MA 843 Assignment 2, due Sept. 24

September 13, 2013

- 1. Let $f: X \to Y$ be a finite morphism of degree d between smooth projective curves over a field K.
 - (a) Show that if D is a divisor on Y of degree d, then deg $f^*(D) = d \deg D$.
 - (b) If D is a principal divisor on Y, show that $f^*(D)$ is also principal.
 - (c) Show that if D is a divisor on X of degree d, then deg $f_*(D) =$ deg D. (Very easy.)
 - (d) If D is a principal divisor on X, show that $f_*(D)$ is also principal. (The morphism f induces a map of function fields $K(Y) \to K(X)$ which presents K(X) as a finite extension of K(Y). Thus there is a norm map $K(X)^* \to K(Y)^*$, which is key to this part.)

From this we can conclude that a correspondence from X to Y induces a well-defined map $\operatorname{Pic}^{0}(X) \to \operatorname{Pic}^{0}(Y)$.

- 2. Let A be an abelian variety over \mathbb{F}_q . Let $P(T) \in \mathbb{Z}[T]$ be the characteristic polynomial of the qth power Frobenius map acting on ℓ -adic Tate module of A ($\ell \nmid q$). Let $\alpha_1, \ldots, \alpha_{2g}$ be its complex roots. Show that for all $n \geq 1$, $\#A(\mathbb{F}_{q^n}) = \prod_{i=1}^{2g} (1 - \alpha_i^n)$.
- 3. For abelian varieties A, A', show that the dimension of the Q-vector space $\operatorname{Hom}(A, A') \otimes \mathbb{Q}$ is at most $4 \dim A \dim A'$. (If you like, assume that the base field is \mathbb{C} , so that A and A' are complex tori. In general, one uses Tate modules.)
- 4. Let A be an abelian variety of dimension g over a field F. A is said to be of GL₂-type if the Q-algebra End $A \otimes \mathbb{Q}$ contains a subfield K of degree

g over \mathbb{Q} . In this case, for every prime ℓ unequal to the characteristic of the base field of A, we get an action of $K_{\ell} := K \otimes_{\mathbb{Q}} \mathbb{Q}_{\ell}$ on the rational Tate module $V_{\ell}A = T_{\ell}A \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}$. Show that $V_{\ell}A$ is a free K_{ℓ} -module of rank 2. If λ is a prime of K above ℓ , we get a surjective map $K_{\ell} \to K_{\lambda}$. Show that $V_{\lambda} = V_{\ell}A \otimes_{K_{\ell}} K_{\lambda}$ is a free K_{λ} -module of rank 2. We therefore get a Galois representation $\operatorname{Gal}(\overline{F}/F) \to \operatorname{Aut}_{K_{\lambda}} V_{\lambda} \approx \operatorname{GL}_{2} K_{\lambda}$.

5. Let $f = \sum_{n=1}^{\infty} a_n q^n$ be a cuspidal eigenform of weight 2 for $\Gamma_0(N)$. Its coefficients lie in some totally real number field K. Let S be the set of real embeddings of K, so that $\{f^{\sigma}\}_{\sigma \in S}$ is the Galois orbit of f. Let A be the modular abelian variety associated to $\{f^{\sigma}\}_{\sigma \in S}$. Look up what the L-function of an abelian variety over \mathbb{Q} is, and show that

$$L(A,s) = \prod_{\sigma \in S} L(f,s),$$

at least up to finitely many bad places. (It turns out that the L-functions are equal on the nose, but this is harder.)