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1 Motivation

Hecke’s theory is concerned with a family of finite-dimensional vector spaces
Sk(N,χ), indexed by weights, levels, and characters. The Hecke operators on
such spaces already provide a very rich theory. It will be very advantageous to
pass to the adelic setting, however, for the same reasons that Hecke characters
on number fields should be studied in the adelic setting (rather than as
homomorphisms out of the group of fractional ideals). In Tate’s thesis, we
learned that once we view Hecke characters as idele class characters, we
can apply the tools of harmonic analysis on locally compact groups. We’re
going to do something very similar with modular forms: we’ll view them
as special functions (called automorphic forms) on an adelic group GL(2).
Some advantages of this point of view are (at least):

• For a Hecke eigenform f , it will become clear what the “local compo-
nents” of f are supposed to mean.

• Furthermore, the local components of f determine the Euler factors of
L(f, s), and as well the local factors appearing in its functional equa-
tion, just as in Tate’s thesis.

• In order to generalize the notion of modular forms to other number
fields (or function fields) in a uniform way, there is little alternative to
the adelic theory.

As for the last point, one can survive for a time studying Hilbert modular
forms, Maass waveforms, Bianchi modular forms, etc, as these all can still be
realized as functions on a symmetric space. But that will never quite reveal
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the unity of these constructions: they are all avatars of automorphic forms
(on GL(2) over a totally real field, on GL(2) over Q but with nonzero eigen-
value for the Laplacian, and on GL(2) over an imaginary quadratic field). To
say nothing of other groups! The field’s most important number-theoretic
results (the Langlands-Tunnell theorem, the Taniyama-Shimura conjecture,
the Sato-Tate conjecture) really do rely on the theory of automorphic forms
on (at least) the groups GL(n) for n > 2.

In the end, automorphic forms on GL(2) over Q are supposed to be
functions on the quotient GL2(Q)\GL2(AQ). But at the moment it will
be convenient to take a different tack, which avoids some difficulties at the
infinite place. The goal is to create a large vector space Mk, admitting an
action of GL2(Afin

Q ), which also contains every Mk(N,χ) for every level N
and character χ.

2 Smooth Representations

First we will need to make a detour into representation theory. Let G be a
topological group, certainly not assumed compact. We will want to study
the category of representations ρ : G → GL(V ) which has some of the nice
properties of the theory in the compact case. There are a few natural choices
for how to do this. One is to give V an inner product which makes V into
a Hilbert space, and to require that ρ(g) be unitary for each g. Such a
representation of G is called unitary. This is certainly an important concept.

Another (perhaps simpler) thing to do is to give V the discrete topology,
and require that G × V → V be a continuous map. This is equivalent to
saying that for each v ∈ V , the stabilizer of v in G is an open subgroup. Such
a representation is called smooth. If ρ : G → GL(V ) is any representation,
and v ∈ V , then v is smooth if its stabilizer in G is open. Thus V is smooth
when all of its vectors are. Let V sm be the set of smooth vectors in V ; it is
easy to check that V sm is a vector subspace of V which is preserved by G.

Smooth representations are going to be few and far between if G doesn’t
have many open subgroups. For instance if G = SL2(R), there aren’t any
nontrivial smooth representations! (GL2(R) has a smooth one-dimensional
representation, sgn ◦ det.) But p-adic groups such as GL2(Qp) have many
interesting smooth representations.

One way to construct smooth representations is through smooth induc-
tion. If H ⊂ G is a subgroup, and ρ : H → GL(W ) is a representation, let
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V = sm-IndGHW be the smoothly induced representation: that is, V is the
space of functions f : G→ W which satisfy the properties

• f(hg) = f(g) for all h ∈ H, g ∈ G,

• There exists an open subgroup K ⊂ G (depending on f) such that
f(gK) = f(g) for all h ∈ H.

Then V has an action of G, call it η, defined by η(g)f(g′) = f(g′g). Note
that sm-IndGHW = (IndGHW )sm.

This is how one constructs the principal series representations of G =
GL2(Qp). Choose two characters χ1, χ2 of Q×p , let χ = χ1 × χ2 be the
corresponding character of the Borel subgroup B ⊂ G, and let π(χ1, χ2) =
sm-IndGBχ. Irreducible representations of G appearing in the π(χ1, χ2) are
known as the principal series representations. (In practice, however, it is
more convenient to normalize things a bit differently, so that duals work the
right way, but more on this later.)

3 The space Mk of adelic modular forms

Let Wk be the space of holomorphic functions on the upper half-plane H
with the property that, for all γ ∈ GL+

2 (Q), f |γ,k is bounded on the region
=z > y0 for every y0 > 0. The weight k is going to be fixed for now, so we’ll
just write f |γ for f |γ,k. Give this space a (left) action rk : GL+

2 (Q)→ Wk by

rk(γ)f = f |γ−1

Now define a smooth representation ρk : GL2(Afin
Q )→ GL(Mk) by

Mk = sm-Ind
GL2(Afin

Q )

GL+
2 (Q)

Wk

As we will see, this space contains all the modular forms of weight k at
once!

3.1 Strong approximation for GL(2)

Just as
(Afin

Q )× = Q+
>0Ẑ

×,
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there is a decomposition

GL2(Afin
Q ) = GL+

2 (Q) GL2(Ẑ).

(The analogy isn’t perfect, because the first decomposition is a direct prod-
uct, while the second one is far from being a direct product: GL+

2 (Q) ∩
GL2(Ẑ) = SL2(Z).) Better yet, we have the more general

Theorem 3.1. Let K ⊂ GL2(Ẑ) be an open subgroup such that det : K →
Ẑ× is surjective. Then

GL2(Afin
Q ) = GL+

2 (Q)K

The restriction on K is necessary, because the image of GL+
2 (Q)K under

det is Q×>0 detK, and this will not equal (Afin
Q )× unless detK = Ẑ×.

We’ll prove the result for K = GL2(Ẑ). The key observation we need is
that

SL2(Z)→ SL2(Z/NZ)

is surjective, which isn’t difficult to prove.
Suppose g ∈ GL2(Afin

Q ). After translating g by GL+
2 (Q) it is clear we

can assume that g’s entries lie in Ẑ. Let L = Afin ⊕ Afin. Since gp is
almost always in GL2(Zp), g(L) must have finite index in L. Apply the
structure theorem of finite abelian groups to L/g(L): there exist r|s such
that L/g(L) ∼= Z/rZ⊕ Z/sZ. This means exactly that

g ∈ GL2(Ẑ)

(
r

s

)
GL2(Ẑ).

Write g = u

(
r

s

)
w with u,w ∈ GL2(Ẑ). Let N = rs. Let d > 0 be an

integer with d ≡ detu (mod N). Then the reduction of

(
d

1

)−1

u modulo

N lies in SL2(Z/NZ). Lift it to an integral matrix γ ∈ SL2(Z), so that

γ ≡
(
d

1

)−1

u (mod N). Write z = γ−1

(
d

1

)−1

u, so that z ∈ Γ̂(N)
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(that is, z is congruent to 1 modulo N). Then

g = u

(
r

s

)
w

=

(
d

1

)
γγ−1

(
d

1

)−1

u

(
r

s

)
w

∈ GL+
2 (Q)z

(
r

s

)
GL2(Ẑ)

∈ GL+
2 (Q)

(
r

s

)−1

z

(
r

s

)
GL2(Ẑ).

The theorem is proved with the calculation that conjugation by

(
r

s

)
moves Γ̂(N) into a subgroup of GL2(Ẑ).

The theorem applies to a few adelic subgroups of interest: the groups
K0(N), K1(N), and K(N), which consist of matrices in GL2(Ẑ) congruent

modulo N to

(
∗ ∗
0 ∗

)
,

(
∗ ∗
0 1

)
, and

(
∗ 0
0 1

)
, respectively. The intersections

of these groups with GL+
2 (Q) are Γ0(N), Γ1(N), and Γ(N), respectively.

Let K be one of K0(N), K1(N), K(N), and let Γ = K ∩ GL+
2 (Q). We

will now show how to associate to f ∈ Mk(Γ) an element φf ∈ Mk. Given
g ∈ GL2(Afin), find γ ∈ GL+

2 (Q) and h ∈ K with g = γh. Then define

φf (g) = f |γ−1

This is well-defined because if γ′h′ is another decomposition, then γ−1γ′ =
h′h−1 ∈ GL+

2 (Q) ∩K = Γ, so that

f |γ−1 = f |(γ−1γ′)(γ′)−1 = f |(γ′)−1 .

Also, φf is smooth because it is K-invariant.
Therefore there is a map

Mk(Γ) → Mk

f 7→ φf

which is injective. The maps are compatible in an obvious sense: for in-
stance when N |N ′, the map Mk(Γ(N))→Mk factors through Mk(Γ(N))→
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Mk(Γ(N ′)). Thus there is an injective map

lim−→
N

Mk(Γ(N))→Mk.

Note that each Mk(Γ(N)) has an action of SL2(Z/NZ), so that a priori
the limit Mk = lim−→Mk(Γ(N)) has an action of lim←− SL2(Z/NZ) = SL2(Ẑ).

The action of the larger group GL2(Afin) makes Mk somewhat easier to work
with.

One benefit is that the appearance of modular forms with character can
now be explained very neatly: the center (Afin

Q )× of GL2(Afin
Q ) acts on Mk,

and the subgroup Q×>0 ⊂ (Afin
Q )× acts trivially on Mk, so the action of the

center factors through an action of (Afin
Q )×/Q×>0 = Ẑ×. ThusMk splits up as a

direct sum of subspaces Mk(χ), where χ runs over the set of characters of Ẑ×;
i.e. Dirichlet characters. One must check that if χ is a Dirichlet character
modulo N , then the inverse image of Mk(χ) under Mk(Γ1(N)) → Mk is
Mk(N,χ).

Of course there is also a cuspidal version of Mk, call it Sk, in which the
original space Wk is redefined so that every f |γ(x + iy) is not just bounded
as y →∞, but approaches the limit 0 uniformly in x.

Our goal in the coming lectures is to prove the following theorem, which
elegantly encapsulates Hecke’s theory in the language of representation the-
ory. By a cuspidal newform of weight k, we mean a normalized Hecke eigen-
form f ∈ Sk(N,χ)+ (for some N and χ). As we have seen, a newform is
determined completely by its Hecke eigenvalues. For such a newform f , let
πf ⊂Mk be the smallest GL2(Afin

Q )-stable subspace of Sk containing φf .

Theorem 3.2. 1. For each newform f of weight k, πf is irreducible.

2. Sk is the direct sum of the πf as f runs through all newforms of weight
k.

Recall that a Hecke character χ is necessarily the product of local char-
acters χv. In a similar fashion, our representation πf of GL2(Afin

Q ) is the
restricted tensor product of representations πf,p of GL2(Qp). We now turn
our attention to these local representations.
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