
Modular Curves

September 4, 2013

The first examples of Shimura varieties we encounter are the modular
curves. In this lecture we review the basics of modular curves, beginning with
the complex theory and progressing towards modular curves over number
fields.

1 Modular curves as complex manifolds

1.1 Lattices and the upper half plane

H is the upper half plane, a complex manifold. It will be helpful to interpret
H in multiple ways.

A lattice Λ ⊂ C is a free abelian group of rank 2, for which the map
Λ ⊗Z R → C is an isomorphism. In other words, Λ is a subgroup of C of
the form Zα⊕Zβ, where {α, β} is basis for C/R. Two lattices Λ and Λ′ are
homothetic if Λ′ = θΛ for some θ ∈ C∗. This is an equivalence relation, and
the equivalence classes are homothety classes.

Let’s consider C as an oriented real vector space, meaning we have a
privileged basis of

∧2 C modulo scaling by a positive real number. Then an
oriented basis of a lattice Λ is a basis {a+ bi, c+ di} with ad− bc > 0.

Any lattice Λ is homothetic to one of the form Z⊕Zτ , where τ ∈ H. The
following is very easy:

Proposition 1.1.1. The map τ 7→ (Z⊕Zτ, {1, τ}) is a bijection between H
and the set of homothety classes of pairs (Λ, {α, β}), where Λ ⊂ C is a lattice
and {α, β} is an oriented basis for Λ.

If a lattice Λ has two oriented bases {α, β} and {γ, δ}, then the change
of basis matrix between them lies in SL2(Z). The action of SL2(Z) on the

1



set of oriented bases of a lattice corresponds to the action of SL2(Z) on H
by fractional linear transformations:(

a b
c d

)
z =

az + b

cz + d
.

In light of this, SL2(Z)\H classifies the set of homothety classes of lattices
in C.

One has to be a little careful with the quotient SL2(Z)\H because two
of the SL2(Z)-orbits in H have nontrivial stabilizer in PSL2(Z). These are
i and e2πi/3, whose stabilizers in PSL2(Z) have orders 2 and 3, respectively.
With some care, it is possible to give SL2(Z)\H the structure of a complex
manifold, rather than an orbifold.

Proposition 1.1.2. The j-function

j(τ) =
1

q
+ 744 + 196884q + 21493760q2 + . . . , q = e2πiτ

gives an isomorphism of complex manifolds SL2(Z)\H → C.

1.2 A crash course in elliptic curves

Informally, there are (at least) three ways of looking at an elliptic curve:

• An elliptic curve is a smooth projective curve of genus 1 over a field K,
together with a rational base point O ∈ E(K).

• An elliptic curve is a smooth curve in projective space cut out by a
Weierstrass equation y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6.

• An elliptic curve is a complex torus of dimension 1, equal to the quotient
C/Λ for some lattice Λ ⊂ C.

Of these, the first is the most powerful definition. The first and second are
equivalent, and the first and third are equivalent when the base field is C. It
might be helpful to (very quickly) review these equivalences.

Let E/K be a smooth projective curve of genus 1, and let O ∈ E(K) be
a rational point. Recall that a divisor D on a curve is a formal sum of points
with Z-coefficients, and if D =

∑
P aP [P ] is a divisor, then H(D) is the vector

space of rational functions f on the curve which satisfy ordP (f) ≥ −aP for
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all P . We can use the Riemann-Roch theorem to compute the dimension of
H(n[O]) for all n ≥ 0: we have

dimH(n[O]) =

{
1, n = 0, 1

n, n ≥ 2.

This means that H(0) = H([O]) = K, H(2[O]) = 〈1, x〉 for some rational
function x with a double pole at O, and H(3[O]) = 〈1, x, y〉 for some other
rational function y with a triple pole at O. We have dimH(6[O]) = 6, and
H(6[O]) contains 1, x, x2, x3, y, xy, y2, which must therefore be linearly depen-
dent. The equation of linear dependence among these functions determines
a Weierstrass equation for E.

Conversely, if E/K is a smooth projective curve cut out by a Weierstrass
equation, then E has genus 3(3 − 1)/2 = 1, and the point at infinity is
rational. Thus the first and second definitions are equivalent.

Now assume the base field is C. If E/C is an elliptic curve, then E(C)
is a Riemann surface of genus 1, and therefore the space H0(E(C),Ω1) is 1-
dimensional. Let ω be a basis vector. On the other hand, Λ := H1(E(Z),Z)
is a free Z-module of rank 2. We have a map Λ → C given by γ 7→

∫
γ
ω,

which induces an isomorphism Λ⊗ZR ∼= C. Thus Λ is a lattice in C, and we
have an isomorphism of complex manifolds

E(C) → C/Λ

P 7→
∫ P

O

ω.

Conversely, if we are given a lattice Λ ∈ C, we have the Weierstrass
function ℘Λ(z), a Λ-periodic meromorphic function with a double pole at
every point in Λ. Then ℘Λ satisfies a differential equation of the form

[℘Λ(z)′]2 = 4℘Λ(z)3 − g2℘Λ(z)− g3

for constants g2 and g3 depending on Λ. The discriminant of the cubic polyno-
mial on the right is nonzero, so that the above may be interpreted as a Weier-
strass equation defining an elliptic curve E/C. Then z 7→ (℘Λ(z), ℘′Λ(z)) is
an isomorphism of complex manifolds between C/Λ and E(C).

We can now give an interpretation of H in terms of elliptic curves. Note
that if E/C is an elliptic curve, then H1(E(C),R) is an oriented vector space
(under the intersection pairing), so that it makes sense to talk about a basis
for H1(E(C),Z) being oriented.
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Proposition 1.2.1. H classifies isomorphism classes of pairs (E, {α, β}),
where E/C is an elliptic curve and {α, β} is an oriented basis for H1(E(C),Z).
The quotient SL2(Z)\H classifies isomorphism classes of elliptic curves over
C.

1.3 The j-line and the λ-line

Isomorphism classes of elliptic curves over C are in bijection with C itself. Is
there an algebraic family of elliptic curves parametrized by the affine j-line
A1
j , such that the fiber over j = j0 is the elliptic curve with j-invariant j0?

This would mean a Weierstrass equation

y2 = 4x3 − g2x− g3

with g2, g3 ∈ C[j], which defines an elliptic curve for all j ∈ C, and whose
j-invariant is j. This means that the discriminant ∆ must have no roots in
C, i.e. it is a scalar. The j-invariant is 1728g3

2/∆, which is a cube in C[j],
so that it cannot equal j. Furthermore, j − 1728 = 1728 × 27g2

3/∆, which
means that j − 1728 must be a square in C[j], another contradiction.

The above phenomena are quite related to the fact that the elliptic curves
of j-invariants j(e2π/3) = 0 and j(i) = 1728 have extra automorphisms on
top of the usual ±1, by a factor of 3 and 2, respectively.

We can resolve this problem by passing to a 6-fold cover of the j-line.
Consider the Weierstrass equation

y2 = x(x− 1)(x− λ),

which defines an elliptic curve Eλ for λ ∈ P1\ {0, 1,∞} (the λ-line), together
with a basis {(0, 0), (1, 0)} for the 2-torsion of Eλ. It turns out that any
elliptic curve over C equipped with a basis for its 2-torsion corresponds to a
unique value of λ.

The j-invariant of Eλ is

j = 256
(1− λ+ λ2)3

λ2(1− λ)2
,

so that the λ-line is a 6-fold cover of the j-line, with ramification at j = 0
(with index 3) and j = 1728 (with index 2).
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1.4 Quotients of the upper half-plane as algebraic curves

More generally, suppose Γ ⊂ SL2(Z) is a subgroup of finite index. For simplic-
ity let’s assume that Γ acts on H without fixed points. Define the completed
upper half-plane by setting H∗ = H∪P1(Q). Then P1(Q) ⊂ H∗ is the set of
cusps. H∗ admits an action of SL2(Q). It is given a topology by declaring a
basis of neighborhoods of ∞ ∈ H∗ to be {=z > N} ∪ {∞}, for N = 1, 2, . . . ;
bases around the other cusps are given by translation using SL2(Z), which
acts transitively on the set of cusps.

Proposition 1.4.1. The complex structure on Γ\H extends to a complex
structure on Γ\H∗, which turns the latter into a compact Riemann surface.

Proof. (Just a sketch.) We need to define the complex structure around the
cusps. It suffices to do this for the cusp ∞. Let Γ∞ be the stabilizer of ∞ in
Γ. Then Γ∞ takes the form

Γ∞ =

(
1 NZ
0 1

)
for some N ≥ 1. The function e2πiz/N is a well-defined homeomorphism from
a neighborhood of ∞ in Γ\H to a neighborhood of C, and this provides the
complex structure.

Γ\H∗ is compact because it’s a finite-to-one cover of SL2(Z)\H∗ = P1(C).

Recall some basic facts about the relationship between compact Riemann
surfaces, projective curves over C, and complex function fields (meaning finite
extensions of C(x)):

• If X is a smooth projective curve over C, then X(C) has a natural
structure of a compact Riemann surface.

• If S is a Riemann surface, then there is a smooth projective curve X
over C with X(C) = S, and X is unique up to isomorphism.

• If S is a Riemann surface whose corresponding to the smooth projective
curve X, then the field of meromorphic functions on S is equal to the
function field of X. In particular, the field of meromorphic functions
on P1(C) is C(x).
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• The following categories are equivalent: compact Riemann surfaces,
smooth projective curves over C, and function fields over C (meaning
finite extensions of C(x)).

Thus there exists a complex projective curve X(Γ) and a Zariski open
subset Y (Γ) ⊂ X(Γ) such that there is an isomorphism of complex manifolds
Γ\H ∼= Y (Γ)(C).

2 Modular curves over number fields

We have just seen that for any finite-index subgroup Γ ⊂ SL2(Z), the quotient
Γ\H∗ is a compact Riemann surface and therefore corresponds to a smooth
projective curve X(Γ). In fact X(Γ) always admits a model over a number
field (exercise). For an important special class of Γ, however, X(Γ) admits a
model over Q.

For N ≥ 1, let Γ0(N) ⊂ SL2(Z) be the group{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 (mod N)

}
.

Theorem 2.0.2. There exists a smooth projective curve X0(N) over Q whose
complex points are Γ0(N)\H∗.

Proof. (Sketch) The functions j(z) and j(Nz) on H are both well-defined
meromorphic functions on Γ0(N)\H∗. Let S be a set of coset representatives
for the quotient SL2(Z)/Γ0(N), and consider the polynomial∏

γ∈S

(Y − j(Nγz)),

whose coefficients are a priori meromorphic functions on Γ0(N)\H∗. But
since these are symmetric functions in the j(Nγz), they are well-defined on
SL2(Z)\H∗ = P1 and therefore they are rational functions in j. In fact, since
each j(Nγz) is holomorphic on H, these coefficients must be polynomials in
j. Therefore there is a bivariate polynomial F (X, Y ) ∈ C[X, Y ] such that

F (j(z), Y ) =
∏
γ∈S

(Y − j(Nγz)).

In particular, F (j(z), j(Nz)) = 0.
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Then one shows that F (X, Y ) is irreducible and has integer coefficients
(exercise). Let X0(N) be the smooth projective curve over Q whose function
field is the fraction field of Q[X, Y ]/F (X, Y ). This means that some open
affine U ⊂ X0(N) is isomorphic to the subvariety of A2

Q obtained by deleting
the singular points from the plane curve F (X, Y ) = 0. We get a holomorphic
map Γ0(N)\H → U(C) defined by z 7→ (j(z), j(Nz)). This map is injective
(exercise). It extends to a map of compact Riemann surfaces Γ0(N)\H∗ →
X0(N)(C), which (since the map is nonconstant and injective and X0(N)C
is irreducible) has to be an isomorphism.

We remark that if Γ(N) is the principal congruence subgroup

Γ(N) =

{
γ ∈ SL2(Z)

∣∣∣∣ γ ≡ (1 0
0 1

)
(mod N)

}
,

then Γ(N)\H∗ has a model over the cyclotomic field Q(ζN).
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