z)) we find
the following relations:

g(Λ) = (T q − T )Eq−1(Λ)

∆(Λ) = (T q − T )qEq−1(Λ)q+1 + (T q
2 − T )Eq2−1(Λ)

Note that g(Λ) and ∆(Λ) have weights q − 1 and q2 − 1, in the sense that
g(λΛ) = λ−(q−1)g(Λ), etc. Therefore

j(Λ) := g(Λ)q+1/∆(Λ)

is a homothety invariant.
These functions of lattices (Ek, g, ∆, j) can be turned into functions of

a single variable z by setting Ek(z) = Ek(A + Az) (and similarly for g, ∆,
j). Since A + Az is a lattice if and only if z 6∈ K∞, these functions have as
their domain the Drinfeld half-plane

Ω = C\K∞,

considered as a rigid-analytic variety over C. One can show that Ek(z) is
analytic on Ω, and (since ∆(z) is nowhere vanishing) so is j(z).

Two elements in Ω determine homothetic A-lattices if and only if they are
in the same GL2(A)-orbit, so that the set of homothety classes of A-lattices
of rank 2 is in bijection with Ω/GL2(A). The function j, being a homothety
invariant, descends to an analytic function on this quotient.

Theorem 5.5.1. The function j : Ω/GL2(A)→ C is a bijection.

Proof. To show that an element a ∈ C lies in the image of j, one simply has
to produce elements g,∆ ∈ C with ∆ 6= 0 and gq+1/∆ = a; then the lattice
Λ whose Drinfeld module is φT = T + gτ + ∆τ 2 has j-invariant a.

For injectivity, we observe that two Drinfeld A-modules φ and φ′ of rank
2 are isomorphic if and only if there exists u ∈ C× such that φ′ = u−1φu. If
φT = T+gτ+∆τ 2, and similarly for φ′, this condition means that g′ = uq−1g,
∆′ = uq

2−1∆. It is a simple matter to check that such a u exists if φT and
φ′T have the same j-invariant.

19



Definition 5.5.2. A Drinfeld modular form of weight k ≥ 0 for GL2(A) is
an analytic function f : Ω→ C which satisfies

f

(
az + b

cz + d

)
= (cz + d)kf(z)

for all

(
a b
c d

)
∈ GL2(A), and which is “analytic at ∞”.

Recall that for a classical modular form f for the group SL2(Z), the
condition of being analytic at ∞ is the condition that f be holomorphic as
a function of the parameter q = e2πiz at the point q = 0. The analogue of
q in the Drinfeld case is Q = eC(ξz)−1, where eC is the Carlitz exponential;
note that Q is invariant under translation by A. A Drinfeld modular form
admits a Q-expansion5

∑
n≥0 anQ

n, with an ∈ C, which is convergent on an
open subset of Ω.

Let Mk be the space of Drinfeld modular forms of weight k. Note that

Mk = 0 unless k ≡ 0 (mod q−1), owing to the presence of matrices

(
a

1

)
∈

GL2(A) for a ∈ Fq. Let M =
⊕

k≥0Mk, a graded C-algebra.

Theorem 5.5.3 (Gekeler). M = C[g,∆]. Furthermore, up to a scalar, ∆
admits an integral Q-expansion:

∆(z) = −ξq2−1Qq−1
∏

α∈Amonic

fα(Q),

where fα(X) = Xqdegα
φα(X−1) ∈ A[X], and φ is the Carlitz module. There-

fore M admits an A-model M0 consiting of Drinfeld modular forms whose Q-
expansions lie in A, namely M0 = A[g̃, ∆̃], with g̃ = ξ1−qg and ∆̃ = ξ1−q2

∆.

The result about ∆ is analogous to Ramanujan’s expansion of the classical
∆ function,

∆ = (2πi)12
∏
n≥1

(1− qn)24.

Practically any technique, result or conjecture about classical modular
forms can be carried over into the setting of Drinfeld modular forms. There
are Drinfeld modular forms of higher level. Spaces of Drinfeld modular forms

5The letter q being reserved for the size of the residue field of K.
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have Hecke operators acting upon them, and there is a notion of a Hecke
eigenform; these latter have Galois representations attached. Note though
that the coefficients of these Galois representations lie in a completion of A,
rather than Z.

5.6 Adelic description of Drinfeld modular varieties
over C

We return to the general case of a function field K, a place ∞ and d ≥ 1
arbitrary. We will give a description of the set of homothety classes of A-
lattices Λ ⊂ C of rank d, which we have called Md(C). This will make it
clear that Md(C) has the structure of a (d − 1)-dimensional rigid-analytic
space over C.

A based A-lattice of rank d is an A-lattice Λ ⊂ C equipped with a specified
A-basis: Λ =

∑
1≤i≤dAxi, xi ∈ C. A d-tuple of elements x1, . . . , xd ∈ C spans

an A-lattice of rank d if and only if it is linearly independent over K∞. Let
Ωd (Drinfeld’s half-space) be the set of points [x1 : · · · : xd] ∈ Pd(C) for
which the xi are linearly independent over K∞. That is,

Ωd = Pd−1(C)\
⋃
H

H

where H runs over K∞-rational hyperplanes in Pd−1. Note that Ω2 = Ω =
P1(C)\P1(K∞) is Drinfeld’s half-plane.

One shows that Ωd ⊂ Pd−1(C) is an admissible open subset, and thus
that Ωd is a rigid-analytic space. It admits an action by the group GLd(K∞).

Homothety classes of based A-lattices of rank d are classified by Ωd, so
that the quotient Ωd/GLd(A) classifies homothety classes of A-lattices of
rank d which admit an A-basis; ie, those that are free as A-modules. Thus
if PicA = 0 then Md(C) = Ωd/GLd(A).

Of course PicA is nontrivial in general. To proceed, we need the adelic
group GLd(A

∞
K ), a locally compact toplogical group. A basis of neighbor-

hoods of the origin is given by the congruence subgroups

UN =

{
(gv)v 6=∞ ∈ GLd(Av)

∣∣∣∣ gv ≡ 1 (mod N)

}
,

where N ranges over nonzero ideals of A.
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Proposition 5.6.1. We have a bijection

Md(C) ∼= GLd(A)\(GLd(A
∞
K )× Ωd)/U1,

where in the double coset space above, GLd(A) acts on GLd(A
∞
K ) (via the

inclusion K ⊂ A∞K ) and Ωd (via the inclusion K ⊂ K∞, and U1 acts on
GLd(A

∞
K ) acts via right multiplication and on Ωd trivially.

Proof. Given an element (gv) ∈ GLd(A
∞
K ), and an element [x1 : · · · : xd] ∈

Ωd, we define a K-subspace ΛK =
∑

iKxi (this is well-defined up to C×).
For all places v 6= ∞, the Kv-vector space ΛK ×K Kv

∼= Kn
v contains a

distinguished Av-lattice ΛAv , namely the span of the xi. Finally, we let

Λ = ΛK ∩
⋂
v 6=∞

gvΛAv ,

an A-lattice in C of rank d which is well-defined up to homothety. One can
now check that the lattice Λ only depends on the class of ((gv), x) in the
required double coset space.

For the reverse direction, we are given an A-lattice Λ ⊂ C of rank d. Let
x1, . . . , xd ∈ C be a basis for Λ ⊗K Kn, and let gv ∈ GLd(Kv) be a matrix
carrying

∑
iAvxi onto Λ ⊗A Av. Then ((gv), [x1 : · · · : xd]) corresponds to

Λ.

Recall the map Md(C)→M1(C) = PicA, which sends Λ to the invertible
A-module ∧dΛ. In light of the above description of Md(C) this map fits in a
commutative diagram

Md(C) //

��

GLd(K)\(GLd(A
∞
K )× Ωd)/

∏
v 6=∞GLd(Av)

det
��

M1(C) // K×\A∞,∗K /
∏

v 6=∞A
∗
v,

where the horizontal maps are bijections. On the right-hand side, one checks
that the fibers of the map labeled “det” are of the form Ωd/\Γ, where Γ ⊂
GLd(K∞) is a discrete subgroup.

For a nonzero ideal N ⊂ A, let Md
N(C) denote the set of homothety classes

of A-lattices Λ ⊂ C of rank d equipped with an isomorphism of A/N -modules
(A/N)⊕d → N−1Λ/Λ. Then

Md
N(C) = GLd(K)\(GLd(A

∞
K )× Ωd)/UN .
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For large enough N , the group GLd(K)×UN acts strictly discontinuously on
GLd(A

∞
K ) × Ωd, so that Md

N(C) really has the structure of a rigid-analytic
space over C.

Those who have studied Shimura varieties in some level of generality will
recognize the analogy. For a reductive group G/Q, one defines a tower of
Shimura varieties by

ShU = G(Q)\(G(A∞Q )×X)/U,

where U ⊂ G(A∞Q ) is a compact open subgroup, and X is a hermitian sym-
metric space for G(R). For instance, if G = GSp2n is the general symplectic
group and X is Siegel’s upper half-space, then ShU is a Siegel modular vari-
ety, which classifies abelian surfaces of dimension n. The trouble is that for
general G, such an X often does not exist (example: G = GLn for n ≥ 3),
and so the theory of Shimura varieties for such groups remains elusive. Once
again, we suffer under the tyranny of the archimedean place.

6 Drinfeld modular forms over general schemes,

and their moduli

6.1 Line bundles

Let S be a scheme. If G is a group scheme over S, the Lie algebra LieG is
an OS-module. If S = SpecR is affine, then LieG is the kernel of G(R[ε])→
G(R); one shows this is an R-module and that it “glues” to give a functor
from group schemes over S to OS-modules.

A line bundle over S is a group scheme L→ S such that locally on S we
have L ∼= Ga,S. (Of course there is a similar definition for an n-dimensional
vector bundle; these are locally isomorphic to Gn

a,S.) Since Lie Ga,S = OS,
the Lie algebra LieL is a locally free OS-module of rank 1; that is, LieL is
an invertible OS-module.

In literature the terms “line bundle” and “invertibleOS-module” (or “vec-
tor bundle” and “locally free OS-module”) are sometimes confused6. There
are functors in both directions: We have L 7→ LieL in one direction. In

6Adding to the confusion is the fact that invertible modules can be confused with Weil
divisors. There is a homomorphism PicS → ClS from classes of invertible modules to
classes of Weil divisors, which is an isomorphism when S is sufficiently nice.
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the other, we may associate to an invertible OS-module L the line bundle
Spec SymL, where SymL =

⊕
n≥0 Symn L, an OS-algebra.

Nonetheless, the functor line bundles to invertible OS-modules is not nec-
essarily an equivalence of categories! It is essentially surjective and full (owing
to the functor in the opposite direction), but it is not faithful. The issue is
that in characteristic p, a morphism between line bundles can have derivative
0. To wit, the Frobenius morphism x 7→ xp on Ga,S (S of characteristic p)
induces the zero morphism on Lie Ga,S = OS.

Indeed, for an affine scheme S = SpecR of characteristic p, we have
End Ga,S = R {τ}, the twisted polynomial ring with τa = apτ , a ∈ R.
Explanation: Such an endomorphism corresponds to an R-algebra homo-
morphism R[z] → R[z], which much be the substitution z 7→ f(z) for some
polynomial f(z) ∈ R[z]. The condition that the endomorphism preserves the
group structure on Ga,S corresponds to the condition that f(z) is additive,
namely that f(x+ y) = f(x) + f(y). Thus End Ga,S

∼= R[z]Fp-lin ∼= R {τ}.
The derivative map End Ga,S → End Lie Ga,S corresponds to the ring

homomorphism R {τ} → R sending a polynomial to its constant term. (Or,
if you like, it sends an Fp-linear polynomial f(z) ∈ R[z] to its linear term
f ′(0).)

6.2 Drinfeld modules over schemes

Definition 6.2.1. Let S be a scheme equipped with a morphism S →
SpecA. A Drinfeld A-module of rank d over S is a line bundle L → S
together with a ring homomorphism φ : A→ EndL. It is required that:

1. The derivative φ : A→ End LieL agrees with the mapA→ H0(S,OS)→
End LieL,

2. For every point x = SpecF of S, the composite A → EndL →
EndLx ∼= F {τ} is a Drinfeld A-module of rank d over F .

Locally we have S = SpecR and L = Ga,SpecR, so that EndL ∼= R {τ}
(where τ is the pth power Frobenius map). Thus our Drinfeld module is a
ring homomorphism φ : A→ R {τ}, α 7→ φα.

Some easy observations: An element a0 + a1τq + . . . of R {τ} is a unit if
and only if a0 ∈ R× and if a1, a2, . . . are nilpotent. If a unit in R {τ} has
prime-to-p order, it must lie in R×.
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Let us write q = pf for the cardinality of the residue field of K. Condition
(1) states that φα has constant term α for all α ∈ A. By the observation
of the previous paragraph, we have φa = a for a ∈ Fq ⊂ A. Therefore φα
commutes with F×q for all α ∈ A, from which it follows that each φα is actually
a polynomial in τq = τ f , so that φ is a ring homomorphism A→ R {τq}.

Condition (2) states that the coefficient of τ d degα
q of φα ∈ R {τq} is invert-

ible (it lies in no prime ideal), and all coefficients beyond τ d degα
q are nilpotent

(they lie in every prime ideal). We now apply the following lemma:

Lemma 6.2.2 (Drinfeld, Prop. 5.2). Let f =
∑

n anτ
n
q ∈ R {τq}. Assume

that there exists d ≥ 1 such that ad is invertible and such that an is nilpotent
for all n > d. Then there exists a unique g ∈ R {τq} with g ≡ 1 + g1τq +
g2τ

2
q + · · · ∈ R {τq} such that gi is nilpotent for all i ≥ 1 and such that g−1fg

has degree d.

Therefore there exists a unique gα ∈ R {τq}× with constant term 1 such
that g−1

α φαgα has degree d degα. Since φα and φβ commute for α, β ∈ A,
a now-familiar argument shows that all gα are equal (to g, say), so that
φ′ = g−1φg has the property that deg φ′α = d degα for all α ∈ A. Such a
homomorphism is called a standard Drinfeld A-module of rank d over R; we
have just shown that every Drinfeld A-module of rank d is locally isomorphic
to a standard one, and that every automorphism of a standard Drinfeld A-
module is conjugation by an element of R×.

6.3 Torsion subgroups and level structures

Let S → SpecA be a scheme, let (L, φ) be a Drinfeld A-module of rank d
over S. For a nonzero α ∈ A, we have the morphism φα : L → L of group
schemes over S. The torsion subgroup φ[α] is defined as the scheme-theoretic
kernel of φα. It is a finite group scheme over S, which admits an action of
A/α.

Proposition 6.3.1. The following are equivalent.

1. The image of S in SpecA is disjoint from V (α).

2. For all points SpecF of S, the pullback of (L, φ) to F has height 0.

3. The morphism φα : L→ L is étale.

4. The torsion subgroup φ[α] is a finite étale group scheme over S.
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Proof. Since these properties are local on S, it suffices to treat the case of a
standard Drinfeld A-module over an A-algebra R, with structure morphism
i : A → R. There, the morphism φα : Ga,R → Ga,R is given by φα(z) =

i(α)z+ a1z
q + a2z

q2
+ · · ·+ adz

qd , which is étale if and only if φ′α(z) = i(α) is
invertible in R, which is the case if and only if the image of SpecR→ SpecA
is disjoint from V (α). Similarly, the torsion subgroup φ[α] is SpecR[z]/φα(z),
which is étale if and only if the linear term of φα(z) is invertible in R.

For a nonzero ideal N ⊂ A, we define the torsion subgroup φ[N ] as the
scheme-theoretic intersection of the φ[α] for the nonzero α ∈ N . Then φ[N ]
is a finite group scheme with an action of A/N . It is étale if and only if the
image of S → SpecA is disjoint from V (N).

Naively, a level N structure on (L, φ) is an isomorphism of A/N -modules
ψ : (N−1/A)d → φ[α](S). This definition works fine if S = SpecF for an
A-field F whose characteristic is prime to N . But we run into problems if S
is disconnected (in which case φ[α](S) can have rank higher than d) or if its
image in SpecA meets V (N). In the latter case, one can have S = SpecF
for an algebraically closed A-field F , but φ[α](S) will fail to be a free A/N -
module of rank d. These problems are remedied by the following definition.

Definition 6.3.2. A Drinfeld level N structure on (L, φ) is a homomorphism
of A/N -modules

ψ : (N−1/A)dS → L(S),

such that, as divisors of L, φ[N ] coincides with
∑

β∈(N−1/Ad [ψ(α)].

(We remark that it is equivalent to impose the above condition for all
p ∈ V (N), which is the way Drinfeld defines it. )

In the case of a standard Drinfeld module φ : A→ R {τ}, a Drinfeld level
N structure is an A/N -module homomorphism ψ : (N−1/A)d → R, such that
the ideal generated by φα(z) ∈ R[z] for α ∈ N coincides with the principal
ideal generated by (

∏
β∈(N−1/A)d(z − ψ(β)).

Exercise. If S → SpecA is disjoint from V (N), show that a Drinfeld
level N structure is the same as an isomorphism of A/N -module schemes
(N−1/A)dS → φ[N ]. If N is not the unit ideal, then the existence of a Drinfeld
level N structure shows that the line bundle L→ S is trivial.

Exercise. If S = SpecF for an A-field F of nonzero characteristic p,
show that for all e ≥ 1, an A/gpe-module homomorphism ψ : (p−e/Ad →
φ[pe](F ) is a Drinfeld level pe-structure if and only if ψ is surjective. In
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particular, if the height of φ is d, then there is exactly one Drinfeld level pe-
structure, namely the zero map.

Lemma 6.3.3. Let N ⊂ A be a nonzero ideal. Given a Drinfeld A-module
(L, φ) over S, there exists an étale surjection S ′ → S such that the pullback
of (L, φ) to S ′ admits a Drinfeld level N structure.

6.4 Moduli of Drinfeld modules

It is define to define moduli spaces of Drinfeld modules over general schemes.

Definition 6.4.1. Let N ⊂ A be a nonzero ideal, and let d ≥ 1. For a
scheme S → SpecA, we let Md

N(S) denote the set of isomorphism classes of
triples (L, φ, ψ), where (L, φ) is a Drinfeld A-modules of rank d over S and
ψ is a Drinfeld level N structure.

Proposition 6.4.2. Assume that N is divisible by at least two primes. Then
Md

N is representable by a scheme of finite type over SpecA.

Proof. Let P be a prime dividing N . It suffices to show that the restriction
of Md

N to the category of schemes over SpecA\ {P} is a representable by a
scheme of finite type. Indeed, one can then repeat the process for another
prime P ′ dividing N , and then glue the resulting schemes together to obtain
the desired scheme over SpecA.

Let v ∈ (P−1/A)d be nonzero. Let S = SpecR → SpecA\ {P} be an
scheme, and let (L, φ, ψ) ∈Md

N(S). The restriction of ψ to (P−1/A)d induces
an isomorphism onto φ[P ](S) Then ψ(v) ∈ L(S) is nonzero everywhere on
S, so that we have a distinguished trivialization L ∼= Ga,S. Therefore Md

N(S)
is in bijection with the set of isomorphism classes of pairs (φ, ψ), where
φ : A → R {τ} is a standard Drinfeld module and ψ : (N−1/A)d → R is a
level N structure.

Now we make an important observaton: an isomorphism between two
standard Drinfeld A-modules over R is given by an element of R×. Further-
more, ψ(v) ∈ R is invertible. Therefore, every isomorphism class of standard
Drinfeld A-modules over R contains a unique pair (φ, ψ) such that ψ(v) = 1.

We can now write down a scheme which represents Md
N over SpecA\ {P}.

Let α1, . . . , αr generate A as a k-algebra. We can create an affine space
over SpecA\ {P} of dimension d

∑
i degαi whose coordinates represent the

coefficients of each φαi ∈ R {τ}. Atop this, we can create a larger affine space
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which parametrizes group homomorphisms ψ : (N−1/A)d → R. Within this
large affine space, we can impose the conditions which ensure that φ is a
Drinfeld A-module of rank d (namely, that the leading coefficients of φαi
are invertible, and that they commute with one another) and that ψ is a
Drinfeld level N structure satisfying ψ(v) = 1 (this can be done by using the
condition that the ideal generated by the φαi(z) ∈ R[z] for α ∈ N coincides
with the principal ideal generated by (

∏
β∈(N−1/A)d(z − ψ(β))). We conclude

that the restriction of Md
N to SpecA\ {P} is a locally closed subset of an

affine space.

6.5 A digression on stacks

7 Formal Av-modules

We have constructed a finite type scheme Md
N → SpecA which parametrizes

Drinfeld A-modules with level structure, but the construction of Md
N tells

little about its geometry. It is not even clear what the dimensions of the
fibers of this map are! The purpose of this section is to prove the following
theorem:

Theorem 7.0.1. Assume that N ⊂ A is a nonzero ideal divisible by at least
two primes. Then Md

N is a smooth k-scheme of dimension d. Furthermore,
Md

N → SpecA is smooth of relative dimension d − 1 away from V (N). Fi-
nally, if N ′ ⊂ N , then Md

N ′ →Md
N is finite and flat.

The statements above are of a local nature, so that we can verify them all
in a neighborhood of a point x ∈Md

N . If x lies over the generic point of A, we
can appeal to our analytic description of Md

N(C) as a smooth rigid-analytic
space of dimension d− 1.

Therefore let v ∈ SpecA be a nonzero prime, with residue field kv, and
suppose that x ∈ Md

N(kv). Let OMd
N ,x

be the local ring at this point. To

prove the above theorem we can focus on the completion ÔMd
N ,x

, which is an

algebra over the completion Av = ÔSpecA,v. We claim that ÔMd
N ,x

is a regular

local ring, and that if v does not divide N , then ÔMd
N ,x

is formally smooth of

dimension d− 1 over Av. The key to proving these claims is to prove ÔMd
N ,x

can be interpreted as a deformation ring in its own right.
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7.1 Formal O-modules: definition

Let K be a nonarchimedean local field, with ring of integers O, uniformizer
π, and residue field k = Fq.

Definition 7.1.1. Let R be an O-algebra. A (one-dimensional) formal O-
module F over R consists of the following data:

1. A power series X+F Y = X+Y + · · · ∈ R[X, Y ], which is commutative
and associative,

2. For each α ∈ O, a power series [α]F(X) = αX + · · · ∈ RJXK; the [α]F
must commute with one another and distribute over X +F Y .

A morphism f : F → G of formal O-modules is a power series f(X) ∈ RJXK
for which f(X +F Y ) = X +G Y and f([α]F(X)) = [α]G(X).

Note the close connection with Drinfeld A-modules. A Drinfeld A-module
is an A-module structure on the scheme A1, whereas a formal O-module is
an O-module struture on the formal scheme Â1.

Examples:

1. The formal additive group Ĝa over O has addition law X + Y and
multiplication law αX.

2. The formal multiplicative group Ĝm over Zp becomes a formal Zp-
module, via X +Ĝm

Y = X + Y + XY and [α]Gm(X) = (1 + X)α − 1
(the latter considered as a power series in ZpJXK).

3. Suppose E is an elliptic curve over a Zp-algebra R. Choose a local

coordinate X around the origin, so that the completion Ê may be
identified with the formal scheme Spf RJXK. Then Ê has the structure
of a formal Zp-module.

4. Suppose φ : A → R {τ} is a Drinfeld A-module over R, where R is
a complete Av-algebra. After completing v-adically we obtain a ring
homomorphism φv : Av → R {{τ}}. This defines a formal Ov-module
structure over R, where the addition law is X + Y and where multipli-
cation by α ∈ Av is the k-linear power series φv,α(X).
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7.2 Formal O-modules over a k-algebra

Definition 7.2.1. Let R be a local k-algebra, and let F be a formal O-
module over R. We say F is π-divisible if the substitution map RJXK →
RJXK sending X → [π]F(X) is finite. If so, the height of F is the rank of
RJXK over itself via this map.

In fact the height h is the largest integer for which [π]F(X) = g(Xqh)
for a powerseries g(X) ∈ RJXK. The v-adic completion of a rank d Drinfeld
A-module is a formal Av-module of height d. The formal additive group Ĝa

is not π-divisible.
The category of π-divisible O-modules over k is well understood.

Proposition 7.2.2. For each h ≥ 1, there exists a formal O-module over k
of height h, which is unique up to isomorphism.

7.3 Deformations of formal O-modules

7.4 Connection to moduli of Drinfeld modules

8 Drinfeld modules of rank 1: “complex mul-

tiplication”

8.1 A review of class field theory

Let K be a global field. We have the topological group of ideles, denoted
A×K , and its discrete subgroup K× ⊂ A×K . Let JK = K×\A×K , the idele class
group. When K is a number field, JK is related to the usual class group by
the exact sequence

1→ O×K →
∏
v-∞

O×Kv ×
∏
v|∞

K×v → JK → ClK → 1.

When K is the function field of a curve X with field of constants k, there is
an analogous sequence:

1→ k× →
∏
v∈|X|

O×Kv → JK → PicX → 1

30



The thrust of class field theory is that there exists a continuous homo-
morphism

recK : JK → Gal(Kab/K),

the reciprocity map, which satisfies a few key properties, including:

• recK has dense image.

• The kernel of recK is the neutral component of JK .

• For each v ∈ |K|, recK is compatible with the local reciprocity map
for Kv. In particular, if v is finite and πv ∈ Kv is a uniformizer, then
recK(πv) is a Frobenius element for v.

• For a finite abelian extension L/K, recK induces an isomorphism

JK/NL/K(JL) ∼= Gal(L/K).

• The map L 7→ NL/K(JL) is a one-to-one correspondence between finite
abelian extensions L/K and open subgroups of JK of finite index.

In no case is recK an isomorphism of topological groups; indeed JK is
never a profinite group. If K is a number field, then recK is surjective but
not injective; the kernel of recK is the manifold (R×>0)r1 × (C×)r2 . If K is a
function field, the reverse is true: recK is injective but not surjective. In this
case, the failure of recK to be surjective is explained by the field of constants
k: we have a commutative diagram

JK
recK //

��

Gal(Kab/K)

��
Z // Ẑ

where the bottom right Ẑ is Gal(Kk/K) ∼= Gal(k/k).
There arises the natural problem of recovering a finite abelian extension

L/K from its norm subgroup NL/K(JL). This is the essence of Hilbert’s
12th problem. It suffices to accomplish this for a system of open finite index
subgroups of JK . There is a convenient such system indexed by what are
classically called moduli. A modulus is a formal product m = prodvv

nv for
nonnegative integers nv, almost all of which are 0. We demand nv ∈ {0, 1}
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if v is real, and nv = 0 if v is complex. For such an m we let Um ⊂ A×K
be the subgroup defined by imposing the following conditions on an element
(av) ∈ A×K :

• v(av − 1) ≥ nv for v nonarchimedean with av > 0,

• av ∈ O×v for v nonarchimedean with av = 0,

• av > 0 for v real with av = 1.

Observe that any open subgroup of A×K is contained in Um for some mod-
ulus m. Define the ray class group

Cm = JK/Um,

a (discrete) abelian group. To specify an open subgroup of finite index in
JK , it suffices to give a modulus m and a finite index subgroup H ⊂ Cm. The
corresponding abelian extension KH/K should have these properties:

1. KH/K is unramified outside m.

2. There is an isomorphism Cm/H → Gal(KH/K), which carries (the
image of) a uniformizer at an nonarchimedean place v - m (respectively,
a negative element at an archimedean place v - m) to the Frobenius
element Frobv ∈ Gal(KH/K).

Let Km be the compositum of all finite extensions obtained this way; then
Gal(Km/K) is isomorphic to the profinite completion of Cm. Also note that
Kab is the compositum of the Km as m runs through all moduli of K.

8.2 Hilbert’s 12th problem for number fields

If K is a number field, Cm is finite. There is an interpretation of Cm in
terms of ideals: it is the group of fractional ideals which are prime to m
modulo the subgroup of principal ideals generated by elements of K× ∩ Um.
To solve Hilbert’s 12th problem for K, it suffices to construct, for all moduli
m, the finite abelian extension Km/K. When m = 1 is the trivial modulus,
Cm = ClK is the class group of K, and K1 is the Hilbert class field.

When K = Q, Hilbert’s 12th problem has a complete solution: if m =
m(∞) for an integer m ≥ 1, then Qm = Q(µm) is a cyclotomic field. (If
m = m, then Qm is the maximal totally real subfield of Q(µm).)
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When K is an imaginary quadratic field, Hilbert’s 12th problem has a
complete solution as well. This time, a modulus may be identified with a
nonzero ideal m ⊂ OK . The Hilbert class field K1 is obtained by adjoining to
K the j-invariant of one elliptic curve (or equivalently of all elliptic curves)
with complex multiplication by OK . Then Km is obtained by adjoining to
K1 the m-torsion of one (equivalently, all) of these curves.

8.3 Hilbert’s 12th problem for function fields

If K = k(X) is a function field, then a modulus m is one and the same as an
effective divisor of X. The ray class group C1 may be identified with PicX,
the quotient of the divisor group by the subgroup of principal divisors. There
is an exact sequence

0→ Pic0X → PicX → Z→ 0

given by the degree map. Note that Pic0X can be “geometrized”, in the sense
that there is an abelian variety J/k, the Jacobian of X, with J(k) = Pic0X.
In particular Pic0X is finite. The Jacobian represents the functor which
assigns to a k-scheme S the quotient of Pic0(X×k S) by the image of Pic0 S.

For a general modulus m, Cm is isomorphic to the group DivmX of divisors
away from m by the subgroup generated by principal divisors attached to
functionsf ≡ 1 (mod m). (This latter expression is shorthand for f ∈ K× ∩
Um.) Once again there is an exact sequence

0→ C0
m → Cm → Z→ 0.

The group C0
m can also be geometrized. There is a commutative group scheme

Jm/k, the generalized Jacobian, which fits into an exact sequence of group
schemes

0→ Hm → Jm → J → 0,

where Hm is a product of a torus and a unipotent group. We refer the reader
to Serre’s book Algebraic Groups and Class Fields for the construction and
properties of Jm. For now we just note that Jm(k) = C0

m.
Recall that to solve Hilbert’s 12th problem for K, we want to associate to

each finite index subgroup H ⊂ Cm its corresponding finite abelian extension
KH/K. There’s one easy special case: If H is the preimage of nZ ⊂ Z under
the degree map Cm → Z, then KH = Kkn, where kn/k is the extension of
degree n.

33



Let∞ ∈ |X| be a point not dividing m, and let A = H0(X\ {∞} ,OX) as
usual. We may consider m as an ideal of A. Let π∞ ∈ K∞ be a uniformizer.
Then πZ

∞ ⊂ Cm has finite index, and the quotient, call it ClmA, can be
computed as follows:

ClmA = K×\A×K/Umπ
Z

= K×\A∞,×K /U∞m
∼= I(m)/P (m),

where I(m) is the group of fractional ideals of A which are prime to m, and P (m)

is the subgroup of principal ideals of the form (f), where f ≡ 1 (mod m). In
particular Cl1A is the usual class group of A.

Let K(∞),m be the extension corresponding to the finite quotient ClmA of
JK . Since the image of π∞ in ClmA is trivial, we find that Frob∞ = 1 in this
extension, which is to say that K(∞),m/K is split at∞. Let n = deg∞; then

K(∞),m ∩ k = kn. We have an exact sequence

0→ C◦m → ClmA→ Z/nZ→ 0.

Here is the relevant diagram of fields:

Km

yy
yy

yy
yy

IIIIIIIII

Kk

nẐ EE
EE

EE
EE

Ẑ

K(∞),m

C◦mvvvvvvvvv

Clm A

Kkn

Z/nZ

K

We have the following interpretation for K(∞) = ∪mK∞,m: it is the maximal
abelian extension of K in which ∞ splits.

We have now reduced the problem to constructing the field K(∞),m. Af-

ter replacing K with Kkn, we may assume that n = deg∞ = 1. Since
K(∞),m∩k = k, K(∞),m is the function field of an absolutely irreducible curve
X(∞),m, which is a generically étale cover of X with group C◦m. This cover is
unramified outside m.
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We have a rational map X 99K Jm defined by P 7→ [P ]−[∞]. (It is defined
away from the support of m.) We also define the Lang isogeny L : Jm → Jm,
defined by x 7→ Frobq(x)− x. Its kernel is Jm(Fq) = C0

m.

Theorem 8.3.1. X(∞),m fits into a Cartesian diagram

X(∞),m
//___

��

Jm

L
��

X //____ Jm

8.4 Explicit construction of abelian extensions of func-
tion fields: Examples

Example 8.4.1. Let X = P1
k, with coordinate T , so that K = k(T ). Let

t1, . . . , tn ∈ k be distinct, and let m =
∏

i(T − ti). Then Jm is the quotient
of the torus Gn

m,k by the image of the diagonal map Gm,k → Gn
m,k. Let us

identify Jm ∼= Gn−1
m,k by projecting onto the first n − 1 factors. The Lang

isogeny on Jm becomes (x1, . . . , xn−1) 7→ (xq−1
1 , . . . , xq−1

n−1). Furthermore, the
map X\V (m) → Jm is T 7→ ((T − t1)/(T − tn), . . . , (T − tn−1)/(T − tn)).
Therefore

K(∞),m = K

(
q−1

√
T − ti
T − tn

)
1≤i≤n−1

Example 8.4.2. Once again let X = P1
k, but this time let m = (T 2). Then

Jm is the group scheme over k for which Jm(R) = (R[T ]/T 2)∗/R∗ for an R
algebra. Then Jm ∼= Ga,k via a + bT 7→ a−1b. The morphism X\ {0} → Jm
can be computed as follows: given a nonzero t ∈ X, the divisor (t)− (∞) is
principal with generator T − t, whose image in Jm ∼= Ga,k is −t−1. The Lang
map on Ga,k is x 7→ xq − x, and so K(∞),m = K(u), where uq − u = −T−1.

Example 8.4.3. Let X/k be a curve of genus 1, and let ∞ ∈ X(k) be a
rational point. Then we can give X the structure of an elliptic curve with
origin ∞. Let m = 1, so that Jm = J is the Jacobian of X. Then X → J is
an isomorphism, and X(∞),1 → X is the Lang isogeny P 7→ Frob(P )− P on
X. Thus in this case K(∞),1 happens to be isomorphic to K.
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8.5 The shtuka correspondence for d = 1

There is another approach to constructing abelian extensions of function
fields, which leverages the analogy between Drinfeld modules and elliptic
curves with CM. Let K be a function field, let L/K be a finite extension,
and let φ : A → L {τ} be a Drinfeld module of rank 1. Let N ⊂ A be a
nonzero ideal. Then L(φ[N ])/L is an abelian extension: indeed, its Galois
group is a subgroup of (A/N)×.

Example 8.5.1. Let K = k(T ), A = k[T ], and let φ : A → A {τ} be the
Carlitz module, so that φT = T + τ . We can construct abelian extensions of
K by adjoining to K the torsion in φ. Let N ⊂ A be a nonzero ideal, with
generator

∏
i(T − ti), where the ti ∈ k are distinct. Then

K(φ[N ]) = K( q−1
√
−(T − ti))1≤i≤n.

This is a Galois extension of K with group (A/N)×. Note that the fixed
field of the subgroup k× ⊂ (A/N)× is the field K(∞),N of Example 8.4.1. In
fact, one can check that if n ≥ 2, then the moduli space M1

N is exactly the
spectrum of the integral closure of A in K(∞),N . (One must quotient by k×

in the formation of M1
N because this is the automorphism group of φ.)

Example 8.5.2. Once again let K = k(T ) and A = k[T ], but this time we
consider the case N = (T 2). Let t = q−1

√
−T , so that K(φ[T ]) = K(t), and

then
K(φ[T 2]) = K(t, v), vq + Tv = t,

a Galois extension of K with group (k[T ]/T 2)×. The fixed field of k× in this
extension is K(u), where u = t−1v. Then uq − u = −T−1, so that K(u) is in
fact the ray class field K(∞),T 2 from 8.4.2.

The examples above suggest a close relationship between rank 1 Drinfeld
modules and class field theory for function fields. The formal relationship
can be formalized by the following theorem.

Theorem 8.5.3 (The shtuka correspondence for d = 1). Assume that N ⊂ A
is a nonzero ideal which is divisible by more than one prime. Let AN be the
integral closure of A in K(∞),N . There is an isomorphism M1

N
∼= SpecAN of

schemes over A.
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We will prove a generalization of this theorem in the next section, but first
let’s examine a consequence of it. We have Gal(K(∞),N/K) ∼= (A/N)×/k×.
After taking quotients by (A/N)×, the isomorphism of the theorem becomes
an isomorphism of stacksM1

1
∼= [(SpecA(∞),1)/k×] over SpecA. In particular,

there should exist a rank 1 Drinfeld module defined over (the ring of integers
of) K(∞),1, just as there exists a CM elliptic curve defined over (the ring of
integers of) the Hilbert class field of an imaginary quadratic field.

Example 8.5.4. In particular if PicA = 0, so that K(∞),1 = K, then Theo-
rem 8.5.3 predicts that there should exist a Drinfeld A-module of rank 1 over
A itself. We know this to be the case when A = k[T ], because of the Carlitz
module. There are a few other examples where PicA = 0 (in fact there are
only finitely many, even if one varies the residue field k). One such is

A = F2[x, y]/(y2 + y + x3 + x+ 1).

Then A = H0(X\ {∞} ,OX) for an elliptic curve X/F2 with identity ∞ ∈
X(F2). One checks that PicA ∼= X(F2) is the trivial group. We exhibit a
Drinfeld A-module over A of degree 1:

φx = x+ (x2 + x)τ + τ 2

φy = y + (y2 + y)τ + x(y2 + y)τ 2 + τ 3

Remarkably, φx and φy commute with each other, and satisfy the same poly-
nomial relation satisfied by x and y. [This example is due to Hayes.]

9 The shtuka correspondence

9.1 The category of Drinfeld shtukas

As usual, let X be a nonsingular projective curve over a finite field k. For
a k-scheme S, let XS = X ×k S be the base change. Given a morphism
ι : S → X, we have the graph Γι, which is the image of ι × id : S → XS.
Because X is a curve, Γι has codimension 1; i.e., it is a Weil divisor of XS.

We have the qth power Frobenius endomorphism 1 × FrobS : XS → XS,
which we will abbreviate simply as FrobS.
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Definition 9.1.1. Let X be an A-scheme, with structure morphism ι : X →
SpecA. A Drinfeld A-shtuka of rank d over S is a diagram

Frob∗S F
α

$$HHHHHHHHH

F ′

F

β
::uuuuuuuuuu

(6)

in which F and F ′ are locally free OX-modules of rank d. It is required that:

1. cokα is supported on Γι, and the restriction of cokα to Γι is invertible.

2. cok β is supported on ∞S = {∞} × S ⊂ XS.

We write the above data as Frob∗S F → F ′ ← F .

Remark 9.1.2. For an arbitrary scheme X, a divisor Z ⊂ X, and an OX-
moduleM, the condition thatM|Z is invertible is equivalent to the condition
that M ∼= i∗I, where i : Z → X is the inclusion map and I is an invertible
OZ-module.

Remark 9.1.3. Given an A-shtuka as in the definition, the composite β◦α−1

defines a rational map φ : Frob∗S F 99K F , which is regular away from ∞S.
In fact, F ′ can be reconstructed from the rational map φ.

There is a slight generalization of this notion which is slightly more sym-
metric. Let us suppose the k-curve X is given, but that there is no special
point ∞ ∈ X(k). Instead, let S be a k-scheme, and let ι0 : S → X and
ι∞ : S → X be two morphisms, corresponding to two points O,∞ ∈ X(S).
A Drinfeld X-shtuka with zero O and pole ∞ is a diagram as in (6), such
that cokα ∼= Γι0,∗I0 for an invertible sheaf I0 on S, and similarly for ∞.

9.2 The general shtuka correspondence

Let ∞ ∈ X(k) be a k-rational point, and let A = H0(X\ {∞} ,OX).

Theorem 9.2.1. Let S → SpecA be a scheme. The following categories are
equivalent:

A. Drinfeld A-modules of rank d over S.

B. Drinfeld A-shtukas of rank d over S, which satisfy χ(F) = 0.
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