Hodge Structures

April 9, 2022

1 A few examples of symmetric spaces

The upper half-plane \mathcal{H} is the quotient of $\mathrm{SL}_2(\mathbb{R})$ by its maximal compact subgroup SO(2). More generally, Siegel upper-half space \mathcal{H}_g is the quotient of $\mathrm{Sp}_{2g}(\mathbb{R})$ by its maximal compact subgroup U(g). \mathcal{H}_g is a complex manifold, with an action of $\mathrm{Sp}_{2g}(\mathbb{R})$ by holomorphic automorphisms. Thus if $\Gamma \subset$ $\mathrm{Sp}_{2g}(\mathbb{R})$ is a discrete subgroup, then $\Gamma \setminus \mathcal{H}_g$ has a chance at being an algebraic variety. In fact, if $\Gamma \subset \mathrm{Sp}_{2g}(\mathbb{Z})$ is a congruence subgroup, then this is in fact the case; the theorem of Baily-Borel shows that $\Gamma \setminus \mathcal{H}_g$ is an open subset of a projective variety, known as a Siegel modular variety.

Just how general is this process? If we start with a group such as $SL_n(\mathbb{R})$, and take its quotient by (say) the compact subgroup SO(n), the result can be characterized as the set of positive definite quadratic forms of rank n and determinant 1. Its dimension is n(n+1)/2-1. For n = 3, this is an odd number, so there can't be a complex structure on $SL_3(\mathbb{R})/SO(3)$. For arithmetic subgroups $\Gamma \subset SL_3(\mathbb{Z})$, one can still form the quotient $\Gamma \setminus SL_3(\mathbb{R})/SO(3)$ to get an interesting manifold, but it won't be an algebraic variety.

What about $\mathrm{SL}_2(\mathbb{C})$? That group has a complex structure at least. $\mathrm{SL}_2(\mathbb{C})$ acts on the set of 2×2 hermitian matrices M, by the action $g \cdot M = gMg^*$, and preserves the determinant. The determinant, considered as a quadratic form on the space of hermitian matrices, has signature (1,3). Thus we get a homomorphism $\mathrm{SL}_2(\mathbb{C}) \to O(1,3)$, whose kernel is just $\{\pm I\}$. The Lorentz group O(1,3) acts transitively on the set \mathcal{H}^3 of 4-tuples (t,x,y,z) such that $t^2 - x^2 - y^2 - z^2 = 1$, t > 0; the stabilizer of (1,0,0,0) is $O(1) \times O(3)$ which is the maximal compact subgroup. Hence the symmetric space for the complex Lie group $\mathrm{SL}_2(\mathbb{C})$ is actually \mathcal{H}^3 , a hyperbolic 3-manifold! In the following, we'll get to the bottom of which spaces G/K have complex structures, where G is a real Lie group and $K \subset G$ is a maximal compact subgroup. In fact, there's a special class of these, the hermitian symmetric domains, which are the most interesting and which are required to define Shimura varieties in general.

2 Classifaction of PPAVs

Consider the problem of classifying principally polarized abelian varieties (PPAVs) over \mathbb{C} . As we know, If A/\mathbb{C} is an abelian variety of dimension g, then as topological spaces we have $A = V/\Lambda$, where $\Lambda = H_1(A, \mathbb{Z})$ and $V = \Lambda \otimes_{\mathbb{Z}} \mathbb{R}$. To give a polarization $\lambda \colon A \to A^{\vee}$ is to give a Riemann form

$$E: \Lambda \times \Lambda \to \mathbb{Z};$$

that is, an alternating bilinear form satisfying the properties

- 1. The extension $E_{\mathbb{R}}: V \times V \to \mathbb{R}$ satisfies $E_{\mathbb{R}}(iv, iw) = E_{\mathbb{R}}(v, w)$, and
- 2. If $H(v, w) = E_{\mathbb{R}}(iv, w) + iE_{\mathbb{R}}(v, w)$, then $H: V \times V \to \mathbb{C}$ is a positive definite hermitian form on V.

The condition that λ be principal corresponds to the condition that E is a perfect pairing, so that it identifies Λ with its \mathbb{Z} -linear dual.

Thus if A is a principally polarized abelian variety of dimension g, then $\Lambda = H_1(A, \mathbb{Z})$ is a free \mathbb{Z} -module of rank 2g equipped with a perfect symplectic form E. We can find a basis x_1, \ldots, x_{2g} for Λ with respect to which E has some convenient form, such as

$$J_0 = \begin{pmatrix} 0 & I_g \\ -I_g & 0 \end{pmatrix}.$$

Let Ψ be the corresponding symplectic form on \mathbb{Z}^{2g} , so that

$$\Psi(v,w) = v^t J_0 w.$$

Now we can ask a slightly different problem. Begin with \mathbb{Z}^{2g} together with its symplectic form Ψ . We will classify pairs (A, λ, α) where (A, λ) is a PPAV and $\alpha \colon \mathbb{Z}^{2g} \to H_1(A, \mathbb{Z})$ is an isomorphism which is compatible with the symplectic forms on either space:

$$\Psi(v,w) = E(\alpha(v), \alpha(w)), \ v, w, \in \mathbb{Z}^{2g}.$$

Proposition 2.0.1. Triples (A, λ, α) are in bijection with points of Siegel upper half space

$$\mathcal{H}_g = \left\{ X + iY \in M_{g \times g}(\mathbb{C}) \mid X^t = X, \ Y > 0. \right\}$$

Pairs (A, λ) are classified by the quotient $\operatorname{Sp}_{2a}(\mathbb{Z}) \setminus \mathcal{H}_g$.

(In the above definition of \mathcal{H}_g , X and Y are real matrices, and Y > 0 means that Y is positive definite. Thus \mathcal{H}_1 is the usual upper half plane.)

The second claim follows from the first: if (A, λ) is a PPAV, then there always exists an α of the required form, and any two such differ by an automorphism of \mathbb{Z}^{2g} with preserves Ψ ; that is, by an element of Sp_{2g} .

To prove the first claim, we need to think of \mathcal{H}_g not as a subset of $M_{g\times g}(\mathbb{C})$ but rather as the quotient $\operatorname{Sp}_{2g}(\mathbb{R})/U(g)$. The symplectic group $\operatorname{Sp}_{2g}(\mathbb{R})$ acts transitively on \mathcal{H}_g via fractional linear transformations, and the stabilizer of iI_g is U(g) (exercise).

First, we'll start with a triple (A, λ, α) and construct the appropriate coset in $\operatorname{Sp}_{2g}(\mathbb{R})/U(g)$. Write $A = V/\Lambda$ We can use α to identify the symplectic lattice (\mathbb{Z}^{2g}, Ψ) with (Λ, E) . Now when we tensor with \mathbb{R} , we have an isomorphism between \mathbb{R}^{2g} and $\Lambda \otimes \mathbb{R} = V$, which is a complex vector space. The action of i on the V corresponds to a map $J \colon \mathbb{R}^{2g} \to \mathbb{R}^{2g}$ with $J^2 = -I$; that is, J is a *complex structure* on \mathbb{R}^{2g} . Furthermore, we have the properties that $E_{\mathbb{R}}(iv, iw) = E_{\mathbb{R}}(v, w)$ and $E_{\mathbb{R}}(iv, v) > 0$ for nonzero $v \in V$, and these correspond to the properties

- 1. J is symplectic: $\Psi_{\mathbb{R}}(Jv, Jw) = \Psi_{\mathbb{R}}(v, w)$
- 2. J is positive: $\Psi_{\mathbb{R}}(v, Jv) > 0$ for $v \in \mathbb{R}^{2g}, v \neq 0$.

Going the other way, if J is a complex structure on \mathbb{R}^{2g} which is symplectic and positive, then \mathbb{R}^{2g} becomes a complex vector space V (where the action of i is J), and E becomes a principal Riemann form on \mathbb{Z}^{2g} , so that $A = V/\mathbb{Z}^{2g}$ becomes a PPAV together with an isomorphism of its H_1 with \mathbb{Z}^{2g} .

How to classify symplectic and positive complex structures J on \mathbb{R}^{2g} ? Let J_0 be any such structure (such as the matrix J_0 noted above). Then any other such structure J is conjugate to J_0 by a symplectic matrix S: $J = SJ_0S^{-1}$ (exercise). Here $S \in Sp_{2g}(\mathbb{R})$ is a matrix which is well-defined up to the group of matrices U which commute with J_0 . But commuting with J_0 means that U is C-linear on $V = \mathbb{R}^{2g}$ (considered as a complex vector space). Furthermore, our assumption on J_0 means that the form

$$H(v,w) = \Psi(v,iw) + i\Psi(v,w)$$

turns \mathbb{R}^{2g} into a hermitian inner product space; the fact that S is symplectic means that S is unitary with respect to H. Thus S is well-defined as an element of $\operatorname{Sp}_{2g}(\mathbb{R})/U(g)$.

3 The formalism of Hodge structures

In the foregoing discussion we considered the moduli space of complex structures J on a vector space $V \cong \mathbb{R}^{2g}$, which preserved some extra structure (a symplectic pairing), and which were subject to some positivity condition. The moduli space ended up being the quotient of a real algebraic group $\operatorname{Sp}_{2g}(\mathbb{R})$ by a maximal compact subgroup. We're now going to introduce Hodge structures on a real vector space, which are a generalization of complex structures.

If V is a real vector space of dimension d, then $V_{\mathbb{C}} = V \otimes_{\mathbb{R}} \mathbb{C}$ is a complex vector space of dimension d. Let τ be complex conjugation; then $1 \otimes \tau$ is a \mathbb{C} -semilinear endomorphism of $V_{\mathbb{C}}$, which we denote as $v \mapsto \overline{v}$.

Let V be a real vector space. A Hodge structure on V is a bigrading $V_{\mathbb{C}} = \bigoplus_{p,q} V^{pq}$, such that $\overline{V}^{pq} = V^{qp}$. A Hodge structure is of type $S \subset \mathbb{Z} \times \mathbb{Z}$ if $V^{pq} = 0$ for all $(p,q) \notin S$.

The idea behind this definition comes from cohomology. Let X/\mathbb{C} is a smooth projective variety of dimension d. Then X has the structure of a real manifold of dimension 2d. We have the singular cohomology groups $H^i(X,\mathbb{Z}) = H^i_{\text{sing}}(X,\mathbb{Z})$, which are zero outside the range $i = 1, 2, \ldots, 2d$. For each i, the pairing of *i*-forms and *i*-cochains gives an isomorphism

$$H^{i}(X,\mathbb{R}) \cong H^{i}_{\mathrm{dR}}(X,\mathbb{R}),$$

where $H^i_{dR}(X, \mathbb{R})$ is closed *i*-forms modulo exact *i*-forms. What's more, the complex space $H^i_{dR}(X, \mathbb{C})$ breaks up according to the Hodge decomposition

$$H^i_{\mathrm{dR}}(X,\mathbb{C}) = \bigoplus_{p+q=i} H^{p,q}(X),$$

where $H^{p,q}(X)$ is the subspace of $H^i_{dR}(X, \mathbb{C})$ consisting of classes having a representative which is of type (p, q). Complex conjugation maps (p, q)-forms

onto (q, p)-forms, so that we get a Hodge structure on each $H^i(X, \mathbb{R})$. (By the Dolbeault theorem, $H^{p,q}(X)$ is isomorphic to $H^q(X, \Omega^p)$, where Ω^p is the sheaf of holomorphic *p*-forms.)

We let $\operatorname{Fil}^p V$ be the direct summand

$$\operatorname{Fil}^p V = \bigoplus_{p' \ge p} V^{p'q},$$

so that $\operatorname{Fil}^p V \subset V_{\mathbb{C}}$ is a complex subspace, and $\operatorname{Fil}^p V$ decreases with p. Say that V has weight n if p + q = n for every pair (p, q) with $V^{pq} \neq 0$. If V has weight n, note that the filtration $\{\operatorname{Fil}^p V\}$ determines the Hodge structure completely, since

$$V^{pq} = \operatorname{Fil}^p V \cap \overline{\operatorname{Fil}^q V}.$$

An integral Hodge structure is a \mathbb{Z} -module Λ together with a (real) Hodge structure on $\Lambda \otimes \mathbb{R}$. Thus in the above situation, $H^i(X,\mathbb{Z})$ is an integral Hodge structure.

Let's see how complex structures are examples of Hodge structures. If V is a real vector space, and $J \in GL(V)$ is a complex structure, then $V_{\mathbb{C}}$ breaks up into two subspaces $V^{1,0}$ and $V^{0,1}$, these being the subspaces where J = i and J = -i, respectively. Thus a complex structure is the same as a Hodge structure of type $\{(1,0), (0,1)\}$.

In the situation of abelian varieties, we have to be careful about duals. If A is an abelian variety, then the Hodge decomposition applied to A makes $H^1(A, \mathbb{Z})$ into an integral Hodge structure of type $\{(1,0), (0,1)\}$. But $H_1(A, \mathbb{Z})$, its \mathbb{Z} -linear dual, is a Hodge structure of type $\{(-1,0), (0,-1)\}$.

If V is a Hodge structure, then define an action $h: \mathbb{C}^{\times} \to \mathrm{GL}(V)$ as follows. First define an action h of \mathbb{C}^{\times} on V_C by

$$h(z)(v^{pq}) = z^{-p}\overline{z}^{-q}v^{pq}, \text{ all } v^{pq} \in V^{pq}.$$

Then since $\overline{V}^{pq} = V^{qp}$, we have $h(z)(\overline{v}) = \overline{h(z)(v)}$ for all $v \in V_{\mathbb{C}}$. Thus h(z) preserves the real subspace $V \subset V_{\mathbb{C}}$, this being the space of vectors invariant under $v \mapsto \overline{v}$. We get an action h of \mathbb{C}^{\times} on V.

It will be important to view this action in terms of algebraic groups. Let \mathbb{S} be the restriction of scalars of \mathbb{G}_m from \mathbb{C} to \mathbb{R} . Thus, for an \mathbb{R} -algebra A, $\mathbb{S}(A)$ is the group of pairs $(a, b) \in A \times A$ which satisfy $a^2 + b^2 \in A^{\times}$, under the multiplication law which tells you how to multiply complex numbers a + bi together. We have $\mathbb{S}(\mathbb{R}) = \mathbb{C}^{\times}$. The following is an exercise:

Proposition 3.0.2. Morphisms of real algebraic groups $\mathbb{S} \to \operatorname{GL}(V)$ correspond to Hodge structures on V.

This suggests defining Hodge structures relative to an algebraic group other than GL(n). So let G be a real algebraic group, and say that a Hodge structure on G is a homomorphism $h: \S \to G$ of real algebraic groups. If Vis a faithful representation of G, then h induces a Hodge structure on V as above.

A polarization of a Hodge structure h on V is an alternating bilinear map of Hodge structures $\Psi: V \times V \to \mathbb{R}$ for which $\Psi(v, Jw)$ is positive definite, where J = h(i). The statement that Ψ be a morphism of Hodge structures is the statement that $\Psi(Jv, Jw) = \Psi(v, w)$.

Example 3.0.3. The set of polarized Hodge structures on \mathbb{R}^{2g} of type $\{(-1,0), (0,-1)\}$ is the Siegel upper half-space \mathcal{H}_g .