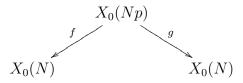
Modular abelian varieties and the Eichler-Shimura relation

October 4, 2013

The goal of this lecture is to construct the Galois representation arising from a cuspidal eigenform of weight 2.

1 Modular abelian varieties

The main players here are the modular curve $X_0(N)$, and its Jacobian, which we write as $J_0(N)$. Both objects are defined over \mathbb{Q} . For each prime p not dividing N we have we Hecke correspondence T_p between $X_0(N)$ and itself:



The curve $X_0(Np)$ (or at least an affine part of it) classifies triples (E, C_N, C_p) , where E is an elliptic curve, C_N is a cyclic subgroup of E of order N, and C_p is a cyclic subgroup of order p. There is an obvious map $X_0(Np) \to X_0(N)$ defined by forgetting C_p , but there is also another one where (E, C_N, C_p) gets sent to $(E/C_p, (C_N + C_p)/C_p)$. These two maps give the correspondence T_p . (There is also a definition of T_n for general n.)

Recall that correspondences between curves induce maps between Jacobians. Thus we get endomorphisms $T_n: J_0(N) \to J_0(N)$. Let \mathbb{T} be the subalgebra of End $J_0(N)$ generated by the T_n . We write $\mathbb{T}_{\mathbb{Q}}$ and $\mathbb{T}_{\mathbb{C}}$ for $\mathbb{T} \otimes_{\mathbb{Z}} \mathbb{Q}$ and $\mathbb{T} \otimes_{\mathbb{Z}} \mathbb{C}$, respectively. The tangent space at the origin of $J_0(N)$ is the space $H^0(X_0(N), \Omega^1_{X_0(N)/\mathbb{Q}})$, so \mathbb{T} acts on this space as well. Meanwhile, we know that $H^0(X_0(N), \Omega^1_{X_0(N)/\mathbb{Q}})$ is a rational model for the space $S_2(\Gamma_0(N))$ of modular forms of weight 2 and level N, so we get an action of \mathbb{T}_C on $S_2(\Gamma_0(N))$. It isn't too hard to see that this action is the same as the usual action of Hecke operators on modular forms. Further, the map $\operatorname{End} J_0(N) \to \operatorname{End} H^0(X_0(N), \Omega^1_{X_0(N)/\mathbb{Q}})$ (given by sending a morphism to its derivative at the origin) is injective (this is a general fact about abelian varieties). Thus $\mathbb{T}_{\mathbb{C}} \to \operatorname{End} S_2(\Gamma_0(N))$ is injective. It is therefore valid to say that \mathbb{T} is the subring of $\operatorname{End} S_2(\Gamma_0(N))$ generated by the T_n .

Lemma 1.0.1. The pairing

$$S_2(\Gamma) \times \mathbb{T}_{\mathbb{C}} \to \mathbb{C}$$

(f,T) $\mapsto a_1(T(f))$

is perfect (it identifies $\mathbb{T}_{\mathbb{C}}$ with the dual of $S_2(\Gamma)$).

Proof. Suppose $f \in S_2(\Gamma_0(N))$ satisfies $a_1(T_n(f)) = 0$ for all n. But $a_1(T_n(f)) = a_n(f)$, so that f = 0.

Now suppose $T \in \mathbb{T}_{\mathbb{C}}$ satisfies $a_1(T(f)) = 0$ for all f. Then for all n and f we have $0 = a_1(TT_n(f)) = a_1(T_nT(f)) = a_n(T(f))$, so that T(f) = 0. Since T kills all the fs, we have T = 0.

Lemma 1.0.2. There is a bijection between the set of normalized eigenforms in $S_2(N)$ and the set of \mathbb{C} -algebra homomorphisms $\mathbb{T}_{\mathbb{C}} \to \mathbb{C}$.

Lemma 1.0.3. Let $f = \sum_{n} a_n q^n$ be an eigenform in $S_2(\Gamma_0(N))$ which is normalized (meaning that $a_1 = 1$). Then the a_n are algebraic numbers (in fact they are algebraic integers) which are totally real. If $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$, then $f^{\sigma} = \sum_{n} a_n^{\sigma} q^n$ is also an eigenform.

Proof. \mathbb{C} -algebra homomorphisms $\mathbb{T}_{\mathbb{C}} \to \mathbb{C}$ are the same as \mathbb{Q} -algebra homomorphisms $\mathbb{T}_{\mathbb{Q}} \to \mathbb{C}$. Since $\mathbb{T}_{\mathbb{Q}}$ is a finite-dimensional \mathbb{Q} -algebra, the image of any such homomorphism has to lie in a number field $K \subset \mathbb{C}$, which we can assume is Galois over \mathbb{Q} . Then if σ is an automorphism of K, then $T \mapsto \lambda(T)^{\sigma}$ is a \mathbb{Q} -algebra homomorphism $\mathbb{T}_{\mathbb{Q}} \to \mathbb{C}$, which corresponds to an eigenform having q-expansion $\sum_{n} a_n^{\sigma} q^n$.

The coefficient a_n is real because it is the eigenvalue of a self-adjoint operator on a Hilbert space. The same is true for each a_n^{σ} , so in fact a_n is totally real.

Lemma 1.0.4. Prime ideals of $\mathbb{T}_{\mathbb{Q}}$ correspond to Galois orbits of eigenforms.

Proof. An eigenform f corresponds to a homomorphism $h_f: \mathbb{T}_{\mathbb{Q}} \to \mathbb{C}$, whose kernel must be a prime ideal and whose image is a number field K. If f^{σ} is a conjugate eigenform, then $h_{f^{\sigma}}$ is the composite $\mathbb{T}_{\mathbb{Q}} \to K \to K^{\sigma} \to \mathbb{C}$, which has the same kernel.

Conversely, if $P \subset \mathbb{T}_{\mathbb{Q}}$ is prime, then $\mathbb{T}_{\mathbb{Q}}/P$ is an integral domain which is finite over \mathbb{Q} , hence a number field K, and then the embeddings of K into \mathbb{C} give the required eigenforms. \Box

Let f be a normalized eigenform of weight 2. The coefficients of f generate a number field K. Let $P \subset \mathbb{T}_{\mathbb{Q}}$ be the corresponding prime ideal, so that $\mathbb{T}_{\mathbb{Q}}/P = K$. Note that P only depends on the Galois orbit of f. We want to associate to P an abelian variety quotient of $J_0(N)$. Let $P_{\mathbb{Z}} = P \cap \mathbb{T}$, and put

$$A_f = J_0(N)/PJ_0(N),$$

so that A_f is an abelian variety over \mathbb{Q} admitting endomorphisms by $\mathbb{T}/P_{\mathbb{Z}}$, an order in $\mathbb{T}_{\mathbb{Q}}/P = K$.

We can explain what A_f is on the level of complex tori. We have $J_0(N)(\mathbb{C}) = S_2(\Gamma_0(N))/H^1(X_0(N),\mathbb{Z})$. Let $V_f = S_2(\Gamma_0(N))/PS_2(\Gamma_0(N))$, so that V_f is the \mathbb{C} -span of the Galois conjugates of f. Also let Λ_f be the quotient of $H^1(X_0(N),\mathbb{Z})$ by $T_{\mathbb{Q}}H^1(X_0(N),\mathbb{Q}) \cap H^1(X_0(N),\mathbb{Z})$. Then $A_f(\mathbb{C}) = V_f/\Lambda_f$, so that A_f has dimension equal to $[K:\mathbb{Q}]$.

The ℓ -adic Tate module $T_{\ell}A_f$ has rank 2g over \mathbb{Z}_{ℓ} , where $g = \dim A_f = [K : \mathbb{Q}]$. Let λ be a prime of K above λ . Then $V_{\lambda} := T_{\ell}A_f \otimes_{\mathbb{Z}_{\ell}} K_{\lambda}$ is a K_{λ} -vector space of dimension 2 (exercise). We get a Galois representation

$$\rho_{f,\lambda}\colon \operatorname{Gal}(\mathbb{Q}/\mathbb{Q}) \to \operatorname{Aut}_{K_{\lambda}} V_{\lambda} \approx \operatorname{GL}_2(K_{\lambda}).$$

2 The Eichler-Shimura relation

The next step is to see why $\rho_{f,\lambda}$ has the properties that it does, namely:

- 1. $\rho_{f,\lambda}$ is unramified outside of N and ℓ .
- 2. If p is a prime not dividing $N\ell$, then tr $\rho_{f,\lambda}(\operatorname{Frob}_p) = a_p(f)$ (the eigenvalue of T_p on f).

The first point follows as soon as you know that $X_0(N)$ has a model over $\mathbb{Z}[1/N]$ which is smooth at all the primes not dividing N. This is a result of Deligne-Rapoport, who describe a model of $X_0(N)$ even over \mathbb{Z} . Let's just call this model $X_0(N)$. Deligne and Rapoport even give a description of $X_0(N)$ modulo those primes dividing N. For now, all we need is a result about $X_0(Np)_{\mathbb{F}_p}$.

Theorem 2.0.5. $X_0(Np)_{\mathbb{F}_p}$ is a union of two copies of $X_0(N)_{\mathbb{F}_p}$ which intersect transversely at the supersingular points. The morphism $X_0(Np) \rightarrow X_0(N)$ which forgets the level p structure restricts to one copy as the identity map and the other as Frobenius. The morphism $X_0(Np) \rightarrow X_0(N)$ which quotients by the level structure does the reverse.

The morphism $\operatorname{Frob}_p \in \operatorname{End} J_0(N)_{\mathbb{F}_p}$ has degree p. This implies that $p \operatorname{Frob}_p^{-1}$ makes sense as an endomorphism of $J_0(N)_{\mathbb{F}_p}$.

Theorem 2.0.6. In End $J_0(N)_{\mathbb{F}_p}$ we have

$$T_p = \operatorname{Frob}_p + p \operatorname{Frob}_p^{-1}$$

Theorem 2.0.7. The matrix $\rho_{f,\lambda}(\operatorname{Frob}_p)$ has trace $a_p(f)$ and determinant p.

For a discussion of the proof, see William Stein's lecture notes: http://modular.math.washington.edu/edu/Fall2003/252/lectures/11-19-03/11-19-03.pdf