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October 4, 2013

The goal of this lecture is to construct the Galois representation arising
from a cuspidal eigenform of weight 2.

1 Modular abelian varieties

The main players here are the modular curve X0(N), and its Jacobian, which
we write as J0(N). Both objects are defined over Q. For each prime p not
dividing N we have we Hecke correpondence Tp between X0(N) and itself:
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The curveX0(Np) (or at least an affine part of it) classifies triples (E,CN , Cp),
where E is an elliptic curve, CN is a cyclic subgroup of E of order N , and Cp
is a cyclic subgroup of order p. There is an obvious map X0(Np) → X0(N)
defined by forgetting Cp, but there is also another one where (E,CN , Cp) gets
sent to (E/Cp, (CN + Cp)/Cp). These two maps give the correspondence Tp.
(There is also a definition of Tn for general n.)

Recall that correspondences between curves induce maps between Jaco-
bians. Thus we get endomorphisms Tn : J0(N) → J0(N). Let T be the
subalgebra of End J0(N) generated by the Tn. We write TQ and TC for
T⊗Z Q and T⊗Z C, respectively. The tangent space at the origin of J0(N)
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is the space H0(X0(N),Ω1
X0(N)/Q), so T acts on this space as well. Mean-

while, we know that H0(X0(N),Ω1
X0(N)/Q) is a rational model for the space

S2(Γ0(N)) of modular forms of weight 2 and level N , so we get an action
of TC on S2(Γ0(N)). It isn’t too hard to see that this action is the same
as the usual action of Hecke operators on modular forms. Further, the map
End J0(N) → EndH0(X0(N),Ω1

X0(N)/Q) (given by sending a morphism to

its derivative at the origin) is injective (this is a general fact about abelian
varieties). Thus TC → EndS2(Γ0(N)) is injective. It is therefore valid to say
that T is the subring of EndS2(Γ0(N)) generated by the Tn.

Lemma 1.0.1. The pairing

S2(Γ)× TC → C
(f, T ) 7→ a1(T (f))

is perfect (it identifies TC with the dual of S2(Γ)).

Proof. Suppose f ∈ S2(Γ0(N)) satisfies a1(Tn(f)) = 0 for all n. But a1(Tn(f)) =
an(f), so that f = 0.

Now suppose T ∈ TC satisfies a1(T (f)) = 0 for all f . Then for all n and f
we have 0 = a1(TTn(f)) = a1(TnT (f)) = an(T (f)), so that T (f) = 0. Since
T kills all the fs, we have T = 0.

Lemma 1.0.2. There is a bijection between the set of normalized eigenforms
in S2(N) and the set of C-algebra homomorphisms TC → C.

Proof. (Easy.)

Lemma 1.0.3. Let f =
∑

n anq
n be an eigenform in S2(Γ0(N)) which is

normalized (meaning that a1 = 1). Then the an are algebraic numbers (in
fact they are algebraic integers) which are totally real. If σ ∈ Gal(Q/Q), then
fσ =

∑
n a

σ
nq

n is also an eigenform.

Proof. C-algebra homomorphisms TC → C are the same as Q-algebra homo-
morphisms TQ → C. Since TQ is a finite-dimensional Q-algebra, the image
of any such homomorphism has to lie in a number field K ⊂ C, which we
can assume is Galois over Q. Then if σ is an automorphism of K, then
T 7→ λ(T )σ is a Q-algebra homomorphism TQ → C, which corresponds to an
eigenform having q-expansion

∑
n a

σ
nq

n.
The coefficient an is real because it is the eigenvalue of a self-adjoint

operator on a Hilbert space. The same is true for each aσn, so in fact an is
totally real.
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Lemma 1.0.4. Prime ideals of TQ correspond to Galois orbits of eigenforms.

Proof. An eigenform f corresponds to a homomorphism hf : TQ → C, whose
kernel must be a prime ideal and whose image is a number field K. If fσ is a
conjugate eigenform, then hfσ is the composite TQ → K → Kσ → C, which
has the same kernel.

Conversely, if P ⊂ TQ is prime, then TQ/P is an integral domain which
is finite over Q, hence a number field K, and then the embeddings of K into
C give the required eigenforms.

Let f be a normalized eigenform of weight 2. The coefficients of f generate
a number field K. Let P ⊂ TQ be the corresponding prime ideal, so that
TQ/P = K. Note that P only depends on the Galois orbit of f . We want
to associate to P an abelian variety quotient of J0(N). Let PZ = P ∩T, and
put

Af = J0(N)/PJ0(N),

so that Af is an abelian variety over Q admitting endomorphisms by T/PZ,
an order in TQ/P = K.

We can explain whatAf is on the level of complex tori. We have J0(N)(C) =
S2(Γ0(N))/H1(X0(N),Z). Let Vf = S2(Γ0(N))/PS2(Γ0(N)), so that Vf is
the C-span of the Galois conjugates of f . Also let Λf be the quotient of
H1(X0(N),Z) by TQH

1(X0(N),Q) ∩H1(X0(N),Z). Then Af (C) = Vf/Λf ,
so that Af has dimension equal to [K : Q].

The `-adic Tate module T`Af has rank 2g over Z`, where g = dimAf =
[K : Q]. Let λ be a prime of K above λ. Then Vλ := T`Af ⊗Z` Kλ is a
Kλ-vector space of dimension 2 (exercise). We get a Galois representation

ρf,λ : Gal(Q/Q)→ AutKλ Vλ ≈ GL2(Kλ).

2 The Eichler-Shimura relation

The next step is to see why ρf,λ has the properties that it does, namely:

1. ρf,λ is unramified outside of N and `.

2. If p is a prime not dividing N`, then tr ρf,λ(Frobp) = ap(f) (the eigen-
value of Tp on f).
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The first point follows as soon as you know that X0(N) has a model over
Z[1/N ] which is smooth at all the primes not dividing N . This is a result
of Deligne-Rapoport, who describe a model of X0(N) even over Z. Let’s
just call this model X0(N). Deligne and Rapoport even give a description
of X0(N) modulo those primes dividing N . For now, all we need is a result
about X0(Np)Fp .

Theorem 2.0.5. X0(Np)Fp is a union of two copies of X0(N)Fp which in-
tersect transversely at the supersingular points. The morphism X0(Np) →
X0(N) which forgets the level p structure restricts to one copy as the identity
map and the other as Frobenius. The morphism X0(Np) → X0(N) which
quotients by the level structure does the reverse.

The morphism Frobp ∈ End J0(N)Fp has degree p. This implies that
pFrob−1

p makes sense as an endomorphism of J0(N)Fp .

Theorem 2.0.6. In End J0(N)Fp we have

Tp = Frobp +pFrob−1
p

Theorem 2.0.7. The matrix ρf,λ(Frobp) has trace ap(f) and determinant p.

For a discussion of the proof, see William Stein’s lecture notes: http://
modular.math.washington.edu/edu/Fall2003/252/lectures/11-19-03/

11-19-03.pdf
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