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We now initiate the study of automorphic forms on GL2 as spaces of func-
tions on the quotient GL2(Q)\GL2(AQ). It is this formulation that will allow
us to generalize the notion of automorphic form to global fields other than
Q and groups other than GL2. The presence of archimedean places poses
a significant hurdle, though. It will become necessary to devise a notion of
admissibility for representations of GL2(R) parallel to the notion of admissi-
bility for representations of locally profinite groups G such as GL2(Qp). One
very nice feature of such representations is that their restriction to a maximal
compact subgroup K decomposes as a direct sum of irreducible representa-
tions of K, each of which appears only finitely many times. One can then
classify representations of G according to which irreducible representations
of K they contain.

One problem with extending this definition to representations of (say)
SL2(R) is that such representations, when infinite-dimensional, tend to be
really huge (at least uncountable), whereas there are only countably many
irreducible representations of the maximal compact subgroup K = SO2(R).
(Note that SL2(Qp)/ SL2(Zp) is countable, while SL2(R)/ SO2(R) is the up-
per half-plane.) The workaround, developed by Harish-Chandra, is the notion
of a (g, K)-module for a Lie group G. It isn’t actually a representation of G
at all!

Here is our motivation: suppose π : G→ GL(V ) is a continuous represen-
tation of G on a Hilbert space V , but not necessarily a unitary one. Recall
that LieG is the tangent space to the identity of G, and that each X ∈ LieG
defines a one-parameter subgroup t 7→ exp(tX) of G. A vector v ∈ V is C1

if, for all X ∈ g = LieG, the derivative

π(X)v :=
d

dt
π(exp(tX))v|t=0 = lim

t→0

π(exp(tX))v − v
t
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is defined. The vector v ∈ V is C∞, or smooth, if π(X1) · · · π(Xn)v is defined
for every sequence X1, . . . , Xn of elements of g. Let V ∞ be the subspace of
smooth vectors. It is a representation of G. It will be unlikely that V = V ∞,
but for G = GLn(R) it is the case that V is dense in V ∞ (see Bump, p. 190).
There is a representation π : g → EndV ∞, called the infinitesimal action.
This places us in the realm of representations of Lie algebras, but there is
still a problem in that V ∞ is very large, yet generally not a Hilbert space.

Let K ⊂ G be a maximal compact subgroup of G. By the Peter-Weyl the-
orem, V decomposes as a Hilbert direct sum of irreducible unitary represen-
tations of K. We say V is admissible if each isomorphism class of irreducible
representation of K appears only finitely often in such a decomposition.

Let π : G → GL(V ) be an admissible representation; assume that the
restriction of π to K is unitary. (This can always be assumed, by averaging
the inner product on V over K.) We have

V =
⊕̂

V [σ],

where σ runs over the set of isomorphism classes of unitary irreducible rep-
resentations of K. Then each V [σ] is finite-dimensional. Let V fin be the
algebraic direct sum

V fin =
⊕

V [σ].

Vectors lying in V fin are called K-finite. A vector v ∈ V belongs to V fin if
and only if the space spanned by π(k)v, k ∈ K, is finite-dimensional. V fin

has the following virtues (see Bump, p. 197):

1. V fin is dense in V ,

2. V fin ⊂ V ∞,

3. V fin is invariant under the action of π(g),

but it also has the vice of not being G-invariant. Nevertheless, V fin melds
together two structures which are both quite algebraic (read: tractable) in
nature, namely that it has an action of g, and also an action of K with
respect to which it is admissible.

A (g, K)-module is a vector space V together with representations π : g→
End(V ) and π : K → GL(V ) such that:

1. V is the (algebraic) direct sum of finite-dimensional irreducible repre-
sentations of K,

2



2. The infinitesimal action of K on G agrees with the restriction of π : g→
End(V ) to k.

3. ForX ∈ g, k ∈ K, we have π(k)π(X)π(k−1) = π((Ad k)X) as operators
on V .

Furthermore, V is admissible if each irreducible representation of K appears
only finitely many times in V .

1 Classification of admissible (g, K)-modules

for GL2(R)

Let G+ = GL+
2 (R), K = SO(2). Then g is spanned by r =

(
0 1
0 0

)
, l =(

0 0
1 0

)
, h =

(
1
−1

)
, and z =

(
1

1

)
. Then z lies in the center of g,

whereas

[h, r] = 2r

[h, l] = −2l

[r, l] = h.

Let U(g) be the universal enveloping algebra of g, and let

−4∆ = h2 + 2rl + 2lr ∈ U(g).

Then ∆ lies in the center of U(g). Indeed this ∆ is the Casimir operator
(normalized to agree with convention).

Let (π, V ) be an admissible (g, K)-module. Since K ∼= R/2πZ, V is the

direct sum of finite-dimensional spaces V [k] on which

(
cos t − sin t
sin t cos t

)
acts

as the scalar eikt.

Notice that if W =

(
−1

1

)
, and x ∈ V [k], then

π(W )x =
d

dt
π(etW )x|t=0 =

d

dt
π

((
cos t − sin t
sin t cos t

))
x|t=0 =

d

dt
eiktx|t=0 = ikx
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Thus if

H = −iW =

(
i

−i

)
∈ gC,

then π(W ) acts on V [k] as the scalar k.
The element H has eigenvalues 1,−1, just like h. The two are conjugate:

H = C−1hC, where C =

(
1 i
1 −i

)
. After conjugating by C, one arrives at a

new basis for gC:

R = C−1rC =
1

2

(
1 −i
−i −1

)
L = C−1lC =

1

2

(
1 i
i −1

)
H = C−1hC =

(
i

−i

)
Z = C−1zC =

(
1

1

)
(Some of our notation differs from Bump’s, because Bump parametrizes

SO(2) by the rotation matrix

(
cos t sin t
− sin t cos t

)
.) This basis has the same

commutation relations as {r, l, h}.
Simply write Xx for π(X)x. If x ∈ V [k] we have

HRx = (HR−RH)x+RHx = [H,R]x+RHx = 2Rx+ kRx = (k + 2)Rx,

so that RV [k] ⊂ V [k + 2]. Similarly LV [k] ⊂ V [k − 2].
Now assume that V is irreducible. Then ∆ must act on V as a constant,

say λ. Let x ∈ V [k] be nonzero. Let U be the span of x,Rnx, Lnx (n > 0). It
is easy to show that U is invariant under both g and K = SO(2). (Invariance
under K is self-evident, since K acts as a scalar on each V [`]. Invariance
under Z and ∆ follows from Schur’s lemma, since these guys act as scalars.
Say ∆ acts as λ on V . We have −4∆ = H2 + 2RL+ 2LR = H2 + 2H+ 4LR,
so if w ∈ V [`] we have

−4λw = (`2 + 2`)w + 4LRw,

implying that if w ∈ CRnx, then LRw ∈ CRw, etc.) Since V is irreducible,
this sum must be all of V . Therefore each V [n] is at most one-dimensional
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(and is zero unless n ≡ k (mod 2)). Some more tinkering shows that if
x ∈ V [k] is nonzero, and Rx = 0, then λ = −k

2
(1 + k

2
). Likewise if x ∈ V [k]

is nonzero, and Lx = 0, then λ = k
2
(1− k

2
). Indeed, if Rx = 0, then

−4λx = ∆x = (H2 + 2H + 4LR)x = (k2 + 2k)x,

etc.
Already this shows that if V is an irreducible (g, K)-module, then there

are four possibilities:

1. One is that V =
⊕

k≡ε (mod 2) V [k], with each V [k] 6= 0 one-dimensional,

for some ε ∈ {0, 1}. Here there is no a priori restriction on the eigen-
value λ.

2. Another is that there is an integer k with

V = V [k]⊕ V [k + 2]⊕ V [k + 4]⊕ . . . ,

(all spaces nonzero), such that LV [k] = 0, in which case λ = k
2
(1− k

2
).

3. Similarly there could be an integer k with

V = V [k]⊕ V [k − 2]⊕ V [k − 4]⊕ . . . ,

such that RV [k] = 0, in which case λ = −k
2
(1 + k

2
).

4. Finally, we could have

V = V [2− k]⊕ V [4− k]⊕ · · · ⊕ V [k − 4]⊕ V [k − 2],

in which case λ = k
2
(1− k

2
) once again.

Now suppose G = GL2(R); the maximal compact subgroup of G is Ø(2).
Ø(2) is a semidirect product of §0(2) by an element of order 2, namely w =(

1
1

)
. If V is an irreducible admissible (g,Ø(2))-module, then there are

two possibilities: either the restriction of V to (g, SO(2)) is still irreducible,
or else the restriction of V to (g, SO(2)) is the sum of two irreducibles which
are swapped by w. Note that w swaps V [k] with V [−k]. There are the
following possibilities:
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1. V =
⊕

k≡ε (mod 2) V [k], with each V [k] 6= 0 one-dimensional, for some

ε ∈ {0, 1}.

2. There exists an integer k ≥ 1 with

V = V [±k]⊕ V [±(k + 2)]⊕ . . . ,

and λ = k
2
(1− k

2
).

3. There exists k ≥ 2 with

V = V [2− k]⊕ V [4− k]⊕ · · · ⊕ V [k − 4]⊕ V [k − 2].

In fact all three possibilities occur. In the first case, V can be modeled
on the space of K-finite vectors in an induced representation π(χ1, χ2). (It
is possible to read off the eigenvalues of ∆ and z on V from the χi, but not
necessary for us now.) This is the principal series.

In the second case, V can be modeled (up to twisting by a 1-dimensional
character) on the space of K-finite vectors in a certain representation Dk of
GL+

2 (R) defined as follows: Dk is the space of holomorphic functions f on
the upper half plane which satisfy∫

H
|f(z)|2 yk dx dy

2
<∞,

with the action of g ∈ GL+
2 (R) defined by f 7→ f |g−1,k. (If l ≥ k has the

same parity as k, one can write down a nonzero vector f ∈ Dk[l] in terms
of the coordinate w on the open unit disk, by f(w) = w(l−k)/2.) This is the
discrete series (if k = 1 it is the limit of discrete series).

In the third case, V can be modeled (up to twisting by a 1-dimensional
character) on the representation of G on the space of homogeneous polyno-
mials of degree k − 2 in 2 variables.
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