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1 Definition of Automorphic Representation

1.1 The Hilbert space L2
cusp(GL2(Q)\GL2(AQ), χ).

Let χ be a Dirichlet character. We identify χ with a character of A×Q/Q
×R×>0 =

Ẑ. Let G be the algebraic group GL(2), and let Z ⊂ G be the cen-
ter, so that Z is isomorphic to the multiplicative group. Let L2(χ) =
L2(G(Q)\G(AQ), χ) be the space of measurable functions φ : G(AQ) → C
which satisfy these properties:

1. φ

((
z

z

)
g

)
= χ(z)φ(g) for z ∈ Z(AQ), g ∈ G(AQ)

2. φ(γg) = φ(g), γ ∈ G(Q), g ∈ G(AQ).

3.
∫
Z(AQ)G(Q)\G(AQ)

|φ(g)|2 dg <∞

The last integral is something like the Peterssen norm on modular forms. If
the integral in (3) is zero, then φ is taken to be zero inside of L2(χ). Then
L2(χ) is a Hilbert space under the pairing

(φ1, φ2) 7→
∫
Z(AQ)G(Q)\G(AQ)

φ1(g)φ2(g) dg

L2(χ) admits a unitary action of G(AQ) via right translation.
Suppose χ is a Dirichlet character whose conductor divides N ≥ 1. If

f ∈ Sk(Γ0(N), χ), define φf ∈ L2(χ) as follows. By strong approximation we
have G(AQ) = G(Q)K0(N)G+(R). If g = γκg∞ we set

φf (g) = χ(a)f |g∞,k(i),
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where κ =

(
a b
c d

)
. Then in fact φf ∈ L2(χ). The cuspidality of f at ∞

means exactly that
∫ 1

z=0
f(x + z)dx = 0 for all x ∈ H, which translates into

the condition that ∫
Q\AQ

φf

((
1 z

1

)
g

)
dz = 0

for all g ∈ SL2(R).
Based on this observation, we define a subspace L2

cusp(χ) of L2(χ) as the
space of functions φ satisfying the additional condition∫

Q\AQ

φ

((
1 z

1

)
g

)
dz = 0

for almost all g ∈ G(AQ). It turns out that the representation theory of
L2

cusp(χ) is much simpler than that of L2(χ), in the sense that the irreducibles
appearing in the former appear discretely in L2

cusp(χ). On the other hand,
the complement of L2

cusp(χ) in L2(χ) decomposes as a direct integral of irre-
ducibles which correspond to the Eisenstein series. In what follows we will
focus exclusively on L2

cusp(χ) rather than L2(χ).
One can pass from the Hilbert space L2

cusp(χ) to the subspace L2
cusp(χ)∞ of

vectors which are smooth with respect to the action of G(R). This subspace
is preserved by G(Afin).

1.2 Admissible representations of GL2(AQ)

We have developed a convenient theory of representations for both the locally
profinite group GL2(Qp) (p prime) and the Lie group GL2(R). For GL2(Qp)
we have the notion of an admissible representation, which is a smooth repre-
sentation satisfying a certain finiteness condition. For GL2(R) we have the
notion of a (g, K∞)-module, which isn’t a representation of G(R) at all but
rather a vector space admitting simultaneous actions of g and the maximal
compact open K∞ = O(2).

Suppose V is a complex vector space together with a smooth action
G(Afin) → GL(V ) of the finite adele group, an action g → End(V ) of the
Lie algebra of G(R), and an action K∞ → GL(V ) of K∞ = O(2). All of
these actions will be denoted π. Assume that (π, V ) (forgetting the G(Afin)-
action) is a (g, K∞)-module in the sense we have defined previously. Call
(π, V ) admissible if the restriction of π to the maximal compact subgroup
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K = G(Ẑ)K∞ of G(A) contains each isomorphism class at most finitely many
times. Such a (π, V ) will be called an admissible representation of G(AQ),
with the caveat that it isn’t literally a representation of G(AQ) at all!

Let (π, V ) be an irreducible admissible representation of G(AQ). By the
factorizability theorem there exists for each prime p an irreducible admissible
representation (πp, Vp), almost all of which are spherical, together with an
irreducible admissible (g, K∞)-module (π∞, V∞) such that π =

⊗′
p≤∞ πp.

Definition 1.1. A cuspidal automorphic representation (π, V ) of G(AQ)
with central character χ is an irreducible admissible representation of G(AQ)
which is contained in L2

cusp(χ).

Or rather we should say “contained in L2
cusp(χ)∞”, because the vectors in

V need to be smooth in order for the action of g to make any sense.
We ought to explain to what extent the huge space L2

cusp(χ) is built out of
the individual cuspidal automorphic representations (π, V ). It turns out that
L2

cusp(χ) is the Hilbert space direct sum of irreducible invariant subspaces
(π,H). (See Bump’s Thm. 3.3.2. This is not true of L2(χ).) For each
such (π,H), let V ⊂ H be the subspace of K-finite vectors (and remember
K = G(Ẑ)O(2) here). Then V is dense in H, and π induces an irreducible
admissible representation of G(A) on V (see Thm. 3.3.4 in Bump). So in
a sense the cuspidal automorphic representations with central character χ
really do account for the entirety of L2

cusp(χ), in the sense that the closure of
their direct sum is all of L2

cusp(χ).

2 Classification of cuspidal automorphic rep-

resentations for GL(2)

3 Holomorphic cusp forms

The cuspidal automorphic representations (π, V ) of GL2(AQ) can be clas-
sified by the isomorphism class of the component π∞ at the archimedean
place.

Let us first consider the case that π∞ is a discrete series representation of
weight k ≥ 2. This means that V∞ is the direct sum of the spaces V∞[n] for
n = . . . ,−k− 2,−k, k, k+ 2, k+ 4, . . . . Let φ∞ ∈ V∞[k] be a nonzero vector,
so that Lφ∞ = 0. Meanwhile for p finite, let φp be a nonzero new vector.
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Recall what this means: there is a unique integer cp ≥ 0 for which the space
of vectors v ∈ Vp satisfying

πp

((
a b
cpcp d

))
v = χp(a)v

is one-dimensional; let φp be any nonzero vector in that space. (Here χp is
the central character of πp.) When πp is spherical, cp = 0. Let N =

∏
p p

cp

and let φ = ⊗p≤∞φp ∈ V . By the definition of automorphic representation,
φ actually lies in L2

cusp(χ), where χ is a Dirichlet character (whose local
component at p is necessarily χp). Note that φ must be invariant under the
open compact subgroup K1(N) ⊂ G(Z). Define a function f on the upper
half plane by

f(z) = y−k/2φ

((
y x

1

))
, z = x+ iy

Here the matrix

(
y x

1

)
is to be interpreted as the element of G(AQ) which

is that matrix at the infinite place and 1 everywhere else. Then for γ =(
a b
c d

)
∈ Γ0(N), we have

f |γ,k(z) = (cz + d)−kf(γz) = (cz + d)−k(y′)−k/2φ

((
y′ x′

1

))
,

where γz = x′ + iy′. Now note that(
y′ x′

1

)−1

γ

(
y x

1

)
= κθ

(√
y/y′ √

y/y′

)
,

where κtheta =

(
cos θ − sin θ
sin θ cos θ

)
is a rotation matrix satisfying e−iθ = (cz +

d)/ |cz + d|. (Hint: the product on the left side takes i to i, so it must be a
rotation matrix times a scalar. Now compare determinants.) We get

φ

((
y′ x′

1

))
= φ

(
γ

(
y x

1

)
κ−1
θ

(√
y/y′ √

y/y′

))
= e−ikθφ

(
γ

(
y x

1

))
=

(cz + d)k

|cz + d|k
χ(a)φ

((
y x

1

))
.
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Putting this together with the fact that y′ = y/ |cz + d|2, we get

f |γ,k(z) = (cz + d)−k(y′)−k/2φ

((
y′ x′

1

))
= (cz + d)−k

|cz + d|k

yk/2
(cz + d)k

|cz + d|k
χ(a)φ

((
y x

1

))
= χ(a)y−k/2φ

((
y x

1

))
= χ(a)f(z)

Furthermore, by Ex. 3c of HW #6, the relation Lφ∞ = 0 actually implies
that f is holomorphic! The condition that φ is cuspidal implies that f actu-
ally belongs to Sk(N,χ). A little more work shows that f is a newform.

The rest is familiar territory: if f =
∑

n≥1 anq
n, then for all p - N , the

local component πp is the unramified principal series representation π(χ1, χ2),
where the χi are unramified characters of Q×p satisfying χ1(p) + χ2(p) =

p(1−k)/2ap and χ1(p)χ2(p) = χ(p).

4 Maass cusp forms

Now suppose (π, V ) is a cuspidal automorphic representation with π∞ be-
longing to the principal series. For simplicity, let’s assume that V∞ =⊕

k∈2Z V∞[k], so that only the even weights appear in V∞. Let λ be the
eigenvalue of ∆ on V∞. Let φ∞ ∈ V [0] be a nonzero vector, and let φp be
a new vector for each finite p as above. Let φ = ⊗p≤∞φp ∈ V . Define a
function f on the upper half plane by

f(z) = φ

((
y x

1

))
, z = x+ iy.

By a similar calcuation as in the previous section (in fact simpler because

k = 0), we have that f(γz) = χ(a)f(z) for all γ =

(
a b
c d

)
∈ Γ0(N). Then

(see Ex. 3b of HW #6, and perhaps rescale things by 1/4) f satisfies the
differential equation

−y2

(
∂2

∂x2
+

∂2

∂y2

)
f = λf
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The cuspidal condition implies that f decays rapidly at the cusps. Such
functions f are called a Maass forms, after Hans Maass, who discovered
them in 1949 (well before this representation-theoretic interpretation).

Since f is not holomorphic, we cannot expect a Fourier expansion of the
form f(z) =

∑
n≥0 ane

2πinz as in the case of classical cusp forms. But f is
still periodic, so it must admit an expression

f(z) =
∑
n∈Z

an(y)e2πinx, z = x+ iy

with a sequence of unspecified functions an(y). In fact the condition ∆f = λf
determines each an(y) up to a scalar. Explicitly: write λ = 1/4 + r2. For
any complex s, let Ks(y) be the Bessel function

Ks(y) =
1

2

∫ ∞
0

e−y(t+t−1)/2ts
dt

t
.

This is (up to a scalar) the unique solution to the differential equation(
y2 d

2

dy2
+ y

d

dy
− (y2 + s2)

)
Ks = 0

which decays exponentially as y → ∞. Then there are scalars an, n ≥ 0,
with

f(z) =
∑
n6=0

an
√
yKir(2π |n| y)e2πinx

The ap bear the same relationship to the local components πp as in the
previous section.

4.1 A generalized Ramanujan-Peterssen conjecture

Recall that the RP conjecture for a cuspidal weight k newform f =
∑

n≥1 anq
n

was the inequality |ap| ≤ 2p(k−1)/2. This is equivalent to saying that if π is
the corresponding automorphic representation πp is tempered for all p. For a
spherical representation πp = π(χ1, χ2), this amounts to saying that the χi
are unitary. (Reminder: a priori πp is unitarizable, but this does not imply
that the χi are unitary. There is a class of π(χ1, χ2), the complementary
series, which are unitary but not tempered.)

Conjecture 4.1 (Generalized RP). Let π be an automorphic representation
of G = GL(2). Then πp is tempered for all p ≤ ∞.
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When π arises from a holomorphic cusp form, it means exactly the same
as the usual RP conjecture for p finite, and is automatic for p =∞, because
unitary discrete series representations are always tempered. Furthermore,
in the holomorphic case the conjecture is a theorem of Deligne. But when
π arises from a Maass form f , the generalized RP conjecture has nontrivial
consequences at all places. At the infinite place, it means that if π∞ corre-
sponds to the principal series representation π(χ1, χ2), then (once again) the
χi are unitary. Suppose χi(x) = |x|si sgn(x)εi . Let λ be the eigenvalue of ∆
on π∞. Then

λ = s(1− s), where s =
1

2
(s1 − s2 + 1).

Therefore the RP for π∞ amounts to the assertion that the si are pure imag-
inary and that λ ≥ 1/4. (See Bump Thm. 2.6.2 and the discussion that
follows. The representations with 0 < λ < 1/4 are unitarizable but not
tempered; this is a bit of a subtle point.) This is called Selberg’s eigenvalue
conjecture.

The RP conjecture is true for Maass forms of level 1 (ie invariant under
SL2(Z)), for which the corresponding values of r are 9.533, 12.17, 13.77....
The RP for Maass forms in general is wide open, for both finite and infinite
places. As for Selberg’s eigenvalue conjecture, the best bound is currently
λ ≥ 171/784 = .2181..., proved by Luo, Rudnick and Sarnak in 1994. Note
that the eigenvalue conjecture is really just a question about solutions to
certain differential equations for functions on Riemann surfaces of the form
Γ\H, with Γ a congruence subgroup. There doesn’t seem to be any relation
to number theory. However, for Γ an arbitrary discrete subgroup, the con-
jecture is most certainly false: there are cocompact subgroups Γ for which
the smallest eigenvalue of ∆ on Γ\H can be made arbitrarily small1.

5 Automorphic representations for other groups

One can now generalize the notion of automorphic representation to algebraic
groups other than GL(2)Q. Certainly there is no problem replacing Q by any
number field or function field. (Note that function fields lack archimedean
places, which simplifies the theory enormously!) The group GL(2) is typically

1See Sarnak’s expository article at http://www.ams.org/notices/199511/sarnak.

pdf.
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replaced by an arbitrary reductive group. We will now overview a few such
generalizations.

5.1 Hilbert modular forms

These are the classical cusp forms’ closest cousins. If K is a totally real
field of degree d, and χ a character on A×K/K

× which vanishes on the con-
nected component of the identity (this would be (R×>0)d), one may consider
the space L2(χ) = L2(GL2(K)\GL2(AK), χ). When π is an irreducible ad-
missible subspace of L2

cusp(χ) such that πv is discrete series of weight kv at
each infinite place, then a recipe similar to the above produces a family of
functions f : Hd → C, holomorphic in each variable and possessing an au-
tomorphicity property with respect to a congruence subgroup of SL2(OK),
considered as a subgroup of SL2(K ⊗ R) = SL2(R)d. Everything can be
developed from this point of view. Things get messy, however, when the
narrow class number of K is greater than one.

5.2 Automorphic forms on quaternion groups

Let D/Q be a nonsplit quaternion algebra. For instance, D could be the non-
commutative Q-algebra generated by elements i, j satisfying i2 = j2 = −1
and ij = −ji. Let O be a maximal order in D. We have the algebraic group
G/Z defined by G(R) = (O⊗R)×. Then G(AQ) is the restricted direct prod-
uct of the (D⊗Qv)

× with respect to the (OD⊗Qv)
×. (Note that G(AQ) does

not depend on the choice of O!) One has the space L2(G(Q)\G(AQ)). There
is no notion of cuspidal subspace here, since G doesn’t have any parabolic
subgroups.

As usual we may classify the automorphic representations π by their
component at ∞. If D is indefinite, then G(R) ∼= GL2(R). The theory is
then quite similar to the theory for GL2, and can be formulated in terms
of functions on the upper half-plane modulo certain discrete subgroups Γ ⊂
SL2(R) (which however are not generally contained in SL2(Q)).

If D is definite, then G(R) = GU(2) is a group which is compact mod-
ulo its center. Therefore irreducible representations of G(R) are finite-
dimensional; there is no need to pass to (g, K)-modules. Suppose we wish to
classify automorphic representations of G such that π∞ equal to the trivial
representation of G(R) and such that πp is spherical for all finite p. These
are exactly the irreducible summands of the representation of G(Afin

Q ) in
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L2(G(Q)\G(Afin
Q )/G(Ẑ)). However the double coset space

G(Q)\G(Afin
Q )/G(Z) = D×\(D ⊗Afin

Q )×/(O ⊗ Ẑ)×

is actually finite! For instance if D is the unique quaternion algebra ramified
at 11 and ∞, then this set has exactly two elements. The Hecke operators
T2, T3, T5, . . . act on L2(G(Q)\G(Afin

Q )/G(Ẑ)). When one diagonalizes these
operators, one finds a vector on which Tp acts by p + 1 for all p 6= 11 (an
Eisenstein series), and another vector φ on which T2, T3, T5, T7, . . . acts by
−2,−1, 1,−2, . . . . Miraculously, there is a classical cusp form f ∈ S2(Γ0(11))
with the same Hecke eigenvalues!

Let π be the cuspidal automorphic representation corresponding to f =
q − 2q2 − q3 − 2q5 + . . . , and let π′ be the automorphic representation
containing the vector v above. For p 6= 11,∞, there is an isomorphism
G(Qp) ∼= GL2(Qp), and the equality of Hecke eigenvalues shows that πp ∼= π′p
for those primes. The relationship between π and π′ is known as the Jacquet-
Langlands correspondence. It relates the automorphic representations at-
tached to GL(2) to those attached to its twists.

There is a local version of the correspondence. Note that π∞ is the dis-
crete series representation of GL2(R) of weight 2 and trivial central char-
acter, while π′∞ is the trivial representation. Discrete series representations
Dk of GL2(R) are parametrized by integers k ≥ 2 (ignoring twists by 1-
dimensional characters). On the other hand, all the irreducible representa-
tions of G(R) = GU(2) are (again ignoring twists) symmetric powers of the
tautological representation ρ : GU(2) ↪→ GL2(C). The local JL correspon-
dence ties together Dk to Symk−2 ρ.

At the finite primes, there is also a local JL correspondence for GL2(Qp)
and its inner twist, but this is much more opaque because it involves the
supercuspidal representations of GL2(Qp). According to the above example,
the Steinberg representation of GL2(Qp) corresponds to the trivial represen-
tation of G(Qp).

5.3 GL(3)

The landscape is truly different for a higher-rank group such as GL(3). One
major difference is that GL3(R) admits no discrete series. (Harish-Chandra
showed that a semisimple Lie group G admits a discrete series if and only if
the rank of G equals the rank of a maximal compact subgroup of G. This
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shows that SLn(R) has no discrete series for n ≥ 3.) A related problem is
that the analogue of the upper half plane, SL3(R)/ SO(3), is a 5-dimensional
real manifold and has no chance of being a complex manifold.

Therefore there is no direct analogue of Hecke’s theory of holomorphic
cusp forms for GL(3). Automorphic representations of GL(3) have more
in common with Maass forms in that they are necessarily principal series
representations at the infinite places.
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