MA 843 Assignment 1, due Sept. 12

September 2, 2013

- 1. Show that there is a homeomorphism $SL_2(\mathbb{R})/SO(2) \to \mathcal{H}$.
- 2. If $\Gamma \subset SL_2(\mathbb{Z})$ is a finite-index subgroup, then $\Gamma \setminus \mathcal{H}$ is a compact Riemann surface minus finitely many points. Show that the same cannot be true for \mathcal{H} itself. (Hint: There is a bounded nonconstant holomorphic function on \mathcal{H} .)
- 3. Belyi's theorem states that an algebraic curve X/\mathbb{C} has a model over a number field if and only if there exists a morphism $X \to \mathbb{P}^1$ whose branch locus has no more than 3 points. Show that if $\Gamma \subset SL_2(\mathbb{Z})$ is any finite-index subgroup (not necessarily a congruence subgroup), then $\Gamma \setminus \mathcal{H}^*$ has a model over a number field.
- 4. (You may assume N is prime for the following.) Find the index of $\Gamma_0(N)$ in $\operatorname{SL}_2(\mathbb{Z})$. Find all the branch points of the map of Riemann surfaces $X_0(N) \to X(1) = \mathbb{P}^1$, and compute the ramification index for each one. Use the Riemann-Hurwitz formula to find a formula for the genus of $X_0(N)$. For which N does $X_0(N)$ have genus 0? Genus 1?
- 5. Fill in the proof that $X_0(N)$ admits a model over \mathbb{Q} as follows.
 - (a) Show that for any $\gamma \in \mathrm{SL}_2(\mathbb{Z})$, $j(N\gamma z)$ is a meromorphic function on $\Gamma_0(N) \setminus \mathcal{H}^*$ which is holomorphic on \mathcal{H} .
 - (b) Let S be a set of coset representatives for $\mathrm{SL}_2(\mathbb{Z})/\Gamma_0(N)$, and define a polynomial g(Y) by

$$g(Y) = \prod_{\gamma \in S} (Y - j(N\gamma z)).$$

Show that the coefficients of g(Y) are polynomials in j, so that g(Y) = F(j(z), Y) for a polynomial $F(X, Y) \in \mathbb{C}[X, Y]$. Also show that g(Y) is the minimal polynomial for j(Nz) over the field $\mathbb{C}(j(z))$.

- (c) Start with the equation F(j(z), j(Nz)) = 0, and consider Fourier coefficients to show that the coefficients of F(X, Y) lie in \mathbb{Q} .
- (d) As a bonus, show that the coefficients of F are in \mathbb{Z} , by using the fact that the Fourier expansion of each $j(N\gamma z)$ has coefficients which are algebraic integers.