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1 Some amazing facts about Kähler mani-

folds

The best source for this is Claire Voisin’s wonderful book Hodge Theory and
Complex Algebraic Geometry, I.

There are Riemannian manifolds, symplectic manifolds, and hermitian
manifolds, all of which are manifolds X together with some kind of tensor
(a map from TpX ⊗ TpX to R or C) at every point, which is (respectively)
symmetric and positive definite, alternating, or hermitian. (To be a hermitian
manifold, you need to first be a complex manifold, so that TpX is a complex
vector space.)

A Kähler manifold is a manifold X where all the above adjectives apply:
Riemannian, symplectic, complex, hermitian. More precisely, a Kähler form
is a complex manifold (so that each TpX has a complex structure J) which
has a symplectic form ω : ∧2TpX → R, which is compatible with the complex
structure in the sense that ω(Ju, Jv) = ω(u, v). (Note that a symplectic form
is just a differential 2-form; the definition of a symplectic manifold requires
that ω be closed.) We see that ω(u, Jv) is symmetric; it is required to be
positive definite (and thus it is a Riemann form). With this in place, we get
a hermitian form h : TpX × TpX → C by

h(u, v) = ω(u, Jv) + iω(u, v).

Sound familiar? The same structures ω and J appear on the Lie al-
gebra of an abelian variety over C. You can use the group operation to
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spread those structures around to every tangent space, so that an abelian
variety is a Kähler manifold. In fact, every smooth projective variety is
Kähler: projective space itself has a Kähler structure (the Fubini-Study met-
ric), which passes to every closed complex subvariety. However, not every
compact Kähler manifold is projective: let V/Λ be a complex torus, where
V comes equipped with a symplectic form ω as above; then V/Λ will only be
an abelian variety when the restriction of ω to Λ× Λ takes integer values.

A rich source of Kähler manifolds come from projective varieties. Pro-
jective space Pn has a Kähler form ω, called the Fubini-Study metric. The
class [ω] ∈ H2(Pn,R) is the same as the class of a hyperplane section, so it
lies in H2(Pn,Z). If X ⊂ Pn is a closed smooth subvariety, then X inherits
the Kähler form from Pn, and the class of this form lies in H2(X,Z). Thus
every projective variety is Kähler.

The Kodaira embedding theorem says that this is an “if and only if”.
That is, if X is a compact complex manifold, then X is projective if and
only if it admits a Kähler form ω whose class lies in H2(X,Z) (a priori such
a class only lies in H2(X,R)). In the case of a complex torus A = V/Λ, we
have H2(A,Z) ∼= Hom(∧2Λ,Z), and so H2(A,R) ∼= Hom(∧2V,R). In this
isomorphism, the class of the Kähler form ω on V corresponds to ω : ∧2V →
R, and thus the Kodaira embedding theorem says that A is projective if and
only if ω takes integer values on Λ× Λ, which we already knew.

The cohomology of Kähler manifolds is dizzyingly rich. We’ll highlight
three basic properties: Hodge decomposition, Lefshetz decomposition, and
polarization.

1.1 Hodge decomposition

For a compact Kähler manifold X of real dimension 2n, the cohomology
Hk(X,Z) is an integral Hodge structure:

Hk(X,Z)⊗ C =
⊕
p+q=k

Hp,q(X).

Here Hp,q(X) is the space of classes in Hk
dR(X,C) represented by closed forms

which are everywhere of type (p, q). We have Hp,q(X) = Hq,p(X).
In particular, the Betti numbers βk = dimHk(X,R) have to be even

whenever k is odd. This allows us to find complex manifolds which are
not Kähler. One example is the Hopf surface X obtained by quotienting
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C2\ {(0, 0} by the contraction (x, y) 7→ (2x, 2y). Then X is diffeomorphic to
S1×S3, which implies that its Betti numbers are 1, 1, 0, 1, 1. Since β1 is odd,
X cannot be Kähler.

1.2 Lefshetz decomposition

Our manifold X comes equipped with a Kähler class [$] ∈ H2(X,R). Wedg-
ing with [$] defines a map

L : Hk(X,R)→ Hk+2(X,R),

called the Lefschetz operator. By Poincaré duality, Hk(X,R) is dual to
H2n−k(R). The hard Lefshetz theorem says that for k ≤ n,

Ln−k : Hk(X,R)→ H2n−k(X,R)

is an isomorphism.
Now let

Hk(X,R)prim = kerLn−k+1,

the set of “primitive classes” in degree k. There is a decomposition of
Hk(X,R) into primitive subspaces coming via iterates of L from degrees
k, k − 2, . . . :

Hk(X,R) =
⊕
r

LrHk−2r(X,R)prim.

EachHk(X,R)prim has its own Hodge structure, so we can talk aboutHk(X,C)prim
splitting into subspaces Hp,q(X)prim.

1.3 Polarization

The map Ln−k is an isomorphism betweenHk(X,R) and its dualH2n−k(X,R),
so we have just set up a bilinear pairing. For i ≤ n, let Ψ be the nonde-
generate bilinear form Ψ (the intersection form) defined on each Hk(X,R)
by

Ψ(α, β) =

∫
X

ωn−k ∧ α ∧ β.

It is alternating if k is odd and symmetric if k is even. Furthermore, it
respects the Hodge structure in the sense that Hp,q(X) and Hr,s(X) are
orthogonal unless (p, q) = (s, r). We refer to this state of affairs by saying
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that V = Hk(X,R) is a polarized Hodge structure of weight k. In Deligne’s
fancy language, the polarization is a morphism of Hodge structures Ψ: V ×
V → R(−k) (where R(−k) refers to the Tate twist). It means that if we
define a form H on VC by

H(α, β) = ikΨ(α, β),

then H is Hermitian (not necessarily positive definite). The Hodge index
theorem computes the signature of the Hermitian form Ψ on Hk(X,C); in
fact it becomes definite when you restrict it to the primitive part Hp,q(X)prim,
with sign ip−q−k(−1)k(k−1)/2 (see 7.2.1 in Voisin).

1.4 Integral polarized Hodge structures

Recall that a complex manifold X is projective if and only if it admits a
Kähler form ω whose class lies in H2(X,Z) (the Kodaira embedding theo-
rem). In that case, wedging with ω carries Hk(X,Z) onto Hk+2(X,Z), and
the whole discussion (Lefshetz decompsition, polarization) carries over onto
Hk(X,Z), so that we can talk about Hk(X,Z)prim. This inspires the following
definition, with V playing the role of Hk(X,Z)prim:

Definition 1.4.1. An integral polarized Hodge structure of weight k is a
Z-module VZ of finite rank, equipped with a pairing

Ψ: VZ × VZ → Z,

alternating if k is odd and symmetric otherwise, and a Hodge decomposition

VC =
⊕

V pq,

where V
pq

= V qp, such that if

H(α, β) = ikΨ(α, β),

then the V pq are orthogonal with respect to H, and is definite on V pq with
sign ip−q−k(−1)k(k−1)/2.
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2 Variations of Hodge Structure

Let f : X → S be a morphism of complex manifolds, such that every fiber
is a Kähler manifold. For every s ∈ S we have an abelian groups H i(Xs,Z),
which form a local system L on S. In sheaf-theoretic language, L = Rif∗(Z).

And what is a local system? It’s a locally constant sheaf of abelian groups
L on (the underlying topological space) S. This means that you get a stalk
Ls for each s ∈ S, together with some data about how to move sections
of Ls around. For each homotopy class of path r : s → s′ in S, there’s
a corresponding isomorphism ρ(r) : Ls → Ls, and these have to satisfy the
obvious transitivity property. Of course if r : s → s is a loop in π1(S, s),
then we get an automorphism of ρ(r) of Ls; in brief we get a representation
ρ : π1(S, s)→ AutLs, and this representation carries exactly the information
of the local system L (for S connected anyway).

Now let’s mix in the Hodge structures. Let V = Hk(Xs,R). For each path
r : s→ s′ in S, we get a Hodge structure on Hk(Xs′ ,R)prim coming from Xs′ ,
which gives a Hodge structure V pq

r on V via ρ(r). Note that the subspaces
V pq
r vary with r, but the original integral and polarization structures on V

do not. Let D be a space whose points represent Hodge structures of weight
k on V , with the same combinatorial data as the Hodge structure coming
from Xs itself (that is, we hold the dimension of V pq fixed). We get a map
π : S̃ → D, where S̃ is the universal cover. This is a period map. A point
of S̃ is a homotopy class of paths p : s → s′, and π sends this to the Hodge
structure V pq

r on V .
Essentially the period map π : S̃ → D measures how the integrals

∫
γs
ωs

behave, where the cycle γs (resp., the k-form ωs) vary continuously with s,
and ωs is constrained to be of type (p, q).

Example 2.0.2. Let S = P1\ {0, 1,∞}, and let X → S be the Legendre
family of elliptic curves, so that Xλ as equation

y2 = x(x− 1)(x− λ),

for all λ ∈ S. The differential form ω = dx/2y forms a basis for the C-vector
space H1,0(Xλ) of holomorphic 1-forms on Xλ. Let λ ∈ S be a base point, and
let V = H1(Xλ,Z). In this case the relevant space D of Hodge structures is
the set of positive complex structures on a 2-dimensional symplectic space; we
know this to be H, the upper half-plane. Thus our period map is π : S̃ → H.
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Explicitly, the period map works like this. Eλ is a double cover of P1,
branched at 0, 1, λ,∞. The loop in P1 which encircles 0 and 1 lifts to a cycle
α ∈ H1(Xλ,Z), and the loop encircling λ and ∞ lifts to a cycle β. Let us
use the basis α, β to identify H1(X,Z) with Z2; we can use the dual basis to
identify VZ = H1(X,Z) with Z2 as well.

The Hodge decomposition is VC = H1,0(Xλ) ⊕ H0,1(Xλ). We have just
identified VC with C2. With respect to this, H1,0 is the line spanned by(∫ 1

0

dx√
x(x− 1)(x− λ)

,

∫ ∞
λ

dx√
x(x− 1)(x− λ)

)
∈ C2

The ratio of these integrals is π(λ) ∈ H. As λ varies, so does π(λ), but
when you move λ through a nontrivial element of π1(S), the cycles α and β
are going to change (monodromy!). So really π is only well-defined on the
universal cover of S.

On the other hand, we already know the universal cover of S: it is H,
and the quotient map H → S is the modular λ-function, with symmetry
group Γ(2) ∼= F2 = π1(S). In this case, the period map π : H → H is the
identity map; this reflects the fact that the periods of Xλ determine Xλ up
to isomorphism (the Torelli theorem).

In the next lecture, we’ll take on the question of what sort of period
spaces D can arise when considering a general family of smooth projective
varieties X → S.
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