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1 Abelian varieties and Jacobians

An abelian variety A over a field K is an irreducible smooth projective group
variety. In other words, A is a smooth projective variety equipped with
morphisms p: A x A — A and i: A — A obeying the axioms of an abelian
group. In fact, if A is a group variety which is proper over a field, then A is
automatically projective, and thus an abelian variety.

The first examples are elliptic curves, which are smooth projective curves
E/K of genus 1 equipped with an origin O € E(K). How is this a group
variety? Let us just see why F(K) has a group law. If P,Q € F(K), then
the divisor D = 3[O] — P — @ has degree 1. A calculation using the Riemann-
Roch formula shows that there exists a rational function f on E with divisor
> —D. We must have div f = P+Q+R—3(0) for some uniquely determined
R € E(K), and then P+ @ + R =0 in E(K). (If F is a plane cubic, then
the role of f is played by the linear form which intersects F at P, ), and R.)
Similarly, if P € E(K) then the same argument applied to D = 2[0] — P
shows that there exists P’ such that [P] 4 [P'] —2(O) is principal, and then
P'=—Pin E(K).

More to the point, let Pic F be the group of divisors on £ modulo principal
divisors, and let Pic’ E C Pic E be the subgroup of divisors of degree 0. One
finds a bijection P + [P] — [0] between the set E(K) and Pic’ E, which
shows that E(K) has the structure of an abelian group.

Generally, if C'/K is a curve of genus g, then the Jacobian variety J(C')
is an abelian variety having the property that Pic’ C, = J(C)(L) for any
field L containing K. (The precise definition of J(C') is more subtle. One
defines a certain functor on K-schemes, whose value on S is a certain group
of classes of line bundles on C' x g S. There are additional subtleties when
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C(K) is empty. See Milne’s notes on abelian varieties for the full story.) The
dimension of J(C) is g.

2 Jacobians over C

When K = C, the construction of the Jacobian is due to Jacobi himself.
Let X be a compact Riemann surface. We have the first homology group
H,(X,Z) = 7?9 and the g-dimensional complex vector space H°(X, Q% Jc) of
holomorphic 1-forms on X. Let wy, ..., w, be a basis for H(X, Qﬁ(/c). There

is an injective map

Hl(X7 Z) - HO(Xa Q%{'/C)>|<

v
Let J(X) be the complex torus C9/H,(X,Z). Let Py € X be a base point.
The Abel-Jacobi theorem states that there is an isomorphism of groups

Pic%(C) — J(X)

which sends a divisor [P] — [F] to

P

W = w.
Py

One can find an embedding of J(X) to projective space, whereby it must be
(the complex variety associated to) a projective variety.

What we've just described is a functor X +— J(X) which is covariant
in X. The Jacobian is usually considered to be contravariant, probably for
the reason that is is simpler to pull back divisors/line bundles than it is to
push them forward. There is a contravariant reformulation of the above,
whereby J(X) gets identified with H°(X, QY ) modulo H'(X,Z). Then the
Lie algebra of J(X) is H*(X,Q'X/C).

This holds in the general setting: if C'/K is a smooth projective curve,
then the tangent space to J(C) at the origin is H°(C, Qg k).



3 Isogenies and duality

A homomorphism f: A — A’ between abelian varieties is a morphism of
varieties which preserves the group structure on A and A’. A homomorphism
f is an isogeny if it is surjective with finite kernel. In that case, the degree
of f is the order of its kernel. The multiplication-by-n map n4: A — A has
degree n?9.

If A has dimension g over a field K, and ¢ is a prime number other than
the characteristic of K, then the torsion subgroup A[¢"] is isomorphic to
(Z)e"Z)9, for all n > 1. The ¢-adic Tate module of A is

T,A = lim A[("] ~ Z2.

This is the pro-¢ part of the étale fundamental group of A, and therefore it
is the Z-linear dual of H}, (Az, Zs).

The dual abelian variety is A = Pic® A. The duality A — A is contravari-
ant. Unlike the case for elliptic curves, A need not be isomorphic to its dual.
If D is a divisor on A, then we get a homomorphism ¢p: A — A defined by
P — Tp(D) — D, where Tp: A — A is the translation-by-P map. Then ¢p
is an isogeny when D is ample. An isogeny A — A arising this way is called
a polarization. A polarization is principal if it is an isomorphism. Jacobian
varieties always admit a principal polarization.

There is a nondegenerate pairing

TgA X TgA — Tg,u

which generalizes the Weil pairing on elliptic curves.

4 Abelian varieties over finite fields

Let A be an abelian variety over a finite field F,. We have the Frobenius
endomorphism A — A, which is the identity on the underlying topological
space but which is the gth power map on the structure sheaf. Let ¢,: AFq —

AFq be its base extension to [F,. In essence, the effect of ¢, on a closed point
of AFQ is to raise each of its coordinates to the gth power.

Theorem 4.0.1. (The Weil conjectures for abelian varieties over finite fields.)
Let ¢ be a prime not dividing q, and let Ty(¢,) be the endomorphism of Ty(A)
induced by ¢,. Let P(X) be the characteristic polynomial of Ty(¢,). Then:
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1. P(X) has integral coefficients and does not depend on €. (Independence
of £.)

2. If o is a complex root of P(T'), then so is q/c. (Functional equation.)

3. If o is a complex root of P(T) then |a| = /q. (Riemann hypothesis.)

5 Correspondences

If X and Y are two smooth projective curves, then a correspondence between
X and Y is a diagram

X%ZXY

where Z is a third projective curve and the arrows represent finite morphisms.
(There is a more general definition for varieties X and Y of higher dimension.)
If h: X — Y is a finite morphism, then A gives a correspondence as above
by setting Z = X, but not all correspondences will arise this way. But a
correspondence can act like a morphism, in that it induces maps between
various vector spaces attached to X and Y. For example, if D is a divisor on
X, we can get a divisor g, f*D on Y by taking the preimage of D in Z (this
will increase the degree by a factor of deg(f)) and then pushing this into Y.
This induces a morphism J(X) — J(Y') (exercise).



