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September 9, 2013

In the last lecture we observed that the family of modular curves X0(N)
has a model over the rationals. In this lecture we use this fact to attach
Galois representations to cusp forms of weight 2. The goal is to prove the
following theorem over the next few lectures.

Theorem 0.0.1. Let f be a normalized cuspidal eigenform of weight 2 for
Γ0(N), with Fourier expansion f =

∑
n≥1 anq

n. The an lie in a number field
K. Let λ be a prime of K, and let Kλ be the completion of K at λ. There
exists an irreducible representation

ρ : Gal(Q/Q)→ GL2(Kλ)

having the following property. For every prime p prime to λ and N , ρ is
unramified at p, so that ρ(Frobp) is well-defined, and the characteristic poly-
nomial of ρ(Frobp) is X2 − apX + p.

We only need the following facts about modular curves:

1. For each p prime to N , there is a Hecke correspondence Tp on X0(N),

2. The Tp induce linear operators on H0(X0(N),Ω1
X0(N)/Q) which can be

simultaneously diagonalized,

3. We have the relationship

Tp = Frobp + Frob∨p

in the endomorphism algebra of JacX0(N)Fp .
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1 Modular forms and cusp forms

The classical theory of modular forms is due to Hecke. It has to do with the
action of discrete subgroups of SL2(R) (known as Fuchsian groups) on the
upper half plane H. We start with the principal congruence subgroup

Γ(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ a, d ≡ 1 (mod N), b, c ≡ 0 (mod N)

}
and say that a subgroup Γ ⊂ SL2(Z) is a congruence subgroup if it contains
Γ(N) for some N . Two important examples are Γ0(N) (resp., Γ1(N)), which
are those subgroups of SL2(Z) where c ≡ 0 (mod N) (resp., c ≡ 0 (mod N)
and a ≡ b ≡ 1 (mod N)).

Let Γ be a congruence subgroup, and let k be an integer. A modular form
of weight k for Γ is a complex-valued function f on the upper half-plane H
with the following properties:

1. For all γ =

(
a b
c d

)
∈ Γ,

f(γz) = (cz + d)kf(z).

2. f is holomorphic on H.

3. f is holomorphic at the cusps of Γ\H.

For any g =

(
a b
c d

)
∈ GL2(R) with positive determinant, we write

f |g,k(z) = (cz + d)−k(det g)k/2f(gz);

this actually defines an action of GL+
2 (R) on functions onH. (The center acts

trivially, so that in fact we have an action of PGL+
2 (R).) The first condition

can be restated as f |γ,k = f for all γ ∈ Γ.
The last point requires some explanation. A cusp of Γ is an equivalence

class in an element of R ∪ {∞} which is fixed by a parabolic subgroup of Γ
(a subgroup which has exactly one fixed point on the Riemann sphere). For

instance, ∞ is always fixed by the intersection of

(
1 Z

1

)
with Γ, so ∞ is

always a cusp of a congruence subgroup. We now define what it means for
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f to be holomorphic at ∞. The subgroup Γ∞ ⊂ Γ which fixes ∞ is of the

form

(
1 Zw

1

)
for some w ≥ 1, known as the width of the cusp at ∞. We

have f(z+w) = f(z) for z ∈ H, so that it makes sense to define f̂(q) on the
domain 0 < |q| < 1 by

f̂(e2πiz/w) = f(z)

Then the condition of holomorphicity at ∞ is the condition that f̂ extend
to a holomorphic function on |q| < 1. For general cusps c, one can always
find a γ ∈ SL2(Z) which translates ∞ onto c. Then the condition that f be
holomorphic at c is understood to be the same as the condition that f |γ,k
(which is attempting to be a modular form for γ−1Γγ) be holomorphic at∞.
One must check that this definition does not depend on the choice of γ.

Modular forms are sections of certain line bundles on X(Γ). Last time
we established that X(Γ) is an algebraic curve, which suggests that modular
forms can be defined in some purely algebraic manner. Indeed this is the
case. For instance, if f(z) is a cusp form of weight 2 for Γ, then the 1-
form f(z)dz on H is easily checked to be invariant under Γ, so that f(z)dz
descends to a holomorphic 1-form on Γ\H. Further, the condition that f(z)
is cuspidal means that f(z)dz will be holomorphic at the cusps (exercise).
Thus f(z)dz is holomorphic on the compact Riemann surface X(Γ)(C). By
GAGA, this means that there exists a corresponding differential form ω in
H0(X(Γ),Ω1

X(Γ)/C). In fact there is an isomorphism:

S2(Γ) ∼= H0(X(Γ),Ω1
X(Γ)/C).

If it so happens that X(Γ) has a Q-rational model, such as when Γ = Γ0(N),
then the complex vector space S2(Γ) has a Q-rational model as well, namely
H0(X(Γ),Ω1

X(Γ)/Q). The same is true for the spaces Mk(Γ) and Sk(Γ) for
higher weights k.

We very often consider the Taylor series expansion of f̂(q) around q = 0,
which converges for all z ∈ H:

f(z) =
∑
n≥0

ane
2πinz/w.

Note that in the cases of Γ0(N) and Γ1(N), the width of ∞ is w = 1.
Write Mk(Γ) for the complex vector space of modular forms of weight

k on Γ. Write Sk(Γ) for the space of modular forms which are cusp forms,
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which means they are 0 at every cusp of Γ. It turns out that Mk(Γ) is a
finite-dimensional vector space, so that Sk(Γ) is a finite-dimensional Hilbert
space.

There is a bilinear pairing Sk(Γ) × Sk(Γ) → C known as the Petersson
inner product:

(f, g)k,Γ =

∫
F
f(z)g(z)yk

dxdy

y2
,

where F is a fundamental domain for Γ\H. (Check that the integrand really
is Γ-invariant!)

It is generally far easier to produce examples of elements of Mk(Γ) than it
is to produce cusp forms in Sk(Γ). For k even, we have the Eisenstein series

Ek(z) =
1

2ζ(k)

∑
(c,d)

1

(cz + d)k
,

where the sum is over all pairs of integers (c, d) 6= (0, 0). Ek is very easily
seen to ba modular form for SL2(Z) of weight k. A little manipulation shows
that its Fourier expansion is

Ek(z) = 1 +
2

ζ(1− k)

∑
n≥1

σk−1(n)qn, q = e2πiz.

In can be shown that the graded ring ⊕k evenMk(SL2(Z)) is generated over C
by the elements E4 and E6. As a result M12(SL2(Z)) is spanned by E3

4 and
E2

6 , and

∆ =
1

1728
(E3

4 − E2
6) ∈ S12(SL2(Z))

spans the (one-dimensional) space of cusp forms for SL2(Z).

2 Hecke correspondences

If X and Y are two projective curves, then a correspondence between X and
Y is a diagram

Z
f

~~~~
~~

~~
~ g

��@
@@

@@
@@

X Y
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where Z is a third projective curve and the arrows represent finite morphisms.
(There is a more general definition for varietiesX and Y of higher dimension.)
If h : X → Y is a finite morphism, then h gives a correspondence as above
by setting Z = X, but not all correspondences will arise this way. But a
correspondence can act like a morphism, in that it induces maps between
various vector spaces attached to X and Y . For example, if ω is a differential
form on Y , we may obtain a differential form on X by first pulling back ω
through g and then pushing forward through f . Or if D is a divisor on X, we
can get a divisor on Y by taking the preimage of D in Z (this will increase
the degree by a factor of deg(f)) and then pushing this into Y .

Of particular use is a correspondence Tp between X0(N) and X0(N),
where p is a prime not dividing N . The role of Z will be played by X0(Np).
This curve (or at least an affine part of it) classifies triples (E,CN , Cp), where
E is an elliptic curve, CN is a cyclic subgroup of E of order N , and Cp is
a cyclic subgroup of order p. There is an obvious map X0(Np) → X0(N)
defined by forgetting Cp, but there is also another one where (E,CN , Cp) gets
sent to (E/Cp, (CN + Cp)/Cp). These two maps give the correspondence Tp.

The Hecke correspondence Tp induces an operator on Mk(Γ0(N)). On the
level of functions on the upper half plane, this works out to

Tpf(z) = pk−1f(pz) +
1

p

p−1∑
a=0

f

(
z + a

p

)
On the level of q-expansions, this is

Tpf(z) = pk−1
∑
n≥1

anq
pn +

∑
n≥1

apnq
n (1)

The operators Tn for n composite can be defined the same way, although
the formulas will be more complicated. One has the rules

TmTn = Tmn, gcd(m,n) = 1

TpTpn = Tpn+1 + pk−1Tpn−1

In particular all the Tm commute with one another. One also checks that

(Tnf, g)k,Γ = (f, Tng)k,Γ

so that the Tn are a collection of commuting self-adjoint operators on a finite-
dimensional Hilbert space Sk(Γ0(N)). Therefore they can be simultaneously
diagonalized.

5



An important observation is that Sk(Γ0(N)) has a rational model which
is preserved by the Hecke operators. This means that the eigenvalues of the
Tn are algebraic numbers (in fact they are algebraic integers).
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