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We now initiate the study of automorphic forms on GLy as spaces of func-
tions on the quotient GLy(Q)\ GLa(Ag). It is this formulation that will allow
us to generalize the notion of automorphic form to global fields other than
Q and groups other than GLs. The presence of archimedean places poses
a significant hurdle, though. It will become necessary to devise a notion of
admissibility for representations of GLy(R) parallel to the notion of admissi-
bility for representations of locally profinite groups G such as GLy(Q,). One
very nice feature of such representations is that their restriction to a maximal
compact subgroup K decomposes as a direct sum of irreducible representa-
tions of K, each of which appears only finitely many times. One can then
classify representations of G according to which irreducible representations
of K they contain.

One problem with extending this definition to representations of (say)
SLy(R) is that such representations, when infinite-dimensional, tend to be
really huge (at least uncountable), whereas there are only countably many
irreducible representations of the maximal compact subgroup K = SOs(R).
(Note that SL2(Q,)/ SLa(Z,) is countable, while SLy(R)/ SO2(R) is the up-
per half-plane.) The workaround, developed by Harish-Chandra, is the notion
of a (g, K)-module for a Lie group G. It isn’t actually a representation of G
at all!

Here is our motivation: suppose 7: G — GL(V) is a continuous represen-
tation of G on a Hilbert space V', but not necessarily a unitary one. Recall
that Lie G is the tangent space to the identity of G, and that each X € LieG
defines a one-parameter subgroup ¢ — exp(tX) of G. A vector v € V is C!
if, for all X € g = Lie G, the derivative
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is defined. The vector v € V' is C*°, or smooth, if 7(X;) - - - 7(X,)v is defined
for every sequence X1, ..., X, of elements of g. Let V*> be the subspace of
smooth vectors. It is a representation of G. It will be unlikely that V = V>
but for G = GL,,(R) it is the case that V' is dense in V> (see Bump, p. 190).
There is a representation 7: g — End V*°, called the infinitesimal action.
This places us in the realm of representations of Lie algebras, but there is
still a problem in that V> is very large, yet generally not a Hilbert space.

Let K C G be a maximal compact subgroup of GG. By the Peter-Weyl the-
orem, V decomposes as a Hilbert direct sum of irreducible unitary represen-
tations of K. We say V' is admissible if each isomorphism class of irreducible
representation of K appears only finitely often in such a decomposition.

Let m: G — GL(V) be an admissible representation; assume that the
restriction of 7 to K is unitary. (This can always be assumed, by averaging
the inner product on V over K.) We have

v =@vl,

where o runs over the set of isomorphism classes of unitary irreducible rep-
resentations of K. Then each V[o] is finite-dimensional. Let V" be the

algebraic direct sum
vin = P Viol.

Vectors lying in Vi are called K-finite. A vector v € V belongs to Vin if
and only if the space spanned by 7(k)v, k € K, is finite-dimensional. V»
has the following virtues (see Bump, p. 197):

1. Vinis dense in V,
2. Vin cyee
3. VI8 is invariant under the action of 7(g),

but it also has the vice of not being G-invariant. Nevertheless, V" melds
together two structures which are both quite algebraic (read: tractable) in
nature, namely that it has an action of g, and also an action of K with
respect to which it is admissible.

A (g, K)-module is a vector space V together with representations 7: g —
End(V) and 7: K — GL(V) such that:

1. V is the (algebraic) direct sum of finite-dimensional irreducible repre-
sentations of K,



2. The infinitesimal action of K on G agrees with the restriction of 7: g —
End(V) to &.

3. For X € g, k € K, we have (k)7 (X)w(k™!) = m((Ad k) X) as operators
on V.

Furthermore, V' is admissible if each irreducible representation of K appears
only finitely many times in V.

1 Classification of admissible (g, K)-modules

for GLy(R)

Let GT = GL; (R), K = SO(2). Then g is spanned by r = (8 é), [ =

((1) 8), h = (1 _1), and z = (1 1). Then z lies in the center of g,

whereas

[h,r] = 2r
[h1] = =21
[r,l] = h.

Let U(g) be the universal enveloping algebra of g, and let
—4A = B2 + 27l + 2lr € U(yg).

Then A lies in the center of U(g). Indeed this A is the Casimir operator
(normalized to agree with convention).
Let (m, V) be an admissible (g, K')-module. Since K = R/27Z, V is the

direct sum of finite-dimensional spaces V[k] on which C9St TSRt
sint cost

as the scalar e,

Notice that if W = (

. _1>, and z € V[k|, then

dw o d cost —sint d oy .
T(W)x = —m(e"")xli=g = prl ((sint cost )) Tl—o = 7 )i=o = ikz



Thus if

H=—iW = (_Z. Z) € gc,

then w(W) acts on V[k] as the scalar k.
The element H has eigenvalues 1, —1, just like h. The two are conjugate:

H = C—'hC, where C' = (1 !

1 i) After conjugating by C', one arrives at a
new basis for ge:

(5 5)
()

R = _

L = ClC =

H = O 'he = (—i )
. 1
Z = (O zC = ( 1)

(Some of our notation differs from Bump’s, because Bump parametrizes

t int . .
cost S )) This basis has the same

1
T2
1
2

SO(2) by the rotation matrix Cdint cost

commutation relations as {r, 1, h}.
Simply write Xz for 7(X)z. If x € V[k] we have

HRx = (HR— RH)x+ RHx = [H,R]Jxr + RHx = 2Rz + kRx = (k + 2) Rz,
so that RV [k] C V[k + 2]. Similarly LV [k] C V[k — 2].

Now assume that V' is irreducible. Then A must act on V' as a constant,
say A. Let x € V[k] be nonzero. Let U be the span of x, R"x, L"x (n > 0). It
is easy to show that U is invariant under both g and K = SO(2). (Invariance
under K is self-evident, since K acts as a scalar on each V[¢]. Invariance
under Z and A follows from Schur’s lemma, since these guys act as scalars.
Say A acts as A on V. We have —4A = H>+2RL+2LR = H*+2H +4LR,
so if w € V[{] we have

—4 w = (0% + 20)w + 4L Rw,

implying that if w € CR"z, then LRw € CRw, etc.) Since V is irreducible,
this sum must be all of V. Therefore each V[n] is at most one-dimensional
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(and is zero unless n = k (mod 2)). Some more tinkering shows that if
x € V[k] is nonzero, and Rz = 0, then A = —%(1 4 £). Likewise if z € V[k]
is nonzero, and Lz = 0, then A = 4(1 — £). Indeed, if Rz = 0, then

—4\v = Aw = (H? + 2H +4LR)x = (k* + 2k)z,

ete.
Already this shows that if V' is an irreducible (g, K)-module, then there
are four possibilities:

1. Oneis that V = @_. (noea 2) V[k], with each V[k] # 0 one-dimensional,
for some € € {0,1}. Here there is no a priori restriction on the eigen-
value \.

2. Another is that there is an integer k with
V=VkleVk+2aeVk+4e...,
(all spaces nonzero), such that LV[k] = 0, in which case A = £(1 — £).

3. Similarly there could be an integer k with
V=VkleVk-21oVk-4a...,
such that RV[k] = 0, in which case A = —£(1 + %).
4. Finally, we could have
V=VR2-kleVid-kle  --aVk-4aeVk-2|,
in which case A = £(1 — %) once again.

Now suppose G = GL3(R); the maximal compact subgroup of G is O(2).
((2) is a semidirect product of §0(2) by an element of order 2, namely w =

(1 1>. If V' is an irreducible admissible (g, ?(2))-module, then there are

two possibilities: either the restriction of V' to (g, SO(2)) is still irreducible,
or else the restriction of V' to (g,S0(2)) is the sum of two irreducibles which
are swapped by w. Note that w swaps V[k] with V[—k]. There are the
following possibilities:



LV == (moa2 VK], with each V[k] # 0 one-dimensional, for some
e €{0,1}.

2. There exists an integer k > 1 with
V=VxklaeVEk+2)]d...,

and A = %(1—£).

2

3. There exists k£ > 2 with

V=V2-kleVi-kl&  -aVk-4eVk-2].

In fact all three possibilities occur. In the first case, V' can be modeled
on the space of K-finite vectors in an induced representation 7(x1, x2). (It
is possible to read off the eigenvalues of A and z on V from the x;, but not
necessary for us now.) This is the principal series.

In the second case, V' can be modeled (up to twisting by a 1-dimensional
character) on the space of K-finite vectors in a certain representation Dy, of
GLj (R) defined as follows: Dy is the space of holomorphic functions f on
the upper half plane which satisfy

[1ser e <o
H

with the action of ¢ € GL3 (R) defined by f — f|,~14. (If I > k has the
same parity as k, one can write down a nonzero vector f € Dy[l] in terms
of the coordinate w on the open unit disk, by f(w) = w¢=%/2) This is the
discrete series (if k = 1 it is the limit of discrete series).

In the third case, V' can be modeled (up to twisting by a 1-dimensional
character) on the representation of G on the space of homogeneous polyno-
mials of degree k — 2 in 2 variables.
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