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1 A few examples of symmetric spaces

The upper half-plane H is the quotient of SL2(R) by its maximal compact
subgroup SO(2). More generally, Siegel upper-half spaceHg is the quotient of
Sp2g(R) by its maximal compact subgroup U(g). Hg is a complex manifold,
with an action of Sp2g(R) by holomorphic automorphisms. Thus if Γ ⊂
Sp2g(R) is a discrete subgroup, then Γ\Hg has a chance at being an algebraic
variety. In fact, if Γ ⊂ Sp2g(Z) is a congruence subgroup, then this is in fact
the case; the theorem of Baily-Borel shows that Γ\Hg is an open subset of a
projective variety, known as a Siegel modular variety.

Just how general is this process? If we start with a group such as SLn(R),
and take its quotient by (say) the compact subgroup SO(n), the result can
be characterized as the set of positive definite quadratic forms of rank n and
determinant 1. Its dimension is n(n+1)/2−1. For n = 3, this is an odd num-
ber, so there can’t be a complex structure on SL3(R)/ SO(3). For arithmetic
subgroups Γ ⊂ SL3(Z), one can still form the quotient Γ\ SL3(R)/SO(3) to
get an interesting manifold, but it won’t be an algebraic variety.

What about SL2(C)? That group has a complex structure at least.
SL2(C) acts on the set of 2× 2 hermitian matrices M , by the action g ·M =
gMg∗, and preserves the determinant. The determinant, considered as a
quadratic form on the space of hermitian matrices, has signature (1, 3). Thus
we get a homomorphism SL2(C) → O(1, 3), whose kernel is just {±I}. The
Lorentz group O(1, 3) acts transitively on the set H3 of 4-tuples (t, x, y, z)
such that t2−x2−y2−z2 = 1, t > 0; the stabilizer of (1, 0, 0, 0) is O(1)×O(3)
which is the maximal compact subgroup. Hence the symmetric space for the
complex Lie group SL2(C) is actually H3, a hyperbolic 3-manifold!
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In the following, we’ll get to the bottom of which spaces G/K have com-
plex structures, where G is a real Lie group andK ⊂ G is a maximal compact
subgroup. In fact, there’s a special class of these, the hermitian symmetric
domains, which are the most interesting and which are required to define
Shimura varieties in general.

2 Classifaction of PPAVs

Consider the problem of classifying principally polarized abelian varieties
(PPAVs) over C. As we know, If A/C is an abelian variety of dimension
g, then as topological spaces we have A = V/Λ, where Λ = H1(A,Z) and
V = Λ⊗Z R. To give a polarization λ : A → A∨ is to give a Riemann form

E : Λ× Λ → Z;

that is, an alternating bilinear form satisfying the properties

1. The extension ER : V × V → R satisfies ER(iv, iw) = ER(v, w), and

2. If H(v, w) = ER(iv, w) + iER(v, w), then H : V × V → C is a positive
definite hermitian form on V .

The condition that λ be principal corresponds to the condition that E is a
perfect pairing, so that it identifies Λ with its Z-linear dual.

Thus if A is a principally polarized abelian variety of dimension g, then
Λ = H1(A,Z) is a free Z-module of rank 2g equipped with a perfect sym-
plectic form E. We can find a basis x1, . . . , x2g for Λ with respect to which
E has some convenient form, such as

J0 =

(

0 Ig
−Ig 0

)

.

Let Ψ be the corresponding symplectic form on Z
2g, so that

Ψ(v, w) = vtJ0w.

Now we can ask a slightly different problem. Begin with Z
2g together

with its symplectic form Ψ. We will classify pairs (A, λ, α) where (A, λ) is
a PPAV and α : Z2g → H1(A,Z) is an isomorphism which is compatible with

the symplectic forms on either space:

Ψ(v, w) = E(α(v), α(w)), v, w,∈ Z
2g.
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Proposition 2.0.1. Triples (A, λ, α) are in bijection with points of Siegel

upper half space

Hg =

{

X + iY ∈ Mg×g(C)

∣

∣

∣

∣

X t = X, Y > 0.

}

Pairs (A, λ) are classified by the quotient Sp2g(Z)\Hg.

(In the above definition of Hg, X and Y are real matrices, and Y > 0
means that Y is positive definite. Thus H1 is the usual upper half plane.)

The second claim follows from the first: if (A, λ) is a PPAV, then there
always exists an α of the required form, and any two such differ by an auto-
morphism of Z2g with preserves Ψ; that is, by an element of Sp2g.

To prove the first claim, we need to think ofHg not as a subset ofMg×g(C)
but rather as the quotient Sp2g(R)/U(g). The symplectic group Sp2g(R) acts
transitively on Hg via fractional linear transformations, and the stabilizer of
iIg is U(g) (exercise).

First, we’ll start with a triple (A, λ, α) and construct the appropriate
coset in Sp2g(R)/U(g). Write A = V/Λ We can use α to identify the sym-
plectic lattice (Z2g,Ψ) with (Λ, E). Now when we tensor with R, we have an
isomorphism between R

2g and Λ⊗ R = V , which is a complex vector space.
The action of i on the V corresponds to a map J : R2g → R

2g with J2 = −I;
that is, J is a complex structure on R

2g. Furthermore, we have the properties
that ER(iv, iw) = ER(v, w) and ER(iv, v) > 0 for nonzero v ∈ V , and these
correspond to the properties

1. J is symplectic: ΨR(Jv, Jw) = ΨR(v, w)

2. J is positive: ΨR(v, Jv) > 0 for v ∈ R
2g, v 6= 0.

Going the other way, if J is a complex structure on R
2g which is symplectic

and positive, then R
2g becomes a complex vector space V (where the action of

i is J), and E becomes a principal Riemann form on Z
2g, so that A = V/Z2g

becomes a PPAV together with an isomorphism of its H1 with Z
2g.

How to classify symplectic and positive complex structures J on R
2g?

Let J0 be any such structure (such as the matrix J0 noted above). Then
any other such structure J is conjugate to J0 by a symplectic matrix S:
J = SJ0S

−1 (exercise). Here S ∈ Sp2g(R) is a matrix which is well-defined
up to the group of matrices U which commute with J0. But commuting with
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J0 means that U is C-linear on V = R
2g (considered as a complex vector

space). Furthermore, our assumption on J0 means that the form

H(v, w) = Ψ(v, iw) + iΨ(v, w)

turns R2g into a hermitian inner product space; the fact that S is symplectic
means that S is unitary with respect to H. Thus S is well-defined as an
element of Sp2g(R)/U(g).

3 The formalism of Hodge structures

In the foregoing discussion we considered the moduli space of complex struc-
tures J on a vector space V ∼= R

2g, which preserved some extra structure
(a symplectic pairing), and which were subject to some positivity condition.
The moduli space ended up being the quotient of a real algebraic group
Sp2g(R) by a maximal compact subgroup. We’re now going to introduce
Hodge structures on a real vector space, which are a generalization of com-
plex structures.

If V is a real vector space of dimension d, then VC = V ⊗RC is a complex
vector space of dimension d. Let τ be complex conjugation; then 1 ⊗ τ is a
C-semilinear endomorphism of VC, which we denote as v 7→ v.

Let V be a real vector space. A Hodge structure on V is a bigrading
VC =

⊕

p,q V
pq, such that V

pq
= V qp. A Hodge structure is of type S ⊂ Z×Z

if V pq = 0 for all (p, q) 6∈ S.
The idea behind this definition comes from cohomology. Let X/C is a

smooth projective variety of dimension d. Then X has the structure of a
real manifold of dimension 2d. We have the singular cohomology groups
H i(X,Z) = H i

sing(X,Z), which are zero outside the range i = 1, 2, . . . , 2d.
For each i, the pairing of i-forms and i-cochains gives an isomorphism

H i(X,R) ∼= H i
dR(X,R),

where H i
dR(X,R) is closed i-forms modulo exact i-forms. What’s more, the

complex space H i
dR(X,C) breaks up according to the Hodge decomposition

H i
dR(X,C) =

⊕

p+q=i

Hp,q(X),

where Hp,q(X) is the subspace of H i
dR(X,C) consisting of classes having a

representative which is of type (p, q). Complex conjugation maps (p, q)-forms
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onto (q, p)-forms, so that we get a Hodge structure on each H i(X,R). (By
the Dolbeault theorem, Hp,q(X) is isomorphic to Hq(X,Ωp), where Ωp is the
sheaf of holomorphic p-forms.)

We let Filp V be the direct summand

Filp V =
⊕

p′≥p

V p′q,

so that Filp V ⊂ VC is a complex subspace, and Filp V decreases with p. Say
that V has weight n if p+ q = n for every pair (p, q) with V pq 6= 0. If V has
weight n, note that the filtration {Filp V } determines the Hodge structure
completely, since

V pq = Filp V ∩ Filq V .

An integral Hodge structure is a Z-module Λ together with a (real) Hodge
structure on Λ ⊗ R. Thus in the above situation, H i(X,Z) is an integral
Hodge structure.

Let’s see how complex structures are examples of Hodge structures. If V
is a real vector space, and J ∈ GL(V ) is a complex structure, then VC breaks
up into two subspaces V 1,0 and V 0,1, these being the subspaces where J = i
and J = −i, respectively. Thus a complex structure is the same as a Hodge
structure of type {(1, 0), (0, 1)}.

In the situation of abelian varieties, we have to be careful about du-
als. If A is an abelian variety, then the Hodge decomposition applied to A
makes H1(A,Z) into an integral Hodge structure of type {(1, 0), (0, 1)}. But
H1(A,Z), its Z-linear dual, is a Hodge structure of type {(−1, 0), (0,−1)}.

If V is a Hodge structure, then define an action h : C× → GL(V ) as
follows. First define an action h of C× on VC by

h(z)(vpq) = z−pz−qvpq, all vpq ∈ V pq.

Then since V
pq

= V qp, we have h(z)(v) = h(z)(v) for all v ∈ VC. Thus h(z)
preserves the real subspace V ⊂ VC, this being the space of vectors invariant
under v 7→ v. We get an action h of C× on V .

It will be important to view this action in terms of algebraic groups. Let
S be the restriction of scalars of Gm from C to R. Thus, for an R-algebra A,
S(A) is the group of pairs (a, b) ∈ A×A which satisfy a2+b2 ∈ A×, under the
multiplication law which tells you how to multiply complex numbers a + bi
together. We have S(R) = C

×. The following is an exercise:
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Proposition 3.0.2. Morphisms of real algebraic groups S → GL(V ) corre-

spond to Hodge structures on V .

This suggests defining Hodge structures relative to an algebraic group
other than GL(n). So let G be a real algebraic group, and say that a Hodge
structure on G is a homomorphism h : § → G of real algebraic groups. If V
is a faithful representation of G, then h induces a Hodge structure on V as
above.

A polarization of a Hodge structure h on V is an alternating bilinear map
of Hodge structures Ψ: V × V → R for which Ψ(v, Jw) is positive definite,
where J = h(i). The statement that Ψ be a morphism of Hodge structures
is the statement that Ψ(Jv, Jw) = Ψ(v, w).

Example 3.0.3. The set of polarized Hodge structures on R
2g of type

{(−1, 0), (0,−1)} is the Siegel upper half-space Hg.
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