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1 A few examples of symmetric spaces

The upper half-plane H is the quotient of SLy(R) by its maximal compact
subgroup SO(2). More generally, Siegel upper-half space H, is the quotient of
Spy, (R) by its maximal compact subgroup U(g). H, is a complex manifold,
with an action of Spy,(R) by holomorphic automorphisms. Thus if I' C
SPy,(R) is a discrete subgroup, then I'\'H,, has a chance at being an algebraic
variety. In fact, if I' C Spy,(Z) is a congruence subgroup, then this is in fact
the case; the theorem of Baily-Borel shows that I"\H, is an open subset of a
projective variety, known as a Siegel modular variety.

Just how general is this process? If we start with a group such as SL,,(R),
and take its quotient by (say) the compact subgroup SO(n), the result can
be characterized as the set of positive definite quadratic forms of rank n and
determinant 1. Its dimension is n(n+1)/2—1. For n = 3, this is an odd num-
ber, so there can’t be a complex structure on SL3g(R)/SO(3). For arithmetic
subgroups I' C SL3(Z), one can still form the quotient T'\ SL3(R)/SO(3) to
get an interesting manifold, but it won’t be an algebraic variety.

What about SL,(C)? That group has a complex structure at least.
SLy(C) acts on the set of 2 x 2 hermitian matrices M, by the action g- M =
gMg*, and preserves the determinant. The determinant, considered as a
quadratic form on the space of hermitian matrices, has signature (1, 3). Thus
we get a homomorphism SLy(C) — O(1,3), whose kernel is just {£/}. The
Lorentz group O(1,3) acts transitively on the set H?® of 4-tuples (¢, z,y, 2)
such that t? — 2% —y%—2% = 1, t > 0; the stabilizer of (1,0,0,0) is O(1) x O(3)
which is the maximal compact subgroup. Hence the symmetric space for the
complex Lie group SLy(C) is actually H?, a hyperbolic 3-manifold!



In the following, we’ll get to the bottom of which spaces G/K have com-
plex structures, where G is a real Lie group and K C G is a maximal compact
subgroup. In fact, there’s a special class of these, the hermitian symmetric
domains, which are the most interesting and which are required to define
Shimura varieties in general.

2 Classifaction of PPAVs

Consider the problem of classifying principally polarized abelian varieties
(PPAVSs) over C. As we know, If A/C is an abelian variety of dimension
g, then as topological spaces we have A = V/A, where A = H{(A,Z) and
V = A ®zR. To give a polarization \: A — A" is to give a Riemann form

E:AxAN—17Z;
that is, an alternating bilinear form satisfying the properties

1. The extension Fg: V x V — R satisfies Fg(iv,iw) = Eg(v,w), and

2. If H(v,w) = Eg(iv,w) + iEg(v,w), then H: V x V — C is a positive
definite hermitian form on V.

The condition that A be principal corresponds to the condition that F is a
perfect pairing, so that it identifies A with its Z-linear dual.

Thus if A is a principally polarized abelian variety of dimension g, then
A = H(A,Z) is a free Z-module of rank 2¢g equipped with a perfect sym-
plectic form E. We can find a basis x1, ..., 29, for A with respect to which
E has some convenient form, such as

0 I
n=(1 %)
0 (—Ig 0

Let ¥ be the corresponding symplectic form on Z29, so that
(v, w) = v'Jow.

Now we can ask a slightly different problem. Begin with Z29 together
with its symplectic form W. We will classify pairs (A, A\, @) where (A, \) is
a PPAV and a: Z% — H,(A,Z) is an isomorphism which is compatible with
the symplectic forms on either space:

(v, w) = E(a(v), a(w)), v,w, € Z*.



Proposition 2.0.1. Triples (A, A\, «) are in bijection with points of Siegel
upper half space

Hy = {X+z’Y € Myy(C) | X' =X, Y > 0.}

Pairs (A, \) are classified by the quotient Spy,(Z)\H,.

(In the above definition of H,, X and Y are real matrices, and ¥ > 0
means that Y is positive definite. Thus H; is the usual upper half plane.)

The second claim follows from the first: if (A, A) is a PPAV, then there
always exists an « of the required form, and any two such differ by an auto-
morphism of Z2?9 with preserves U: that is, by an element of Spa,-

To prove the first claim, we need to think of 7, not as a subset of M, ,(C)
but rather as the quotient Sp,,(R)/U(g). The symplectic group Spy,(R) acts
transitively on H, via fractional linear transformations, and the stabilizer of
il, is U(g) (exercise).

First, we’ll start with a triple (A4, A, ) and construct the appropriate
coset in Spy, (R)/U(g). Write A = V/A We can use a to identify the sym-
plectic lattice (Z29, ¥) with (A, F). Now when we tensor with R, we have an
isomorphism between R?9 and A ® R = V, which is a complex vector space.
The action of 7 on the V corresponds to a map J: R?9 — R? with J? = —1I;
that is, J is a complex structure on R?9. Furthermore, we have the properties
that Eg(iv,iw) = Er(v,w) and Eg(iv,v) > 0 for nonzero v € V, and these
correspond to the properties

1. J is symplectic: Yg(Jv, Jw) = Vr(v,w)
2. J is positive: Ug(v, JJv) > 0 for v € R, v # 0.

Going the other way, if .J is a complex structure on R?? which is symplectic
and positive, then R* becomes a complex vector space V' (where the action of
i is J), and E becomes a principal Riemann form on Z?9, so that A = V/Z%
becomes a PPAV together with an isomorphism of its H; with Z>29.

How to classify symplectic and positive complex structures J on R29?
Let Jy be any such structure (such as the matrix Jy noted above). Then
any other such structure .J is conjugate to Jy by a symplectic matrix S:
J = SJpS™! (exercise). Here S € Spyy(R) is a matrix which is well-defined
up to the group of matrices U which commute with Jy. But commuting with



Jo means that U is C-linear on V = R (considered as a complex vector
space). Furthermore, our assumption on Jy means that the form

Hv,w) =Y (v,iw) +i¥(v,w)

turns R% into a hermitian inner product space; the fact that S is symplectic
means that S is unitary with respect to H. Thus S is well-defined as an

element of Spy,(R)/U(g).

3 The formalism of Hodge structures

In the foregoing discussion we considered the moduli space of complex struc-
tures J on a vector space V = R?9, which preserved some extra structure
(a symplectic pairing), and which were subject to some positivity condition.
The moduli space ended up being the quotient of a real algebraic group
Spyy(R) by a maximal compact subgroup. We're now going to introduce
Hodge structures on a real vector space, which are a generalization of com-
plex structures.

If V is a real vector space of dimension d, then Ve = V @ C is a complex
vector space of dimension d. Let 7 be complex conjugation; then 1 ® 7 is a
C-semilinear endomorphism of Vi, which we denote as v — .

Let V' be a real vector space. A Hodge structure on V is a bigrading
Ve = @p’q VP4 such that V¥ = V. A Hodge structure is of type S C Z X Z
if VP4 =0 for all (p,q) € S.

The idea behind this definition comes from cohomology. Let X/C is a
smooth projective variety of dimension d. Then X has the structure of a
real manifold of dimension 2d. We have the singular cohomology groups
H'(X,Z) = H,,(X,Z), which are zero outside the range i = 1,2,...,2d.
For each i, the pairing of ¢-forms and i-cochains gives an isomorphism

H2<X7 R) = HéR(Xa R)a

where H'p (X, R) is closed i-forms modulo exact i-forms. What’s more, the
complex space Hig (X, C) breaks up according to the Hodge decomposition

HéR(X7 C) = @ Hp’q(X)v
p+q=i
where HP4(X) is the subspace of H!y(X,C) consisting of classes having a

representative which is of type (p, ¢). Complex conjugation maps (p, ¢)-forms
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onto (g, p)-forms, so that we get a Hodge structure on each H*(X,R). (By
the Dolbeault theorem, H?7(X) is isomorphic to H9(X, (), where (2 is the
sheaf of holomorphic p-forms.)

We let Fil” V' be the direct summand

Filr vV = v+,

p'>p

so that Fil’ V' C V¢ is a complex subspace, and Fil”? V' decreases with p. Say
that V has weight n if p + ¢ = n for every pair (p,q) with V7 2£ 0. If V' has
weight n, note that the filtration {Fil’ V'} determines the Hodge structure
completely, since

VP =FilPV NFil?'V.

An integral Hodge structure is a Z-module A together with a (real) Hodge
structure on A ® R. Thus in the above situation, H(X,Z) is an integral
Hodge structure.

Let’s see how complex structures are examples of Hodge structures. If V'
is a real vector space, and J € GL(V) is a complex structure, then V¢ breaks
up into two subspaces V¥ and V%! these being the subspaces where J = i
and J = —i, respectively. Thus a complex structure is the same as a Hodge
structure of type {(1,0), (0,1)}.

In the situation of abelian varieties, we have to be careful about du-
als. If A is an abelian variety, then the Hodge decomposition applied to A
makes H'(A,Z) into an integral Hodge structure of type {(1,0),(0,1)}. But
H,(A,Z), its Z-linear dual, is a Hodge structure of type {(—1,0), (0, —1)}.

If V is a Hodge structure, then define an action h: C* — GL(V) as
follows. First define an action h of C* on Vi by

h(z)(vP?) = z7Pz7 9P all P € VPI,

Then since V" = V% we have h(z)(7) = h(z)(v) for all v € Ve. Thus h(z)
preserves the real subspace V' C V¢, this being the space of vectors invariant
under v — v. We get an action h of C* on V.

It will be important to view this action in terms of algebraic groups. Let
S be the restriction of scalars of G,, from C to R. Thus, for an R-algebra A,
S(A) is the group of pairs (a,b) € Ax A which satisfy a®>+b? € A%, under the
multiplication law which tells you how to multiply complex numbers a + bz
together. We have S(R) = C*. The following is an exercise:



Proposition 3.0.2. Morphisms of real algebraic groups S — GL(V') corre-
spond to Hodge structures on V.

This suggests defining Hodge structures relative to an algebraic group
other than GL(n). So let G be a real algebraic group, and say that a Hodge
structure on G is a homomorphism h: § — G of real algebraic groups. If V'
is a faithful representation of G, then h induces a Hodge structure on V as
above.

A polarization of a Hodge structure h on V' is an alternating bilinear map
of Hodge structures ¥: V' x V' — R for which ¥(v, Jw) is positive definite,
where J = h(i). The statement that ¥ be a morphism of Hodge structures
is the statement that ¥(Jv, Jw) = ¥ (v, w).

Example 3.0.3. The set of polarized Hodge structures on R of type
{(=1,0),(0,—1)} is the Siegel upper half-space H,,.



