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Chapter 1

Introduction

Let f be a modular cusp form for Γ1(N) of weight k ≥ 2 and character ε which

is an eigenvalue for all the Hecke operators. Let ` be a prime number, and choose an

isomorphism ι : C→̃Q`. By a construction of Deligne, there is a corresponding Galois

representation

ρf : Gal(Q/Q)→ GL2(Q`),

unramified outside `N . That is, the restriction ρf,p = ρf |Gal(Qp/Qp) vanishes on the

inertia group IQp ⊂ Gal(Qp/Qp) unless p|`N . Note that det ρf,p : Gal(Qp/Qp)ab → C∗

is identified via local class field theory with the local component of ε at p. In particular∏
p det ρf,p(−1) = ε(−1) = (−1)k.

Our main theorem establishes the existence of cuspidal eigenforms f for which ρf

has prescribed restriction to IQp at all p 6= `. Specifically, it is

Theorem 1.0.1. For p 6= `, let {ρp} be a family of representations ρp : IQp → GL2(Q)

which extend to semisimple representations of Gal(Qp/Qp). Assume that ρp is trivial

for almost all p, including p = 2, 3, and that
∏

p det ρp(−1) = 1. Let k ≥ 2 be even.

Then there exists a cuspidal eigenform f of weight k and prime-to-` level for which

ρf,p|IQp = ρp,

unless the pair ({ρp} , k) belongs to a finite set of exceptional families or their twists.

1



A more precise form of the theorem appears in Chapter 3, where we work instead

with complex Weil-Deligne representations rather than the `-adic representations ρf,p,

in order to remove from the discussion the auxiliary prime `. Theorem 1.0.1 is a

Grunwald-Wang type theorem for GL2 which generalizes a theorem in [KP96], which

establishes our main result when k = 2 and when one ρp is irreducible and tame and

the others are trivial.

The proof of Theorem 1.0.1 combines two methods, one local and one global. The

first method is a detailed study of the inertial types of two-dimensional representations

ρ0 of the absolute inertia group IF of a p-adic field F which extend to the Weil group

WF . We first recall the Local Langlands Correspondence for GL2: this is a corre-

spondence ρ 7→ rec(ρ) between two-dimensional representations of WF and irreducible

admissible representations of GL2(F ). Now if ρ0 is a representation of IF extending

to WF , one can associate to ρ0 a certain finite-dimensional representation τ(ρ0) of the

compact group K = GL2(OF ). We call τ(ρ0) the inertial type of ρ0; it is characterized

by the property that it appears in rec(ρ)|K for every lift ρ of ρ0 to WF . In Chapter 2

we determine the character of τ(ρ0) on a large portion of the conjugacy classes of K.

The second method involves the relationship between (global) automorphic rep-

resentations and Galois representations. To a newform f as in the first paragraph,

one has an associated representation πf of the adelic group GL2(A). By a theorem of

Deligne-Carayol ([Car83]), the local component πf,p determines ρf,p for all p 6= `, and

Theorem 1.0.1 becomes a question of constructing a πf for which πf,p|GL2(Zp) contains

τ(ρp) for all p and for which πf,∞ is discrete series of lowest weight k. This is a matter

of producing automorphic representations subject to local constraints, and yet it ad-

mits a solution using surprisingly classical technology, namely a study of the geometry

of the classical modular curves X(N).

To wit, let ({ρp} , k) be as in the hypotheses of Theorem 1.0.1, let λ =
⊗

p τ(ρp);

this is a representation of the profinite group GL2(Ẑ) which factors through a finite

quotient G = GL2(Z/NZ)/ {±1} for some N . Let Sk denote the space of cusp forms
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of weight k for the full congruence subgroup Γ(N). Then G acts on Sk. We show that

Theorem 1.0.2. The number of newforms f of weight k for which πf,p|GL2(Zp) contains

τ(ρp) equals the multiplicity of λ in Sk as a G-module.

We then compute the G-module structure of Sk completely, using an “equivariant”

version of the Riemann-Roch formula applied to the Galois cover of curves X(N) →

X(1) with group G. We prove: that

Theorem 1.0.3. In the Grothendieck ring of G we have [Sk] = bk/12cCG+εk, where

εk depends only on k (mod 12).

For the exact statement, see Section 3.4. It implies that λ appears in Sk at least

once if k ≥ 14. If k ≤ 12 we show that there exists a bound M for which λ appears in

Sk unless some twist λ×χ◦det of λ factors through some GL2(Z/mZ) for m ≤M . Up

to twisting there are of course only finitely many such exceptional λ; this establishes

Theorem 1.0.1.

We use the calculations behind Theorem 1.0.1 to prove a theorem about abelian

varieties with everywhere good reduction:

Theorem 1.0.4. Assume F/Q is Galois, and that there is a ramified prime p|p of F

for which one of the following holds:

1. p ≥ 29, p ≡ 1 mod 4, and Fp/Qp is ramified quadratic,

2. p ≥ 23 and Fp/Qp is cyclic with ramification degree at least 3, or

3. p ≥ 17, p ≡ 1 mod 4 and Gal(Fp/Qp) is a dihedral group of order at least 6.

Then there exists a modular abelian variety A/Q for which AF has everywhere good

reduction.

This is a strengthening of a theorem of Langlands (Prop. 2 on p. 263 in [MW84]),

which implies that for p ≥ 17, the kernel of J1(p)→ J0(p) is a nonzero abelian variety
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with good reduction everywhere over Q(ζp). According to our theorem, if F is of the

type specified in the hypotheses, then for a suitable n there exists a nonzero abelian

variety quotient of J1(pn) which attains everywhere good reduction over F .

In the last chapter, we calculate the minimal field extension of Qnr
p over which the

modular abelian variety J1(pn) becomes semi-stable, thus proving a converse to a result

of Krir ([Kri96]). This leads us into a discussion of stable models for modular curves.

We remark that the structure of the special fiber of a stable model has been calculated

through various sorts of methods for X0(p) ([DR73]), for X0(p2) ([Edi90]), for X(p)

([BW04]), for X0(p3) ([CM06]), and for X1(p2) ([Joy06]). The general case of X1(pn)

remains open for n ≥ 4. Chapter 4 gives a conjectural form for the stable reduction of

X(p2).

In Section 4.3 we review the theory of Deligne-Carayol regarding the cohomology of

modular curves. Let p be prime and let N ≥ 4 be prime to p. For n ≥ 1, let Xn/Qp be

the curve parametrizing elliptic curves with full level pn structure, along with a point

of order N . The `-adic (` 6= p) cohomology of the tower of modular curves Xn inherits

an action of the product group GL2(Qp)×WQp and decomposes as a sum of terms of

the form πf,p ⊗ ρf,p. Here f runs over newforms whose prime-to-p conductor divides

N , πf,p is the local component of the automorphic representation attached to f , and

ρf,p is the local `-adic representation attached to f at p. This theory involves a delicate

study of a regular model for Xn over Znr
p and the action of a quaternion group on the

vanishing cycles on that model.

On the other hand, the analysis of the cohomology of a curve X over a p-adic field

becomes dramatically simpler once one can compute a stable model for X, rather than

just a regular one, via Grothendieck’s theory of semi-stable reduction. The cohomology

of the modular curves Xn already being known, it seems possible to reverse-engineer

the stable reduction of Xn in a manner consistent both with the Deligne-Carayol theory

and with the cases already established for n small. In the last section, we conjecture a

form of the stable reduction of X2 together with an action of GL2(Z/p2Z)× IQp , and
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prove that this form is consistent with Deligne-Carayol. The conjecture seems not too

far off in terms of a solution, and one hopes that this line of investigation may lead

to a purely local approach to the local Langlands correspondence and to the theory of

Deligne-Carayol.

1.1 Notation

A complex-valued character of a group is any homomorphism from that group into

C∗, not necessarily a unitary one.

When F is a finite extension of Qp, we will always use the symbols OF and pF for

the ring of integers of F and its maximal ideal, respectively. When χ is a character of

O∗F , we let c(χ) denote the smallest ideal pn
F for which χ vanishes on Un

F := 1 + pn
F .

When G is a compact group and ψ and φ are two finite-dimensional representations

of G over a field of characteristic zero, we use 〈ψ, φ〉G to mean dim HomG(ψ, φ). In the

case that G is finite, this reduces to the usual formula

〈ψ, φ〉G =
1

#G

∑
g∈G

Trψ(g) Trφ(g−1).
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Chapter 2

Study of inertial types for GL2

2.1 Number theoretic background: Weil-Deligne repre-

sentations

The title of this section, as well as its content, is adapted from [Tat79]. We are going

to develop the tools to discuss representations of local Galois groups in the context of

the local Langlands correspondence.

Let F/Qp be a finite extension, with ring of integers OF , uniformizer $ and residue

field k. Let q = #k and let | |F be the absolute value on F for which |$|F = 1/q.

Let GF and IF denote the absolute Galois group and inertia group of F , respec-

tively. An attempt to investigate the structure of GF naturally leads to the study of

linear representations of this group. However, the category of continuous representa-

tions GF → GLn(C) is not quite rich enough for many purposes. For instance, the

image of such a representation must be compact and totally disconnected, hence finite.

For arithmetic applications we pass to the study of Weil-Deligne representations.

Definition 2.1.1. The Weil group WF is the preimage of Z in the map GF →

Gal(k/k) ∼= Ẑ. Its topology is such that IF ⊂WF is open and IF is given the topology

6



induced from GF .

The Weil group fits into the diagram

1 // IF // WF
//

� _

��

Z //
� _

��

0

1 // IF // GF
// Ẑ // 0.

Let W ab
F be the largest abelian Hausdorff quotient of WF . Local class field the-

ory furnishes an isomorphism Art: F ∗→̃W ab
F , which sends a uniformizer of F ∗ to a

geometric Frobenius element. We define an absolute value on WF by

|σ| =
∣∣Art−1(σ)

∣∣
F
.

Let ` 6= p be prime.

Definition 2.1.2. An `-adic representation of F is a continuous homomorphism ρ` : WF →

GLn(E), where E/Q` is algebraic and ρ`(Φ) is semisimple for every Frobenius element

Φ ∈ GF .

From the point of view of arithmetic geometry, these are the sort of local Galois

representations that occur “in the wild,” by which we mean inside the `-adic cohomol-

ogy H∗(X ⊗ F ,E) of a variety defined over F . The philosophy developed in [Tat79]

suggests that the choice of prime ` is irrelevant to the discussion so long as ` 6= p, and

that one might as well work over the field of complex numbers. To that end, we define

Definition 2.1.3. A Weil-Deligne (WD) representation of F over a field E of charac-

teristic 0 is a pair (ρ,N), where

ρ : WF → GLn(E)

is a homomorphism, N ∈ EndEn, and the pair (ρ,N) satisfies the conditions

1. ρ is continuous for the discrete topology on E,
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2. ρ(Φ) ∈ GLn(E) is semisimple for every Frobenius element Φ ∈WK , and

3. ρ(σ) N ρ(σ)−1 = |σ|N for all σ ∈WF .

The matrix N is called the monodromy operator. The relationship 3 above implies

that it is nilpotent, for if λ is an eigenvalue of N, then λ = |σ|λ for every σ ∈ WF ,

whence λ = 0. When referring to a WD representation of F over E, we will often omit

the monodromy operator from the notation and instead refer to the pair (ρ,N) simply

as ρ. Let Gn(F )E denote the set of WD representations of F over E up to isomorphism.

Let Gn(F )ssE ⊂ Gn(F )E be the set of isomorphism classes of WD representations with

N = 0. Finally let Gn(F )0E ⊂ Gn(F )ssE denote the set of isomorphism classes of WD

representations (ρ, 0) of F over E for which ρ is irreducible.

Theorem 2.1.4 (Grothendieck, see [Tat79]). Let E be a nonarchimedean local field

containing Q`. There is a bijection

Gn(F )E−̃→

{
isomorphism classes of
`-adic representations
ρ` : WF → GLn(E)

}
. (2.1)

The relationship between a WD representation (ρ,N) and its image ρ` in the above

bijection is given as follows: Let Φ ∈ WF be a Frobenius element and let t` : IK → E

be an `-adic tame character. Then for all σ ∈ IF and a ∈ Z:

ρ`(Φaσ) = ρ(Φaσ) exp(t`(σ) N).

The bijection in the theorem does not depend on the choices of Φ and t`.

The advantage of working with WD representations is that it allows us to sidestep

the choice of the prime `. Indeed, since the topology on the field of scalars is irrelevant in

Definition 2.1.3, any abstract isomorphism of fields E ∼= E′ gives a bijection Gn(F )E →

Gn(F )E′ . When the field E is omitted from the notation, it is assumed that the field

of scalars is C.

WD representations admit direct sums by the formula

(ρ1,N1)⊕ (ρ2,N2) = (ρ1 ⊕ ρ2,N1⊕N2)
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and tensor products by the formula

(ρ1,N1)⊗ (ρ2,N2) = (ρ1 ⊗ ρ2, (Id1⊗N2)⊕ (N1⊗ Id2)) ,

where Idi is the identity endomorphism of the representation space of ρi for i = 1, 2.

These definitions are compatible via the dictionary (2.1) with the usual notions of direct

sum and tensor product of `-adic representations of WF .

If L/F is a finite extension of degree d, we have the usual notion of induced repre-

sentation IndWF
WL

: Gn(L)ss → Gnd(F )ss. We abbreviate this as IndL/F .

Example 2.1.5. Let n ≥ 1. We define the special representation Sp(n) as the pair

(ρ,N), where ρ : WF → GLn(Q) is defined by

g 7→


1
|g|F

. . .
|g|n−1

F


and N is the matrix

N =


0 1

0 1
. . . . . .

0 1
0

 .

The next proposition shows that any WD representation is a sum of terms of the

form ρ⊗ Sp(n):

Proposition 2.1.6 ([Tat79], 4.1.5). Let ρ ∈ Gn(F ) be indecomposable, i.e. not the sum

of two nonzero WD representations. Then ρ is of the form ρ′ ⊗ Sp(m) for a divisor m

of n and an irreducible ρ′ ∈ Gn/m(F ).

Let Gi ⊂ GF be the filtration by ramification subgroups.

Definition 2.1.7. Let ρ ∈ Gn(F )ss. The Artin conductor of ρ is

c(ρ) =
∞∑
i=0

[GF : Gi]
(
n− 〈ρ|Gi , 1〉Gi

)
.

If ρ = σ ⊗ Sp(d) for d > 1, then c(ρ) := min {c(σ), 1}.

9



For proofs of Propositions 2.1.8 and 2.1.10 below, we refer to [Ser67].

Proposition 2.1.8. We have the following facts concerning the Artin conductor:

1. c(ρ) ∈ Z.

2. If χ ∈ G1(F ) = Hom(F ∗,C∗), then c(χ) is the conductor of χ in the usual sense,

3. If L/F is a finite extension and θ ∈ Gn(L)ss, then

c(IndL/F θ) = nvF (DL/F ) + fL/F c(θ),

where fL/F is the residue degree of L/F and DL/F is the discriminant.

4. c(ρ) only depends on ρ|IF
.

Definition 2.1.9. An irreducible WD representation ρ ∈ G0
n(F ) is imprimitive if there

exists a nontrivial extension K/F and a representation θ ∈ G0
m(F ) for which ρ =

IndK/F θ. If ρ is not imprimitive then it is primitive.

Proposition 2.1.10. If p > n then every ρ ∈ G0
n(F ) is imprimitive.

Example 2.1.11. The category G1(F ) of one-dimensional WD representations of F is

easy to study, thanks to the isomorphism Art : F ∗ → W ab
F of local class field theory.

If ρ ∈ G1(F ), its monodromy operator, being a 1 × 1 nilpotent matrix, must vanish.

Thus ρ is simply a homomorphism W ab
F → C∗; composition with Art gives us an

identification

rec : G1(F )−̃→Hom(F ∗,C).

We will have such frequent occasion to use this identification that if χ ∈ G1(F ) we will

abbreviate the character χ ◦Art as simply χ.

Definition 2.1.12. A WD representation ρ ∈ G2(F ) is minimal if c(χ⊗ ρ) ≥ c(ρ) for

each χ ∈ G1(F ).

Example 2.1.13. A WD representation ρ ∈ G2(F ) is a twist by a character of F ∗ of

a WD representation of one of the following types:

10



1. ρ = ε⊕ 1 for a character ε of F ∗. Then c(ρ) = c(ε).

2. ρ = Sp(2). Then c(ρ) = 1.

3. ρ = IndL/F θ, where θ is a minimal character of L∗, meaning that c(θ×χ◦NL/F ) ≥

c(θ) for all characters χ of F ∗: then by part (3) of Proposition 2.1.8, c(ρ) = 2c(θ)

if L/F is unramified and c(ρ) = c(θ) + 1 if L/F is ramified

4. ρ is a primitive representation: occurs only when p = 2, by Proposition 2.1.10.

2.2 The Local Langlands correspondence

Example 2.1.11 shows that G1(F ) is in bijection with irreducible representations of

F ∗ = GL1(F ). In higher dimensions, the local Langlands correspondence (LLC) puts

Gn(F ) into bijection with the set of isomorphism classes of representations of GLn(F )

of a certain sort.

Definition 2.2.1. Let G be a locally profinite group and π : G → AutV be a repre-

sentation of G on a vector space over a field of characteristic 0. We say π is admissible

if

1. for every vector v ∈ V , the stabilizer StabG(v) is an open subgroup of G, and

2. the subspace of V fixed by any compact open subgroup of G is finite-dimensional.

Definition 2.2.2. For n ≥ 1 and E a field of characteristic 0, let An(F )E denote the

set of isomorphism classes of irreducible admissible representations of GLn(F ) over E.

When E is omitted from the notation, it is assumed that the field of scalars is C.

Let ψ : F → E∗ be a nontrivial additive character. When π ∈ An, there are

notions of L-factor L(π, s) and ε-factor ε(π, ψ, s). If χ ∈ A1, we define the twist χπ as

g 7→ χ(det g)π(g). We are now ready to state the

11



Theorem 2.2.3 (Local Langlands Correspondence for GLn). Let ψ : F → C∗ be a

nontrivial additive character. There is a bijection

rec : Gn(F )−̃→An(F )

such that for all ρ ∈ Gn(F ) and χ ∈ Hom(F ∗,C∗), we have

L(χ rec(ρ), s) = L(χ⊗ ρ, s)

ε(χ rec(ρ), ψ, s) = ε(χ⊗ ρ, ψ, s)

The theorem first made an appearance as a conjecture in [Lan70]. A proof for n = 2

was given by Kutzko in [Kut80] and [Kut84]. The full statement of LLC was proved

by Harris and Taylor in [HT01] by examining the cohomology of deformation spaces of

formal groups with Drinfeld level structure.

There is also a notion of conductor for admissible representations which is compat-

ible under the LLC with the same notion for WD representations. We define it only

for n = 2. Let K = GL2(OF ) and define a filtration K0(N) ⊂ K for N ≥ 1 by

K0(N) =
{(

a b
c d

)
∈ K : c ∈ pN

F

}
.

When ε is a character of O∗F , and N ≥ c(ε), extend ε to a character of K0(N) by(
a b
c d

)
7→ ε(a).

Theorem 2.2.4 ([Cas73a]). Let π ∈ A2(F ) have central character ε. There is an

integer N for which there exists a nonzero vector in the space of π on which π(g) acts

as ε(g) for all g ∈ K0(N). If c is the smallest such integer, then there is exactly one

such vector up to scaling.

Definition 2.2.5. The integer c is the conductor of π, and the vector v is the new

vector.

We note without proof that c(ρ) = c(rec(ρ)) for ρ ∈ G2(F ). If ι is an isomorphism

from C onto another field E, we also use the symbol rec to mean the Gn(F )E→̃An(F )E

for which rec and ι commute.
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2.3 Inertial WD representations

Definition 2.3.1. Let E be a field of characteristic 0. An inertial WD representa-

tion of F over E is a pair (ρ0,N) is a continuous finite-dimensional representation

ρ0 : IF → GLn(E), together with an endomorphism N ∈ EndEn, for which there exists

an extension ρ of ρ0 to WK making (ρ,N) into a WD representation of F .

Remark 2.3.2. An equivalent formulation of Definition 2.3.1 runs as follows: Let

Φ ∈WF be a Frobenius element. Then Φ normalizes IF in WF . If ρ0 : IF → GLn(E) is

a continuous homomorphism and N ∈ EndEn an endormorphism commuting with the

image of ρ, let (ρ,N)Φ denote the pair ((σ 7→ ρ(Φ−1σΦ)), q−1 N). Then (ρ0,N) is an

inertial WD representation of F if and only if (ρ,N)Φ ∼= (ρ,N) in the sense that there

is a change of basis matrix M ∈ EndEn for which ρΦ
0 (σ) = M−1ρ0(σ)M and q−1 N =

M−1 NM . Indeed, the required extension of ρ0 to WF is given by ρ(σΦa) = ρ0(σ)Ma.

We may refer to the pair (ρ0,N) simply as ρ0. There is an evident notion of

morphism between inertial WD representations, as well as a restriction map (ρ,N) 7→

(ρ|IF
,N) carrying WD representations to inertial WD representations. Finally, the

Artin conductor c(ρ0) is defined as the Artin conductor c(ρ) for any ρ ∈ Gn(F ) for

which ρ|IF
= ρ0.

Let GI
n(F )E denote the set of isomorphism classes of n-dimensional inertial WD

representations over E. This is the quotient of Gn(F )E by the equivalence relation

ρ|IF
∼= ρ′|IF

. Let GI
n(F )ssE ⊂ GI

n(F )E be the set of isomorphism classes of WD repre-

sentations with N = 0, and let GI
n(F )0E ⊂ GI

n(F )ssE be the set of isomorphism classes

of WD representations with N = 0 which are not the sum of two nonzero inertial WD

representations. Note that an irreducible ρ0 may be the sum of two nonzero repre-

sentations of IF , so long as those representations do not admit extensions to WF . In

fact, this is always the case when ρ0 is the restriction to IF of IndL/F θ, where L/F

is unramified and θ is a character of L∗ which does not factor through the norm map

NL/F : L∗ → K∗. As usual, when the notion E is suppressed, we assume the field of

13



scalars is C.

Proposition 2.3.3. There is a natural identification

rec : GI
1(F )−̃→Hom(O∗F ,C∗). (2.2)

Proof. If (ρ0,N) ∈ GI
1(F ), then N, being a nilpotent 1×1 matrix, must vanish. Choose

a lifting ρ of ρ0 to WF ; then ρ factors through a character of W ab
F . Since in the class

field theory isomorphism Art : F ∗ → W ab
F , the image of O∗F equals the image of IF in

WF →W ab
F , the character χ := ρ ◦Art |O∗F depends on ρ0 and not on the lifting ρ.

Conversely if χ is a character of O∗F , choose an extension χ̃ of χ to F ∗ and let

ρ = χ̃ ◦Art−1 : W ab
F → C∗; the inverse image of χ in (2.2) is given by ρ0 = ρ|IF

.

2.4 The Inertial Langlands Correspondence

Proposition 2.3.3 suggests that there ought to be an analogue of the LLC relating

the set GI
n(F ) to the set of isomorphism classes of irreducible representations of the

profinite group K = GLn(OF ). Indeed, a map between these sets exists, but is not

quite a bijection.

We will restrict our attention to the case of two-dimensional inertial WD rep-

resentations, although we expect a similar statement to hold in general. Let K̂ be

the set of isomorphism classes of continuous irreducible complex representations of

K = GL2(OF ). These all factor through a finite quotient K(n) = GL2(OF /p
n
F ) for

some n. For λ ∈ K̂, define the level `(λ) to be the least such n.

Theorem 2.4.1 (Inertial LLC). There exists a map

τ : GI
2(F )→ K̂

satisfying the following properties:

1. If ρ ∈ G2(F ), then rec(ρ)|K contains τ(ρ|IF
) with multiplicity one.

14



2. Conversely, if ρ ∈ G2(F ) and η ∈ GI
2(F ) are such that rec(ρ)|K contains τ(η), then

ρ|IF
∼= η unless ρ = ε1 ⊕ ε2 for characters ε1, ε2 of F ∗ such that ε1ε−1

2 = | |±1
F .

In that case, either ρ|IF
∼= η or else η ∼= ε1|O∗F ⊗ Sp(2).

3. If ρ, ρ′ ∈ G2(F ) have ρ|IF
∼= ρ′|IF

then rec(ρ)|K ∼= rec(ρ′)|K .

Definition 2.4.2. When ρ0 ∈ GI
2(F ), we refer to τ(ρ0) as the inertial type of ρ0.

Remark 2.4.3. The theorem is the content of [Hen02]. In the next section we give

the construction of τ presented therein. We remark that if p = char k 6= 2 then τ is

unique for the properties (1) and (2) above. And in any residue characteristic, a map

τ : GI
2(F )0 → K̂ is uniquely determined by (1) and (2) without the “unless” clause in

(2).

Remark 2.4.4. For all dimensions n, a construction of the analogue of τ for irreducible

ρ satisfying (1) and (2) is given in [Pas05].

2.5 Characters of the inertial types

Recall that K = GL2(OF ).

As we describe the inertial types τ(ρ0) for GL2(F ) we will determine the characters

of τ(ρ0) on particular sorts of elements of K, namely

1. g =
(

1 a
1

)
: the “parabolic case”

2. g =
(
x

1

)
: the “hyperbolic case”

3. g = ι(α), where ι : OF ′ → M2(OF ) is an embedding of an unramified quadratic

extension F ′/F and α /∈ k∗: the “elliptic case.”
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g ε0 ⊕ 1 Sp(2) IndL/F θ, L/F unram. IndL/F θ, L/F ram.
Id2 qn−1(q + 1) q qn−1(q − 1) qn−2(q2 − 1)
u($n−1) qn−1 0 −qn−1 −qn−2

u($n−2) 0 N/A 0 −qn−2

u($r), r < n− 2 0 N/A 0 0
δ(x) ε0(x) + 1 1 0 0
ι(α) 0 −1 (−1)n(θ(α) + θ(ασ)) 0

Figure 2.1. The characters of τ(ρ) on certain elements g of G. It is assumed that

g 6≡ Id2 (mod pn
F ).

We will find it useful to put

u(x) =
(

1 x
1

)
δ(x) =

(
x

1

)

The next theorem shows that when ρ0 ∈ GI
2(F ), the inertial type τ(ρ0) has small

trace on elliptic and hyperbolic elements. As we will see in Chapter 3, this fact enables

us to give a sharp estimate of the multiplicity of the inertial types inside spaces of cusp

forms.

Theorem 2.5.1. Up to twist, the characters of τ(ρ0) belonging to each nontrivial

ρ0 ∈ GI
2(F ) which is decomposable or imprimitive are given in Figure 2.1. In particular,

let λ = τ(ρ0) be a type of level n, and let g ∈ K be elliptic or hyperbolic with g 6≡ Id2

(mod pn
F ). Then

|Trλ(g)| ≤ 2. (2.3)

In the proof of Theorem 2.5.1, the following form of Mackey’s Theorem will be

useful:

Lemma 2.5.2. Let G be a profinite group, H ⊂ G a subgroup of finite index, and η a

finite-dimensional representation of H. Then if τ = IndG
H η, we have

Tr τ(g) =
∑

[x]∈(G/H)g

Tr η(x−1gx),

where the sum ranges over cosets [x] = xH ∈ G/H which are fixed under the left action

of g.

16



Note that [x] ∈ (G/H)g is equivalent to x−1gx ∈ H; we use the former formulation

because in our situation the coset space G/H can be given a geometric interpretation.

The proof of the theorem proceeds case by case.

2.5.1 The principal series case

Suppose ρ0 ∈ GI
2(F ) is decomposable. After twisting by a character of O∗F we may

assume ρ0 = ε0⊕1 for a character ε0 of O∗F . If ε0 = 1 then τ(ρ0) = 1K . Assume ε0 6= 1

has conductor pn for n > 0; in this case rec(ρ) is infinite-dimensional principal series

for any lift ρ of ρ0 to G2(F ). The inertial type of ρ0 is

τ(ρ0) = IndK
K0(n) ε, where ε

(
a b
c d

)
= ε(a).

We can identify the coset space K/K0(n) with P1(OF /p
n) via g 7→ g∞. In particular

dim τ(ρ0) = qn−1(q + 1).

In the parabolic case, we have up to conjugacy g = u($r) for some 0 ≤ r < n. The

fixed points of g on P1(OF /p
n) are precisely the points [a : $i] with i ≥ (n − r)/2,

with a running through a set of representatives for (OF /p
n−i)∗. We find

Tr τ(g) =
n∑

i=d(n−r)/2e

∑
a∈(OF /pn−i)∗

ε0(1− a−1$i+k).

This is simply the sum of ε0(1 + t) for t running through a set of representatives of

pd(n+r)/2e/pn+r. Because c(ε0) = pn, the sum vanishes unless d(n+ r)/2e = n, that is

r = n− 1, in which case the sum is qn−1.

In g is hyperbolic, then g has exactly the fixed points 0 and ∞ in P1(OF /p
n),

corresponding to the left cosets hK0(n) with h = Id2 and h =
(

1
1

)
, respectively.

Lemma 2.5.2 implies that Tr τ(ρ0)(g) = ε0(g) + 1.

If g is elliptic, it has no fixed points in P1(OF /p
n), so that Tr τ(ρ0)(g) = 0.
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2.5.2 The Steinberg case

Now suppose ρ0 = Sp(2)|IF
. Then τ(ρ0) = StK is the Steinberg representation

of K. This is the pullback through K 7→ GL2(k) of the representation of GL2(k) on

IndGL2(k)
B [1]− [1], where B ⊂ GL2(k) is the subgroup of upper triangular matrices. It

is simple to check that StK has character as shown in Figure 2.1.

2.5.3 The cuspidal case

In this section, ρ0 is irreducible and imprimitive. This means it is the restriction

to IF of IndL/F θ for a quadratic extension L/F and a character θ of L∗. We note that

ρ0 is determined by θ|O∗L . By twisting, assume that θ is minimal of conductor c. Let

e be the ramification degree of L/F . We remark that c is even if e = 2, and that the

level n of τ(ρ0) is c if e = 1 and c/2 + 1 if e = 2.

Let A ⊂M2(F ) be the algebra M2(OF ) if e = 1 and{(
a b
c d

)
∈M2(OF )|c ∈ p

}
if e = 2.

Then A is a hereditary chain order with eA = e (see [HB06]). Choose an embedding of

OF -algebras OL ↪→ A and identify A with OL ⊕OLσ ⊂ EndOF
OL.

Let P be the Jacobson radical of A, and let U j
A ⊂ A∗ ⊂ K be the subgroup 1 + Pj

for j > 0. Also define U0 = A∗.

Explicitly, Pj = pjM2(OF ) in the case of e = 1 and when e = 2 we have

Pj =
(

pdj/2e pd(j−1)/2e

pd(j+1)/2e pdj/2e

)
= p

dj/2e
L + p

d(j+1)/2e
L σ.

Let m be defined by m = bc/2c if e = 1 and m = c− 1 if e = 2. Let J = L∗Um
A and

J0 = O∗LUm
A . We are going to define a certain finite-dimensional representation η of J0

depending on θ for which τ(ρ0) = IndK
J0 λ. We define the representation η in cases.

If L/F is unramified and c = 1, then θ arises by pullback from a character of the

unique quadratic extension k2 of k. Then η is the character of J = K arising by pullback
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from the cuspidal representation of GL2(k) associated with θ. The construction of η is

described in many places, see for instance Section 3.1 of [CDT99].

If L/F is unramified and c > 1 is even, then η : J0 → C∗ is the character α+βσ 7→

χ(α).

If L/F is unramified and c > 1 is odd, then η is the unique irreducible represen-

tation of J0 of dimension q satisfying Tr η(α + βσ) = −χ(α) when β ∈ p(c+1)/2 and α

(mod pE) /∈ k∗.

If L/F is ramified, then η : J0 → C∗ is the character α+ βσ 7→ χ(α).

Theorem 2.5.3. In all cases the type of ρ0 is IndK
J0 η.

This is essentially Lemma 1.2.1 of [BCDT01]. Note that τ vanishes on K(n) but

not on K(n− 1). We now check the final three columns of Figure 2.1. Before going on

we record a lemma about the coset space A∗/J0 analogous to the familiar identification

of the coset space GL2(R)/O2(R) with (two copies of) the complex upper half plane

via g 7→ g
√
−1. Besides the action of A∗ on L coming from the inclusion A ⊂ EndF L,

there is another action by fractional linear transformations, which we will notate as

(g, β) 7→ g · β. Then there exists a b ∈ F ∗ for which OL = {g ∈ A|g · b = b}. We can

take v(b) = 0 if e = 1 and v(b) = −1 if e = 2. Let Hm be defined by

Hm = {β ∈ (OL/p
m
L )∗ | α /∈ k∗} , if e = 1

Hm = bO∗L/Um
L , if e = 2

These sets are preserved by the “dot” action of A∗, and we have a bijection of A∗-sets

A∗/J0→̃Hm given by g 7→ g · b.

If e = 1 then K/J0 = Hm; whereas if e = 2, K/J0 is a disjoint union of copies of

Hm indexed by K/A∗, with the obvious action of K. It follows that dim τ = #Hm =

qn−1(q − 1) if e = 1 and dim τ = [K : A∗]#Hm = qn−2(q2 − 1) if e = 2. We are now

ready to compute traces.

If g = u($k) is parabolic, with k < n, the result follows from the discussion
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in [Cas73b]. Indeed, the restriction of τ(ρ0) to
(

1 OF
1

)
decomposes into a sum of the

characters of OF of conductor n if e = 1, and into a sum of the characters of conductor

n and n− 1 if e = 2.

If g = δ(x) is hyperbolic with x ∈ O∗F not congruent to 1 (mod p), then g has no

fixed points on K/J0, so that Tr τ(g) = 0.

Finally let g = ι(α) be elliptic, with α ∈ O∗F ′ having reduction mod pF ′ not in k∗

if e = 1. First assume e = 1 and identify F ′ with L. Then α can play the role of β in

the definition of Hm, and then the action of g on Hm has fixed points exactly α and

ασ. Lemma 2.5.2 gives Tr τ(g) = Tr η(α)+Tr η(ασ) = (−1)n(ε0(α)+ε0(ασ)). If on the

other hand e = 2, g will not fix any cosets in K/A∗, let alone cosets in K/J0, so that

Tr τ(g) = 0. For completeness, we remark that if instead g is the image of an element

α ∈ O∗L in the embedding OL ↪→ A, then Tr τ(g) = ε0(α) + ε0(αι) for the nontrivial

automorphism ι ∈ Gal(L/F ).
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Chapter 3

Global arguments

3.1 Automorphic forms on the adele group

The theory of modular forms as functions on the upper half plane is in hindsight

only a corner of the grander theory of automorphic representations of adelic groups.

In this section we review the bridge between the classical and modern theories in a

manner that suits our purposes for the following sections.

LetN ≥ 1 and k ≥ 2 be two integers. Recall that the space of cusp forms Sk(Γ1(N))

comes equipped with an action of a Hecke algebra T, another action by the diamond

operators 〈a〉 for a ∈ (Z/NZ)∗, and a positive definite Petersson inner product ( , )

for which (Tnf, g) = (f, 〈n〉Tng) for all f, g ∈ Sk(Γ1(N)) and for (n,N) = 1. Inside of

Sk(Γ1(N)) is a subspace Sk(Γ1(N))old which we define to be the sum of the images of

the maps

Sk(Γ1(d)) → Sk(Γ1(N))

f(z) 7→ f(nz)

for all proper divisors d of N and all divisors n of N/d.

Definition 3.1.1. The new subspace Sk(Γ1(N))new is the orthogonal complement of

Sk(Γ1(N))old in Sk(Γ1(N)) with respect to the Petersson inner product. A newform
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of weight k, level N and character ε is a cusp form f ∈ Sk(Γ1(N))new which is an

eigenvector with respect to the Hecke operators, for which 〈a〉 f = ε(a)f , a ∈ (Z/NZ)∗,

and for which the q-expansion has q-coefficient 1.

The following discussion is gathered from [Gel75], §5.

Let A be the adele ring of Q. To a newform f of level N , weight k ≥ 2 and

character ε we associate a certain representation of GA = GL2(A) as follows. Identify

ε with a character of Q\A∗ = Ẑ∗ ×R≥0 by having it act trivially on R≥0. Define a

subgroup K0(N) ⊂ GL2(Ẑ) as those matrices which are upper-triangular mod N , and

extend ε to K0(N) by
(
a b
c d

)
7→ ε(a). By strong approximation for SL2,

GL2(A) = GL2(Q) GL+
2 (R)K0(N).

Define a function φf on GA by

φf (g) = ε(k)(ci+ d)−kf

(
ai+ b

ci+ d

)
,

where g = gQg∞k for gQ ∈ GQ, g∞ =
(
a b
c d

)
∈ GL+

2 (R) and k ∈ K0(N). Then φf lies

in the space R0(ε) consisting of functions φ ∈ L2(GQ\GA) satisfying φ(gz) = ε(z)φ(g)

for z ∈ A∗ and the cuspidality condition∫
Q\A

φ(u(x)g)dx = 0, almost all g.

Then R0(ε) admits an action of GA by right translation.

Definition 3.1.2. The automorphic representation πf attached to f is the span of the

GA-translates of f , considered as a GA-submodule of R0(ε).

Theorem 3.1.3. The πf are irreducible and admit a complete tensor product decom-

position π =
⊗

v πf,v with

πf,p ∈ A2(Qp) for every prime p,

πf,∞ = the discrete series representation σk := σ
(
| |

k−1
2 , | |

1−k
2 sgnk

)
.
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Furthermore, the space R0(ε) is the discrete direct sum of irreducible representations

π of GA, each occurring with multiplicity one; those components π whose archimedean

component is σk are exactly the πf as f runs through all newforms of weight k and

character ε.

Sketch of proof. The claim that R0(ε) splits up as a discrete direct sum of represen-

tations of the form π =
⊗

v πv has a functional-analytic proof. Suppose π = ⊗vπv is

one of the constituents of R0(ε). For each prime p, let pcp be the conductor of πp and

choose a new vector wp in the representation space of πp. Also choose a lowest weight

vector w∞ ∈ σk. Then f = ⊗vwv ∈ R0(ε) is easily seen to lie in Sk(Γ1(N)), where

N =
∏

p p
cp ; with some more work one can show that f is a newform and that π = πf

(see [Gel75], Lemma 5.16).

Let Sk(Γ(N)) be the space of modular forms of weight k for the principal congruence

subgroup Γ(N). This admits an action of Γ(1)/Γ(N) = SL2(Z/NZ).

Theorem 3.1.4. Let λ be an irreducible complex representation of GL2(Ẑ) which fac-

tors through GL2(Z/NZ). The multiplicity of λ|SL2(Z/NZ) in Sk(Γ(N)) counts the num-

ber of newforms f of weight k satisfying⊗
p<∞

πf,p|GL2(Ẑ) ⊃ λ.

Proof. Let Nλ be the number of newforms f satisfying the property required by the

theorem. Let ε be the central character of λ. By Theorem 3.1.3 the space R0(ε)

decomposes into a discrete direct sum of irreducible representations π of GL2(A); then

Nλ is the number of π for which π∞ = σk and for which λ ⊂
⊗

p πf,p. This means that

Nλ = dim HomGL2(Ẑ)×GL2(R) (λ⊗ σk, R0(ε)) . (3.1)

But since λ factors through GL2(Z/NZ), this multiplicity is the same as the multi-

plicity of λ ⊗ σk in the subspace R0(ε)K(N) of R0(ε) fixed by K(N) = ker(GL2(Ẑ) →

GL2(Z/NZ)).
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We need to identify the adelic object R0(ε)K(N) with an object that appears in the

classical study of the representation theory of SL2(R). Let L = L0(Γ(N)\SL2(R)) be

the space of square-integrable functions f on Γ(N)\SL2(R) satisfying the cuspidality

condition ∫
Z\R

f(u(x)g)dx = 0, almost all g.

Then L admits an action of SN × SL2(R).

The following abbreviations will be useful: SN = SL2(Z/NZ), GN = GL2(Z/NZ).

If M is a GN -module, let M ε denote the largest submodule on which the center of GN

acts as ε.

Lemma 3.1.5. We have an isomorphism of GN × SL2(R)-modules[
IndGN

SN
L
]ε
−̃→R0(ε)K(N)|SL2(R).

Proof. Let L = L2
0(Γ(N)\SL2(R)) with its action of SN × SL2(R). The space on

the left is the space of functions F : GN → L, g 7→ Fg satisfying Fzgh = ε(z)gFh for

z ∈ (Z/NZ)∗ Id2, g ∈ SN . Our map is F 7→ φF ∈ R0(ε)K(N), where φF is defined as

follows: for g ∈ GA, write g = rgQgRk, for r ∈ R≥0, gQ ∈ GL2(Q), gR ∈ SL2(R)

and k ∈ K(N). Then φF (g) = Fk(gR). One checks that φF is K(N)-invariant and

independent of the decomposition g = rgQgRk chosen.

In the other direction, if φ ∈ R0(ε)K(N), define F : GN → L as follows. If g ∈ GN ,

let ĝ ∈ GL2(Ẑ) be a lift of g and let Fg(h) = φ(ĝh) for h ∈ SL2(R).

We resume the proof of Theorem 3.2.4. The discrete series representation σk is

induced from a discrete series representation σ+
k of SL2(R):

σk = IndGL2(R)
SL2(R) σ

+
k . (3.2)

The space L decomposes as a direct sum of irreducible representations of SL2(R), and

we have

HomSL2(R)

(
σ+

k , L
) ∼= Sk(Γ(N)). (3.3)
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(See [Gel75], Theorem 2.10: the image of a lowest-weight vector from σ+
k in L is forced

to be the function on SL2(R) arising from a classical modular form for Γ(N).) We have

Nλ = dim HomGN×GL2(R)

(
λ⊗ σk, R0(ε)K(N)

)
Eq. 3.1

= dim HomGN×GL2(R)

(
λ⊗ IndGL2(R)

SL2(R) σ
+
k , R0(ε)K(N)

)
Eq. 3.2

= dim HomGN×SL2(R)

(
λ⊗ σ+

k , R0(ε)K(N)|SL2(R)

)
Frob. reciprocity

= dim HomGN×SL2(R)

(
λ⊗ σ+

k ,
[
IndGN

SN
L
]ε)

Lemma 3.1.5

= dim HomGN×SL2(R)

(
λ⊗ σ+

k , IndGN
SN

L
)
,

because the central character of λ is already ε. By Frobenius reciprocity,

Nλ = dim HomSN×SL2(R)

(
λ⊗ σ+

k , L
)
,

and because the functor − ⊗M is adjoint to Hom(−,M) in the category of SL2(R)-

modules, this becomes

Nλ = dim HomSN

(
λ,HomSL2(R)(σ

+, L)
)

= 〈λ, Sk(Γ(N))〉SN

by Equation 3.3.

In the next section we will see how to apply Theorem 3.1.4 to count newforms

whose Galois representations have prescribed local properties.

3.2 The theorem of Deligne-Carayol

Let N ≥ 1 and k ≥ 2 be two integers, and let ` be prime. Take f to be a cusp form

with coefficients in Q` of weight k and character ε for Γ1(N) which is a newform for

the action of the Hecke operators. Let an ∈ Q` be the eigenvalue of the operator Tn

on f . One associates to f a Galois representation

ρf : Gal(Q/Q)→ GL2(Q`)
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unramified outside of `N satisfying

Tr(ρf (Frobp)) = ap

det(ρf (Frobp)) = pk−1ε(p)

whenever p is a prime not dividing N`. These conditions determine the restriction

ρf,p of ρf to GQp when p - N`. When p|N`, however, the shape of ρf,p cannot be

determined directly from the Hecke eigenvalues of f .

To at least treat the case when p|N but p 6= `, we pass to the irreducible admissible

Q`-valued representation ⊗pπp of GL2(Af), with each πp ∈ A2(Qp)Q`
. When p 6= `,

ρWD
f,p ∈ G2(Qp) be the WD representation associated by Theorem 2.1.4 to the `-adic

representation ρf,p|WQp
.

For s > 0, let ωs be the character g 7→ |det g|s of GL2(Qp).

Theorem 3.2.1 ([Car83], Théorème A). For p 6= `, we have

πf,p = ω
1
2 rec ρWD

f,p .

Remark 3.2.2. In particular

(πf,p)|GL2(Zp)
∼= rec(ρWD

f,p )|GL2(Zp).

Remark 3.2.3. When p = `, the theorem is not at all true, even for p - N : the p-adic

Galois representation contains certain “period” data in addition to the structural data

contained in πf,p.

Theorem 3.2.1 has a certain “independence of `” consequence. Suppose now that

f begins life as a form with complex coefficients, and let p be a prime. We may simply

define the WD representation ρWD
f,p by

ρWD
f,p := rec−1

(
ω−

1
2πf,p

)
.

Let ` 6= p be prime and let ι : C→̃Q` be an isomorphism. Then composing ρWD
f,p with ι
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gives an E-valued WD representation ιρWD
f,p , which equals

ιρWD
f,p = ι rec−1

(
ω−

1
2πf,p

)
by definition

= rec−1
(
ω−

1
2πιf,p

)
because ι and rec commute

= ρι(f),p by Theorem 3.2.1,

this last being the WD representation associated as in the beginning of the section to

the `-adic newform f . Consequently the `-adic representations ρι(f),p carry the same

information regardless of the isomorphism ι and even the prime `, so long as ` 6= p.

For each prime p, let ρp ∈ GI
2(Qp) be an inertial WD representation of Qp, with

ρp = 1 ⊕ 1 for all but finitely many p. We wish to determine how many newforms f

have ρWD
f,p |IQp

∼= ρp for all p. For each p, let λp = τ
(
ρWD

p

)
be the inertial type. This is

a family of finite-dimensional representations of the group GL2(Zp), trivial for almost

all p, so it makes sense to define the global inertial type λ =
⊗

p λp as a representation

of the group GL2(Ẑ). Let N be the products of the levels of the λp, so that λ factors

through GL2(Z/NZ) and through no smaller such group.

The next theorem shows that counting the number of f whose Galois representa-

tions restrict to inertia as ρp amounts to finding the multiplicity of λ in the space of

cusp forms Sk(Γ(N)).

Theorem 3.2.4. Assume that each ρp ∈ GI
2(Qp)ss. Define λ and N as above. Then

#
{
wt. k newforms f : ρWD

f,p |IQp
∼= ρp for all p

}
= 〈λ, Sk(Γ(N))〉SL2(Z/NZ) . (3.4)

Proof. For each prime p, Theorem 2.4.1 asserts that ρWD
f,p |IQp

∼= ρp if and only if λp is

contained in rec(ρWD
f,p )|GL2(Zp). (Since ρp is semi-simple, we avoid the “unless” clause

of that theorem.) But by Remark 3.2.2, rec(ρWD
f,p )|GL2(Zp)

∼= πf,p|GL2(Zp). Therefore

rec fp
WD|IQp

∼= ρp for all p if and only if
⊗

p<∞ πf,p|GL2(Ẑ) contains λ =
⊗

f,p λp. The

number of newforms f of weight k for which this is true is 〈λ, Sk(Γ(N))〉SL2(Z/NZ) by

Theorem 3.1.4.
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Theorem 3.2.4 reduces the proof of our main Theorem 1.0.1 to the problem of

determining Sk(Γ(N)) as a SL2(Z/NZ)-module. We do this in the next section, at

least for k even.

3.3 Generalities on Galois covers of curves

Let N > 1. The space Sk(Γ(N)) of cusp forms for the principal congruence sub-

group Γ(N) admits an action of the quotient SL2(Z/NZ)/ {±1} when k is even. Using

the equivariant Riemann-Roch formula, we will compute this action explicitly. We will

see that an irreducible representation π of SL2(Z/NZ)/ {±1} is contained in Sk(Γ(N))

with multiplicity equal to k/12× dimπ to within a constant depending on π and on k

(mod 12).

Let X and Y be connected projective curves over an algebraically closed field K,

and let p : X → Y be a Galois cover with group G. The action of G on the cohomology

of X with coefficients in a line bundle seems to be well studied in the literature; in this

section, we borrow the notation and results gathered in [Bor05] as they are in a form

well-suited to our applications.

Definition 3.3.1. A G-equivariant line bundle is a pair (L, {φg}) consisting of a line

bundle L on X together with isomorphisms

φg : g∗L → L

for each g ∈ G, satisfying the cocycle condition

φgh = h∗(φg) ◦ φh.

We can recast the notion in terms of divisor classes as follows. The group DivX

admits an action of G. If L is a G-equivariant line bundle, let s be a nonzero mero-

morphic section of L. Then for each g ∈ G, the quotient φg(s(gx))/s(x) is a mero-

morphic function on X. By the cocycle condition, g 7→ φg(s(gx))/s(x) is a cocycle
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ξ in H1(G,K(X)∗), which vanishes by Hilbert’s Theorem 90. Therefore there is a

meromorphic function h ∈ K(X)∗ which splits ξ, meaning that

φg(s(gx))
s(x)

=
h(g(x))
h(x)

.

Thus x 7→ s(x)/h(x) is another meromorphic section whose divisor D is visibly G-

invariant. The choice of another section s or another splitting of ξ replaces D by the

divisor of an element in K(X)G = K(Y ). The line bundle L can be recovered from D as

the line bundle whose fibers are L(U) = {f ∈ k(X)∗|div f ≥ D on U}, with transition

maps φg given by φg(f) = f ◦ g. Therefore the group of G-equivariant line bundles up

to linear equivalence can be identified with the quotient (DivX)G/DivK(Y )∗.

For each k ≥ 0, the line bundle of differentials Ωk
X is a G-equivariant line bundle.

In the case of k = 0, Ω0
X = OX has associated divisor class 0.

In this context, the sheaf cohomology groups H i(X,L) admit an action of G, i =

0, 1, 2. Let R(G) be the representation ring of G; that is, the K-vector space with basis

the irreducible characters of G. Then we can define the equivariant Euler characteristic

χeq(L) =
[
H0(X,L)

]
−
[
H1(X,L)

]
.

The equivariant degree of L is an element of R(G) defined as follows: Let D be the G-

invariant divisor attached to L. First assume D is a multiple of an orbit
∑

σ∈G/GP
σP

with multiplicity µP , where GP is the decomposition group at P ∈ X. The group GP

acts on the tangent space TPX through a character ψP with values in K∗. Then define

degeqD =



∑µP
c=1 IndG

GP
ψ−c

P , µP > 0,

0, µP = 0,

−
∑−(µP +1)

c=0 IndG
GP

ψc
P , µP < 0.

(3.5)

Extend degeq to general D in such a way that degeq(D + D′) = degeqD + degeqD
′

when D and D′ have disjoint support.

The association degeq : (DivX)G → R(G) is not a linear map. However, the com-

position of degeq with the dimension map R(G)→ Z is the usual degree map on divi-
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sors. Further, the equivariant degree vanishes on the group Div f∗(K(Y )∗) of principal

divisors, so it really is well-defined on G-equivariant line bundles.

We are now ready to state the equivariant Riemann-Roch formula:

Theorem 3.3.2. In the ring R(G):

χeq(L) = χeq(OX) + degeq(L).

3.4 Galois action on cusp forms

Here we carry out a calculation essentially equivalent to the calculation of the

dimension of the space of cusp forms given in [Shi71] but using the results gathered in

the previous section to keep track of the action of SL2.

The map of modular curves f : X(N) → X(1) ∼= P1 plays the role of X → Y in

the previous section, with G = SL2(Z/NZ)/ {±1}. We assume N > 1, so that Γ(N)

has no elliptic elements. We work over the field of complex numbers.

Recall that the map f is ramified over the points j = 1728, 0,∞ with inertia groups

(conjugate to) G1728, G0, G∞ ⊂ G having generators
(

0 1
−1 0

)
,
(

0 1
−1 −1

)
,
(

1 1
0 1

)
of

order 2, 3, N , respectively. For each i ∈ {1728, 0,∞}, the character ψGi is the one

taking the generator of Gi to exp(2πi/#Gi). Let Ψi,j = IndG
Gi
ψ−j

Gi
for j taken modulo

#G. Note that

#Gi−1∑
j=0

Ψi,j = IndG
Gi

#Gi−1∑
j=0

ψ−j (3.6)

= IndG
Gi

IndGi
1 1 (3.7)

= CG, (3.8)

the regular representation of G.

Fix a point S ∈ X(1)\ {1728, 0,∞}. Since X(1) is a rational curve, there exists a

nonzero meromorphic differential ω1 ∈ H0(X(1),ΩX(1)) with divisor −2S. Then the
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pullback ω = f∗(ω1) has divisor

divω = −2
∑
g∈G

gR+
∑

g∈G/G1728

gP1728 + 2
∑

g∈G/G0

gP0 + (N − 1)
∑

g∈G/G∞

gP∞, (3.9)

where R is a point in the preimage of S and Pi is fixed by Gi for i ∈ {1728, 0,∞}.

Our goal is to calculate the action of G on Sk(Γ(N)).

When k = 2, S2(Γ(N)) = H0(X(N),Ω1
X(N)). By Serre duality, this is isomorphic

to the linear dual of H1(X(N),OX(N)). In fact, since Serre duality is natural, the

isomorphism between the two spaces is G-equivariant. The Petersson inner product

on S2(Γ(N)) is also G-equivariant, meaning that S2(Γ(N)) admits a G-equivariant

isomorphism to its linear dual. Therefore [S2(Γ(N))] = [H1(X(N),OX(N))] in R(G).

Similarly,

[H1(X(N),Ω1
X(N)] = [H0(X(N),OX(N)] = [1].

Therefore the trivial bundle on X(N) has equivariant Euler characteristic

χeq(OX(N)) = [H0(X(N),OX(N))]− [H1(X(N),OX(N)]

= [1]− [S2(Γ(N))]

and the canonical divisor Ω1
X(N) has equivariant Euler characteristic

χeq(Ω1
X(N)) = [H0(X(N),Ω1

X(N)]− [H1(X(N),Ω1
X(N)]

= [S2(Γ(N))]− [1]

= −χeq(Ω1
X(N))

On the other hand, the Riemann-Roch formula gives χ(Ω1
X(N)) = χ(OX(N))+degeq(Ω1

X(N)),

so we find that

degeq

(
Ω1

X(N)

)
= 2χ(Ω1

X(N)) = 2 ([S2(Γ(N))]− [1])

The equivariant degree of Ω1
X(N) is also the degree of the divisor in Eq. (3.9), which is

degeq

(
Ω1

X(N)

)
= degeq divω

= −2CG+ Ψ1728,1 + Ψ0,1 + Ψ0,2 +
N−1∑
i=1

Ψ∞,i

= CG−Ψ1728,0 −Ψ0,0 −Ψ∞,0.
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Solving for [S2(Γ(N))], we find

Proposition 3.4.1.

[S2(Γ(N))] =
1
2

(CG−Ψ1728,0 −Ψ0,0 −Ψ∞,0) + [1]

Now suppose k > 2.

Definition 3.4.2. An automorphic form of weight w for Γ(N) is a meromorphic func-

tion F on the upper half-plane with F (γz) = (cz + d)wF (z) for each γ =
(
a b
c d

)
∈

Γ(N). The space of automorphic functions is denoted Aw(N).

Then A0(N) = C(X(N)) and generally Aw(N) is a one-dimensional vector space

over C(X(N)), because the quotient of any two nonzero automorphic forms of weight

w has weight 0. Recall that k is even. We choose a basis vector F for Ak(N) by setting

ωk/2 = F (z)dzk/2. Then the divisor of F is

divF = (k/2) divω + (k/2)
∑

g∈G/G∞

gP∞. (3.10)

(Indeed, the coordinate in the neighborhood of P∞ is q = exp(2πiz/N), whereby

dz = Ndq/2πiq has a simple pole at P∞ and therefore at all of its G-translates.)

Sk(Γ(N)) =

F ′ ∈ Ak(N)|divF ′ ≥
∑

g∈G/G∞

gP∞


→̃

f ∈ C(X(N))|div f ≥ −divF +
∑

g∈G/G∞

gP∞


via the map F ′ 7→ f = F ′/F . Putting together Equations 3.9 and 3.10 we find that

Sk(Γ(N)) ∼= H0(X(N),Lk), where Lk is the line bundle with G-invariant divisor

−k
∑
g∈G

gR+
k

2

∑
g∈G/G1728

gP1728 + k
∑

g∈G/G0

gP0 +
(
k

2
N − 1

) ∑
g∈G/G∞

gP∞. (3.11)

For k > 2, the line bundle Lk has vanishing H1, so that the Riemann-Roch formula

gives

[Sk(Γ(N))] = degeq Lk + χeq(OX(N)), k > 2. (3.12)
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Applying the definition of degree in Equation 3.5 to Equation 3.11 and substituting

into Equation 3.12 gives

Theorem 3.4.3. Let k > 2 be even. In the ring R(G), we have

[Sk(Γ(N))] =
⌊
k

12

⌋
CG+ εk,

where

εk =



−Ψ1728,1 + Ψ0,0, k ≡ 0 (mod 12)

0, k ≡ 2 (mod 12)

Ψ1728,0 −Ψ0,2, k ≡ 4 (mod 12)

Ψ0,0, k ≡ 6 (mod 12)

Ψ1728,0, k ≡ 8 (mod 12)

Ψ0,0 + Ψ0,1, k ≡ 10 (mod 12)

This is a finer form of Theorem 1.0.3 from the introduction.

It follows immediately that ε4 is effective, and we find

Corollary 3.4.4. For k ≥ 14 even, Sk(Γ(N)) contains every irreducible representation

of G at least once.

A compact way of summarizing Proposition 3.4.1 and Theorem 3.4.3 is as follows:

Corollary 3.4.5. Let k ≥ 2 be even. Then [Sk(Γ(N))] ∈ R(G) is a sum of terms of

the form CG, Ψ1728,j, Ψ0,j and Ψ∞,j, say with respective multiplicities c, c1728, c0, and

c∞ (collecting together terms over all j). The multiplicities satisfy

c+
1
2
c1728 +

1
3
c0 =


1
12 , k = 2

k−2
12 , k > 2.
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3.5 Multiplicity of inertial types in the space of cusp forms

For each prime p, let ρp ∈ GI
2(Qp) be a WD inertial representation of Qp. Assume

that ρp = 1 ⊕ 1 for almost every p, including 2 and 3. Let λp = τ(ρp) be the inertial

type and let λ =
⊗

p λp be the global inertial type. Let N =
∏

p p
np be the level of λ, so

that λ factors through GL2(Z/NZ) and no smaller such group. Assume that λ(− Id2)

is the identity, or equivalently that
∏

p det ρp(−1) = 1.

Let k ≥ 2 be even. The goal of this section is to determine the multiplicity of λ

in Sk(Γ(N)) as a module for the group G = GL2(Z/NZ)/ {±1}, with a view towards

applying Theorem 3.2.4.

Lemma 3.5.1. For i ∈ {1728, 0,∞} and j ∈ Z/#GiZ, let µi,j(λ) be the multiplicity

of λ in Ψi,j as a G-module. Then∣∣∣∣µ1728,j(λ)− dimλ

2

∣∣∣∣ ≤ 1
2
× 2ν(N)∣∣∣∣µ0,j(λ)− dimλ

3

∣∣∣∣ ≤ 2
3
× 2ν(N)

µ∞,j ≤ 2ν(N)

Proof. First note that the elements of eachGi are each elliptic or hyperbolic or parabolic

when considered as elements of GL2(Zp), for all p 6= 2, 3. If i ∈ {1728, 0} and g ∈ Gi

is nontrivial then the inequality in Equation 2.3 gives |λ(g)| ≤ 2. Therefore in those

cases

|Trλ(g)| =
∏
p

|Trλp(g)| ≤ 2ν(N). (3.13)

The multiplicity of λ in Ψi,j is

µi,j(λ) =
〈
λ, IndG

Gi
ψ−j

〉
G

(3.14)

=
〈
λ|Gi , ψ

−j
〉
Gi

(3.15)

=
1

#Gi

#Gi−1∑
r=0

Trλ(gr)e2π
√
−1j/#Gi , (3.16)
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where now g is the generator of Gi. In the cases i = 0, 1728, we bring the r = 0 term

to the left side: ∣∣∣∣µi,j(λ)− 1
#Gi

dimλ

∣∣∣∣ ≤ 1
#Gi

#Gi−1∑
j=1

|Trλp(gr)|

≤
(

1− 1
#Gi

)
2ν(N)

When i =∞, the sum in (3.16) factors as

µ∞,j =
∏
p|N

1
pnp

pnp−1∑
r=0

Trλp(u(r))e2π
√
−1rj/pnp

,

and referring to the “parabolic” row of Figure 2.1 it is easily checked that each factor

in this product has maximum absolute value at most 2.

We are now ready to prove the main theorem of this chapter.

Theorem 3.5.2. For all but finitely many pairs ({ρp} , k) with ρp ∈ GI
2(Qp)ss minimal

and trivial for almost every p, there exists a newform f for which ρWD
f = ρ.

Proof. Let λ =
⊗

p τ(ρp) have levelN . By Theorem 3.2.4, the number of such newforms

is 〈λ, Sk(Γ(N))〉. By Corollary 3.4.4, we may assume that k < 14. It will be enough

now to show that 〈λ, Sk(Γ(N))〉 > 0 for N large enough, since there are only finitely

many λ of level N .

By Corollary 3.4.5, [Sk(Γ(N))] is a sum of terms of the form CG, Ψ1729,j , Ψ0,j and

Ψ∞,j with multiplicities c, c1728, c0 and c∞. By Theorem 3.4.3 we may assume c∞ = 0

if k > 2. Then for i ∈ {1728, 0} we have by Lemma 3.5.1

µi,j(λ) =
1

#Gi
dimλ+O

(
2ν(N)

)
and µ∞,j(λ) = O

(
2ν(N)

)
, so that

〈λ, Sk(Γ(N))〉 =
(
c+

1
2
c1728 +

1
3
c0

)
dimλ+O

(
2ν(N)

)
= t dimλ+O

(
2ν(N)

)
,
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where t = 1/12 if k = 2 and (k − 2)/12 if k > 2. Referring to Theorem 2.5.1 we have

the lower bound

dimλ ≥ φ(N) ≥ 2v(N)
∏
p|N

pep − pep−1

2
,

where N =
∏

p|N pep . Thus dimλ/2ν(N) → ∞ as N → ∞ and 〈λ, Sk(Γ(N))〉 > 0 for

N � 0.

3.6 Abelian varieties with everywhere good reduction

In this section we use the methods of the previous section to find a sufficient con-

dition on a number field F for there to exist a modular abelian variety A/Q for which

AF admits a model with good reduction at all places.

We start with some generalities on modular abelian varieties. Let f be a newform

of weight 2 for Γ1(N) whose Hecke eigenvalues an ∈ C generate a number field L. Then

there exists an abelian variety quotient Af of J1(N) = JacX1(N) of dimension [L : Q]

with an action L ↪→ EndAf ⊗Q for which the Hecke operator Tn on J1(N) induces an

on Af . Let ` - N be prime and consider the contravariant Tate module

V`(Af ) = HomZ`

(
lim−→
n

A[`n],Q`

)
.

Then V`(Af ) is a free E ⊗Q`-module of rank 2. Choosing a place λ of E above ` we

obtain a Galois representation

ρλ
Af

: Gal(Q/Q)→ GL2(Eλ)

agreeing with the representation ρf considered in more generality in Section 3.2. Let

F be a number field, and let p|p be a prime of F with p 6= `; let Gp ⊂ Gal(Q/F ) ⊂

Gal(Q/Q) be a decomposition group at p, and let Ip ⊂ Gp be the inertia group. By

the criterion of Néron-Ogg-Shafarevich:

Af has good reduction at p ⇐⇒ ρλ
Af
|Gp is unramified

⇐⇒ ρWD
f,p |WFp

is semi-simple and unramified.
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As usual we have transferred the discussion to complex WD representations to free

ourselves of the auxiliary prime λ.

Theorem 3.6.1. Assume F/Q is Galois, and that there is a ramified prime p|p of F

for which one of the following holds:

1. p ≥ 29, p ≡ 1 (mod 4), and Fp/Qp is ramified quadratic,

2. p ≥ 23 and Fp/Qp is cyclic with ramification degree at least 3, or

3. p ≥ 17, p ≡ 1 (mod 4) and Gal(Fp/Qp) is a dihedral group of order at least 6.

Then there exists a modular abelian variety A/Q for which AF has everywhere good

reduction.

Remark 3.6.2. The theorem applies to any subfield F 6= Q of Q(ζp), p ≥ 29, so long

as F 6= Q(
√
−p).

Proof. . Under the hypotheses of the theorem, we will construct a WD representation

ρ ∈ G2(Qp) for which

1. ρ|Gp is unramified,

2. det ρ(−1) = 1, and

3. The inertial type τ
(
ρ|IQp

)
appears in the appropriate space of weight 2 cusp

forms.

Then by Theorem 3.2.4, there will exist a newform f of weight 2 for which ρWD
f,q is

unramified for all primes q except for q = p, and ρWD
f,p will be unramified upon restriction

to WFp . Then by the criterion of Néron-Ogg-Shafarevich, Af will have everywhere good

reduction over F .

In case (1), let ε be a ramified quadratic character of WQp . Then ε(−1) =

(−1)(p−1)/2 = 1; let ρ = ε ⊕ 1 ∈ G2(Qp); then ρ satisfies det ρ(−1) = 1. In case
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(2), the inertia group I(Fp/Qp) is identified via local class field theory with a quotient

of Z∗p; let χ be a character of Z∗p factoring through an injective character of I(Fp/Qp).

By hypothesis, ε has order at least 3, and in particular ε 6= ε−1. Let ρ = ε⊕ ε−1; then

ρ is minimal and det ρ(−1) = 1. Finally in case (3), let ρ be a faithful irreducible rep-

resentation of the dihedral group Gal(Fp/Qp), considered as a representation of WQp .

Then ρ is minimal with det ρ(−1) = 1 because −1 is a square in Q∗
p. In each case, it is

apparent that ρ|Wp is unramified.

Let λ = τ
(
ρ|IQp

)
be the inertial type of ρ, considered as a representation of

GL2(Ẑ). We shall show that λ appears in the appropriate space of cusp forms. Propo-

sition 3.4.1 implies that the number µ of newforms f of weight 2 and conductor a power

of p for which ρWD
f,p |IQp

∼= ρ|IQp
is

µ =
1
2

(dimλ− µ1728,0(λ)− µ0,0(λ)− µ∞,0(λ)) ,

where for i ∈ {1728, 0,∞}, µi,0(λ) is the multiplicity of λ in Ψi,0. The rest is a

calculation using Figure 2.1. In case (1), dimλ = p+ 1, and by Lemma 3.5.1 we have

the inequalities µ0,0 − (p + 1)/3 ≤ 4/3 and µ1728,0 − (p + 1)/2 ≤ 1, and µ∞,0 = 2, so

for µ to be positive it is sufficient that p ≥ 29. Case (2) is similar but we include the

possibility p = 23, for then both G0 and G1728 are elliptic and therefore µ0,0 = (p+1)/2

and µ1728,0 = (p + 1)/3. Case (3) is again very similar, only this time dimλ ≥ p − 1

and µ∞,0 = 0.
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Chapter 4

Stable reduction of modular

curves

4.1 The field over which J1(p
n) is semi-stable

Let F/Qp be an algebraic extension which is finitely ramified. Let A/F be an

abelian variety of dimension d.

Definition 4.1.1. The variety A is semi-stable if the connected component of the

special fiber of its Néron model is an extension of an abelian variety by a torus.

Let ` 6= p be prime. Recall the definition of the contravariant Tate module:

V`(A) = HomZ`

(
lim←−
n

A[`n],Q`

)
,

and let

ρA,` : GF → Aut(V`(A)) ∼= GL2d(Q`)

be the associated Galois representation.

Theorem 4.1.2 ([Gro72], exp. IX). A is semi-stable if and only if ρA,`|IF
is unipotent.
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Let p ≥ 5 be prime, let n ≥ 1, and let J = JacX1(pn), considered as an abelian

variety defined over the field K = Qp(ζpn). In [Kri96] an explicit extension field of Qnr
p

is given over which the Jacobian of X0(N) is assured to become semi-stable. The result

of this section is a converse to this sort of theorem, whereby we construct an explicit

extension field M of Knr such that any extension field of Knr over which J becomes

semi-stable must contain M .

The field M is constructed as follows. Following the notation of [Kri96], let

Ωi/Qp, i = 1, 2, 3 be the three quadratic extensions of Qp, with Ω1/Qp unramified.

One realization of this scenario is Ω1 = Qp(
√
D), Ω2 = Qp(

√
p), Ω3 = Qp(

√
Dp), where

D ∈ Z∗p is a quadratic nonresidue. For each i let Mi/Ωnr
i be the class field with norm

subgroup Ui defined by

Ui =


±(1 + p

bn/2c
Ωi

) i = 1

1 + pn−1
Ωi

, i = 2, 3.

Finally let M = M1M2M3K
nr.

Theorem 4.1.3. J is semi-stable over M . Conversely, for all but finitely many values1

of pn, M is the minimal extension of Knr over which J becomes semi-stable.

Proof. The variety J is isogenous to
∏

f Af , where f runs over Galois orbits of newforms

of conductor dividing pn.

For each i, let Θi be the set of characters θ of Ω∗
i satisfying

1. θ is minimal of conductor bn/2c if i = 1 and n− 1 if i = 2, 3, and

2. θ(−1) = 1 if i = 1, and θ(−1) = (−1)(p−1)/2 if i = 2, 3.

For θ ∈ Θi, let ρθ = IndΩi/Qp
θi|IQp

∈ GI
2(Qp). Then det ρθ(−1) = 1 and⋂

θ∈Θi

ker ρθ has fixed field precisely Mi. (4.1)

1Quantifying over all triples (p, n) with n ≥ 1, p ≥ 5 prime. Certainly the theorem can be extended
to Jac X1(Npn), where it would apply to all prime powers pn so long as N is large enough.
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Further, if f is a newform of conductor dividing pn, then ρ := ρWD
f,p ∈ GI

2(Qp) has

conductor dividing pn and satisfies det ρ(−1) = 1. Then ρ must be one of the following:

1. decomposable as ε1 ⊕ ε2, where the εi have conductor dividing pn,

2. ε⊗ Sp(2), where ε has conductor dividing pn, or

3. IndΩi/Qp
θ, where i ∈ {1, 2, 3} and θ ∈ Θi.

In every case, ρ|WM
is unipotent. It follows that each Af , and therefore J , is semi-stable

over M .

For the converse statement, suppose J is semi-stable over L ⊃ Knr. Let i ∈ {1, 2, 3}

and let θ ∈ Θi. Theorem 3.5.2 implies that as long as pn is large enough, there will

be an eigenform f ∈ S2(Γ1(pn)) for which ρWD
f,p |IQp

= ρθ. The assumption on L then

implies WL ⊂ ker ρθ. By (4.1) we have L ⊃Mi for each i, whence the theorem.

4.2 Generalities on stable reduction

Let F ⊂ Qbe as in the previous section, with residue field k. Let X/F be a smooth

projective curve.

Definition 4.2.1. A semi-stable model for X is a pair (X, φ) consisting of a flat proper

curve X/OF together with an F -isomorphism φ : X ⊗OF
F → X such that the singu-

larities of X := X⊗OF
k are ordinary double crossings of degree 1.

The definition of morphism between semi-stable models of X being evident, we

define

Definition 4.2.2. A stable model for X is a final object in the category of semi-stable

models of X.

Of course, the stable model is unique if it exists. Suppose there is a Galois extension

field L/F for which XL admits a stable model (X, φ). Let G = Gal(L/F ). Then for
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σ ∈ G, let Xσ = X⊗OL,σ OL and let φσ : Xσ ⊗OL
L→ XL be the composition

Xσ ⊗OL
L // (X⊗OL

L)⊗L,σ L
φ⊗1 // XL ⊗L,σ L // XL,

the last arrow appearing because X is defined over F . Then (Xσ, φσ) is also a stable

model for XL, so that there is a canonical isomorphism Xσ → X. Composing this

with 1 ⊗ σ : X → Xσ gives an isomorphism σ : X → X lying over Specσ : SpecOL →

SpecOL. We have therefore described an OL-semilinear action of G on the curve X.

Notice that the action of the inertia subgroup of G acts Fp-linearly on the special fiber

Xs = X⊗OL
Fp.

Let X̃ be the normalization of Xs; that is, the disjoint union of the irreducible

components Xi of Xs. Let Γ be the dual graph of Xs: this is the graph with one vertex

vi for each Xi and an edge joining vi to vj for each point of Xi∩Xj . Both X̃ and Γ admit

actions of G. For an abelian group A, we have the cohomology group H1(Γ, A), defined

as follows: Choose an orientation of the edges of Γ. Let C0(A) (respectively, C1(A)) be

the group of A-valued functions on the set of vertices (respectively, edges) of A. There is

a map δ : C0(A)→ C1(A) sending a function f to the function e 7→ f(v1)−f(v0), where

v0 and v1 are the origin and target of e respectively. Then H1(Γ, A) = coker δ. The

image of δ doesn’t depend on the choice of orientation of Γ, so neither does H1(Γ, A).

Let ` 6= p and let η = SpecF . The data of X̃ and Γ essentially determine the `-adic

étale cohomology of the original curve X as a GF -module:

Theorem 4.2.3. The space H1(Xs,Q`) is the space of IL-invariants in H1(Xη,Q`).
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Further, H1(Xη,Q`) fits naturally into a diagram of Gal(F/F )-modules

0

��
H1(Γ,Q`)

��
0 // H1(Xs,Q`)

��

// H1(Xη,Q`) // H1(Γ,Q`)(−1) // 0

H1(X̃,Q`)

��
0

(4.2)

with both sequences exact.

Remark 4.2.4. In particular, we have genus(X) =
∑

i genus(Xi) + dimH1(Γ,Q`),

where i indexes the irreducible components Xi of X̃.

Proof. We start with the assertion that H1(Xs,Q`) = H1(Xη,Q`)IL . This argument

is adapted from the proof of Prop. 3.13 in [Edi], §3.12. Let S = SpecOL and let Let

J/S be the Néron model of the Jacobian of XL. Then the connected component J0 of

J is equal to Pic0
X/S by a property of Néron models, see [BLR90], Chap. 9. Let n ≥ 0.

By the Kummer exact sequence,

H1(Xs, µ`n) = Pic0
Xs/s[`

n] = J0(s)[`n] = J0(Lnr)[`n]

and

H1(Xη, µ`n)IL = Pic0
Xη/η[`

n]IL = J(F )[`n]IL = J(Lnr)[`n].

Therefore the cokernel of the injectionH1(Xs, µ`n) ↪→ H1(Xη, µ`n)IF has order bounded

by the order of the group of connected components of J . This order is independent of

n. Taking inverse limits along n we conclude that the cokernel of H1(Xs,Q`(−1)) ↪→

H1(Xη,Q`(−1))IF is torsion, therefore 0.

The filtration of H1(Xη,Q`) shown in the diagram is an application of the machin-

ery of the weight spectral sequence, which is treated in [RZ80], Satz 2.10 in the case
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of semi-stable reduction of varieties of arbitrary dimension. In our specific case, the

technology unravels as follows: Let Y (0) = X̃ and let Y (1) be the disjoint union of the

singular points of Xs, considered as a variety over s = Spec Fp. The weight spectral

sequence begins on page one as

Epq
1 =

⊕
i

Hq−2i(Y (2i+p),Q`)(−i) =⇒ Hp+q(Xη,Q`),

where the sum runs over integers i ≥ max {0,−p} satisfying 2i+p ∈ {0, 1}. The picture

on page one is

E−1,2
1 = H0(Y (1),Q`)(−1) α // H2(Y (0),Q`)

H1(Y (0),Q`)

H0(Y (0),Q`)
β // H0(Y (1),Q`) = E1,0

1 .

Then kerα = H1(Γ,Q`)(−1) and cokerβ = H1(Γ,Q`). Therefore the diagonal line

p + q = 1 in page two has entries H1(Γ,Q`)(−1), H1(X̃,Q`) and H1(Γ,Q`). The

spectral sequence degenerates on page two because there are no arrows between nonzero

entries; therefore H1(Xη,Q`) admits a filtration with these three subquotients, as in

the diagram of the theorem.

4.3 Deligne-Carayol revisited

To motivate our discussion of the stable reduction of modular curves, we need to

return to the setting of Theorem 3.2.1, where the cohomology of modular curves is

discussed in detail. This section reviews the results of [Car83]. Let p be prime and let

n ≥ 1.

Let N ≥ 4 be prime to p, and let Xn be the compactification of the moduli scheme

over S := SpecZnr
p of elliptic curves with a Γ(pn)-structure and a Γ1(N)-structure,

as defined in [KM85]. Then over T = S[ζpn ], Xn breaks up into a disjoint union

44



∐
a∈(Z/pnZ)∗ X

a
n of regular curves over T , with each Xa

n having generic fiber isomorphic

to the classical modular curve X(Γ(pn) ∩ Γ1(N)).

Let s = Spec Fp. The special fiber Xa
n,s of Xa

n admits the following descrip-

tion. For b ∈ P1(Z/pnZ), let Ca,b
n be the moduli scheme over Fp parametrizing pairs

(E/S′/S, φ, ψ) consisting of elliptic curves E over a base S′, a Γ1(N)-level structure

ψ, and a Γ(pn)-level structure φ : (Z/pnZ)⊕2
S′ → E satisfying φ((1, 0), (0, 1)) = ζa

pn and

φ(b) = 0. Then naturally Ca,b
n ⊂ Xa

n,s and

Xa
n,s =

⋃
b∈P1(Z/pnZ)

Ca,b
n

is the union of the Ca,b
n meeting simultaneously over each supersingular point of the

j-line. Each Ca,b
n is abstractly isomorphic to the Igusa curve Ig(pn) ([KM85], Chap.

10).

Let η = SpecQp and let

H1 = lim
n→∞

H1(Xn,η,Q`)

be the limit along n of the cohomology of the geometric generic fiber of Xn. Let also

H1
s = lim

n→∞
H1(Xn,s,Q`)

H̃1
s = lim

n→∞
H1(X̃n,s,Q`)

The various cohomology spaces assemble into an exact diagram

0

��
K

��
0 // H1

s

��

// H1 // H1
e

H̃1
s

��
0

(4.3)
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in which every space appearing2 admits an action of GL2(Qp)×WQp . Carayol’s theorem

realizes the LLC inside the cohomology of Xn in the following sense.

Theorem 4.3.1 ([Car83], §11.1). We have a decomposition

H1 =
⊕

f

πf,p ⊗ ρ∨f,p,

where f runs over all newforms of weight 2 whose prime-to-p-conductor divides N .

With reference to the diagram in 4.6, the “locations” of the terms in the sum are given

by

1. ρf,p is decomposable if and only if πf,p ⊗ ρ∨f,p ⊂ H1
s , in which case πf,p ⊗ ρ∨f,p is

isomorphic to its image in H̃1
s ,

2. ρf,p is irreducible if and only if πf,p ⊗ ρ∨f,p is isomorphic to its image in H1
e , and

3. If ρf,p = χ⊗Sp(2), the image of πf,p⊗ρ∨f,p in H1
e is isomorphic to πf,p⊗χ−1(−1);

the kernel lies in K and is isomorphic to πf,p ⊗ χ−1.

4.4 Stable models for modular curves

In the proof of the Theorem 3.2.1 of Deligne-Carayol, the cases where ρf,p is decom-

posable are treated by a study of the smooth curves Ca,b
n in characteristic p. However,

the treatment of the cases where ρf,p is non-semisimple or irreducible involves an anal-

ysis of the vanishing cycles H1
e , which carry an action of a certain quaternion group,

and in particular it relies upon the Jacquet-Langlands correspondence. If on the other

hand one could calculate a stable model Xn for Xn over an appropriate ramified ex-

tension of S, then in view of Theorem 4.2.3, one would be able to “see” the theorem

of Deligne-Carayol, and therefore the LLC for GL2 over Qp, in the structure of the

smooth curve X̃n and the dual graph Γ!
2The space H1

e admits an interpretation as a space of “vanishing cycles,” but we will not need to
define these here.
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In this final section of our thesis, we present a known result on the stable reduction

of the curve X1. We then “reverse-engineer” a conjectural stable reduction of X2 in a

way that is consistent with Theorem 4.3.1.

Let XDL be the smooth projective curve containing a dense open subscheme iso-

morphic to the affine curve (xpy−xpy)p−1 = 1. Then XDL admits an action of GL2(Fp)

given by (
a b
c d

)
(x, y) = (ax+ by, cx+ dy).

For a ∈ F∗p, supposeXa
DL is the component of this curve whose equation is xyp−xpy = a.

Then Xa
DL has points at infinity ∞a,b indexed by b ∈ P1(Fp).

Theorem 4.4.1. The curve X1 admits a stable model X1 over the tamely ramified

extension of Qnr
p of degree p2 − 1. The reduction X1 over Fp consists of

1. A disjoint union of Igusa curves Ca,b
1 for a ∈ F∗p and b ∈ P1(Fp). An element

g ∈ GL2(Fp) carries Ca,b
1 onto C(det g)a,gb

1 .

2. For each supersingular point in X0 = X1(N), a copy of the curve Xa
DL, attached

at ∞a,b to the corresponding supersingular point of Ca,b
1 for all b.

Proof. The fact that the supersingular components are the curves XDL with this partic-

ular action of GL2(Fp) is in [BW04]. The complete case of the modular curve X1(Np2),

which is a cover of each Xa
1 , is treated in [Joy06], Theorem 1.

Remark 4.4.2. The curve XDL is the Deligne-Lusztig curve for the group GL2. Its

appearance in the stable reduction of X1 is a special case of the work carried out

in [Yos04], whereby the “depth 0” case of the LLC for GLn is realized in the vanishing

cycles of a deformation space of formal groups.

We now turn to X2. Assume it admits a stable model X2. As was the case for

X1, we expect the quotient map X2,s → X1(N)s on the special fiber to be flat outside

of the supersingular locus of X1(N)s. The preimage of each supersingular point in
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X1(N)s ought to have components whose cohomology carries representations of the

group GL2(Z/p2Z)× IQp in accordance with Theorem 4.3.1.

First we classify the irreducible inertial WD representations ρ ∈ GI
2(Qp)0Q`

whose

types have level ≤ 2. Assume p ≥ 3. Then any lift of ρ to WQp is of the form IndΩ/Qp
θ

for one of the quadratic extensions Ω/Qp and a character θ of Ω∗. We say that such

a θ has essential conductor pn
Ω if θ = θ0 × χ ◦ NΩ/Qp

for a character χ of Q∗
p and θ0

minimal of conductor pn
Ω. We divide the pairs (Ω, θ) for which `(ρ) ≤ 2 into “species”

as follows:

1. S2: Ω = Ω1, θ has essential conductor pΩ1 ,

2. Si
3, i = 2, 3: Ω = Ωi and θ has essential conductor p2

Ωi
,

3. S4: Ω = Ω1 and θ has essential conductor p2
Ω1

.

The subscript on the S refers to the minimal conductor of a twist of ρ. In view of

part 3 of Theorem 2.4.1, rec(ρ) is well-defined as a representation of GL2(Zp). Let

K(p2) =
{
g ∈ GL2(Zp) : g ≡ Id2 (mod p2)

}
.

Proposition 4.4.3. Let G2 = GL2(Z/p2Z). For each of the species S above, there

exists a smooth projective curve XS over Fp admitting an action of G2× IQp
for which

H1(XS,Q`) ∼=

⊕
ρ∈S

rec(ρ)K(p2) ⊗ ρ∨
⊕nS

for a certain multiplicity nS.

Remark 4.4.4. The form of the curves XS in the proof below is suggested by recent

unpublished work of Wewers, and by the forms of the curves appearing in [CM06].

They are probably not unique for the property above.

Proof. For each i = 1, 2, 3, let ψi : IΩi → O∗Ωi
be the restriction to inertia of the inverse

to the reciprocity map Art : Ω∗
i →W ab

Ωi
.
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When ρ ∈ S = S2, we have

rec(ρ)|K =
⊕

g

IndK
K∩gKg−1 τ(ρ), (4.4)

where g runs over the coset representatives
(
pa

1

)
of Ω∗

1K\G/K, a ≥ 0, as in [Hen02],

A.3.6. Therefore

rec(ρ̃)K(2) = τ(ρ)⊕ IndK
K0(1) τ(ρ)

g0 , (4.5)

where g0 =
(
p

1

)
.

Let X0
S2

= XDL be the smooth projective curve over Fp with affine part

(xpy − ypx)p−1 = 1.

This admits an action of the product group GL2(Fp)× F∗p2 , by the formula

(g, β)(x, y) = (β(ax+ by), β(cx+ dy)) ,

for every g =
(
a b
c d

)
∈ GL2(F)p and β ∈ F∗p2 . A calculation using the Lefshetz

fixed-point formula gives

[H1(XDL,Q`)] =
⊕

θ

[τ(θ)⊗ θ−1]

as an equality in the Grothendieck ring R(GL2(Fp) × F∗p2). Here θ runs over the

characters of F∗p2 satisfying θ 6= θp and τ(θ) is the unique irreducible representation of

GL2(Fp) whose trace on an element g is −(θ(α) + θ(αp)) whenever g has eigenvalues

α, αp ∈ F∗p2\F∗p. In fact, if θ is identified via ψ1 with a character of IΩ1 , then τ(θ) is

the inertial type for IndΩ1/Qp
θ̃ for any lift of θ to WΩ1 .

Let H2 ⊂ GL2(Fp) × IQp be the subgroup of pairs (g, α) satisfying det g−1 ≡

NΩ1/Qp
ψ1(α) (mod p2). We define an action of H2 on XS2 by pullback from the map

H2 → GL2(Fp)× F∗p2 , (g, α) 7→ (g, ψ1(α)).

Let

X1
S2

= (G2 × IQp)×H X0
S2
.
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Then

H1(X1
S2
,Q`) = Ind

G2×IQp

H2
H1(X0

S2
,Q`)

is the sum of τ(ρ)⊗ ρ∨ for ρ ∈ S2. Finally, let

XS2 = X1
S2

∐(
G2 ×K0(1) (X1

S2
)g0
)
,

where (X1
S2

)g0 is the same underlying curve as X1
S2

but with an action of K0(1) =

K ∩ gKg−1 conjugate through g to the action of K on X1
S2

. Then by Equation 4.5,

H1(XS2 ,Q`) ∼=
⊕
ρ∈S2

rec(ρ)K(2) ⊗ ρ∨.

When S = Si
3, rec(ρ)K(2) = τ(ρ): This follows from Theorem 3 of [Cas73b]. Let

A ⊂ M2(Zp) be the hereditary chain order with e = 2 as in Section 2.5.3. Choose

a uniformizer $ of Ωi. We identify A with OΩi ⊕ OΩiσ and define the subgroup

U1 = (1 + pΩi) + pΩiσ. Let X0
Si

3
be the smooth projective curve over Fp with affine

part

y2 = xp − x,

and let U1 act on X0
Si

3
as follows: if u ∈ U1, write u = r + sσ with r = 1 +$t and let

u(x, y) = (x+ TrΩi/Qp
t, y). Then one can check that as a U1-module, H1(X0

Si
3
,Q`) =∑

ε[ε], where ε runs over the nontrivial characters of 1 + pΩi vanishing on 1 + p2
Ωi

.

Define

H3 =
{
(g, α) ∈ G2 × IΩi |gψi(α)−1 ∈ U1 ∩ S2

}
,

and let H3 act on XSi
3

by pullback from U1∩S2 through the map (g, α) 7→ gψi(α)−1 ∈

U1 ∩ S2 and let XSi
3

= (G2 × IQp)×H3 X
0
Si

3
. Let J0 = O∗Ωi

U1. Then

H1(XSi
3
,Q`) =

⊕
ε

Ind
G2×IQp

H3
ε

=
⊕

ε

Ind
G2×IQp

J0×IΩi
Ind

J0×IΩi
H ε

=
⊕

ε

Ind
G2×IQp

J0×IΩi

⊕
θ

[θ ⊗ θ−1],
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where θ runs over the characters of O∗E which restrict to 1 + p as ε up to a twist by

some χ ◦ NΩi/Qp
, and [θ ⊗ θ−1] means the character of J0 × IΩi defined by (g, α) 7→

θ(g)θ(ψi(α))−1. As ε runs over the nontrivial characters of (1 + pΩi)/(1 + p2
Ωi

), θ runs

over the characters of O∗E with minimal conductor p2
Ωi

. Noting that τ(IndΩi/Qp
θ̃) =

IndG2

J0 θ for any lift θ̃ of θ to WΩi (see Theorem 2.5.3), we find

H1(XSi
3
,Q`) =

⊕
θ

Ind
G2×IQp

J0×IΩi
[θ ⊗ θ−1]

=
⊕

θ

τ
(
IndΩi/Qp

θ
)
⊗ IndΩi/Qp

θ−1

=
⊕
ρ∈Si

3

τ(ρ)⊗ ρ∨

When S = S4, rec(ρ̃)K(2) = τ(ρ). Let A = M2(Zp) = OΩ1⊕OΩ1σ be the hereditary

chain order with e = 1. Say OΩ1 = Zp[
√
d]. This time

U1 = (1 + pΩ1) + pΩ1σ ⊂ A∗

equals K(1), the subgroup of matrices congruent to Id2 mod p. Define X0
S4

as the

smooth projective curve with affine part xpy − ypx = 1, with an action of U1 ∩ S2 as

follows: if r + sσ ∈ U1 ∩ S2, then r = 1 + p
√
dt with t ∈ Zp; let this element act on

X0
S4

as (x, y) 7→ (x+ ty, y). Then as a U1 ∩S2-module, H1(X0
S4
,Q`) =

⊕
ε p[ε], where

ε runs over the p− 1 nontrivial characters of (1 + pΩ1)
Tr=0 vanishing on 1 + p2

Ω1
.

Let

H4 =
{
(g, α) ∈ G2 × IQp : gψ1(α)−1 ∈ U1 ∩ S2

}
and extend the action of U1 ∩ S2 on X0

S4
to H4 via the map (g, b) 7→ gψ1(b)−1. Let

XS4 = (G2 × IQp)×H4 X
0
S4

. The calculation precedes almost word-for-word as in the

case of Si
3, resulting in

H1(XS4 ,Q`) =
⊕
ρ∈S4

[
τ(ρ)⊕ ρ∨

]⊕p
.
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Remark 4.4.5. We note that the dimensions of τ(ρ) for ρ ∈ S2,S
i
3,S4 are p − 1,

p2 − 1 and p2 − p, respectively, and that nS2 = nSi
3

= 1, while nS4 = p.

Let XLT for (“Lubin-Tate”) be any semi-stable curve over Fp with an action of

G2 × IQp whose components of genus greater than 0 are

1. XS2 ,

2. (p+ 1) copies of XSi
3

for each i ∈ {2, 3},

3. XS3 ,

satisfying the conditions

1. XLT is the disjoint union of connected components Xa
LT, where a runs through

(Z/p2Z)∗,

2. Each (g, α) ∈ G2 × IQp carries Xa
LT isomorphically onto X

det(g)χp2 (α)a

LT , where

χp2 : IQp → (Z/p2Z)∗ is the cyclotomic character, and

3. The dual graph of XLT is contractible.

It is not obvious that such a curve should exist. In Figure 4.4 we present a possible

configuration of one of the connected components of XLT in the case of p = 3. Here, the

blue line represents a connected component of X1
S2

, the cyan lines represent XS2\X1
S2

,

the green lines represent components of Xi
S3

for i = 2, 3, the red lines represent XS4 ,

and finally the black lines are rational curves. We think, but we do not check it here,

that G2 × IQp acts on this configuration in a consistent manner.

Conjecture 4.4.6. There is a stable model X2 of the modular curve X2 over the field

M =
⋂
ρ∈S

ker ρ ⊃ Qnr
p (ζp2).

The special fiber Xs, considered as a curve over Fp together with an action of G2× IQp,

consists of:
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. . .

Figure 4.1. A connected component of the curve XLT, shown in the case of p = 3.

1. The Igusa curves Ca,b
2 for a ∈ (Z/p2Z)∗, b ∈ P1(Z/p2Z), and

2. For each supersingular point A of X1(N) and each a ∈ (Z/p2Z)∗, a copy of the

curve Xa
LT is glued at one point to Ca,b

2 for each b ∈ P1(Z/p2Z).

The conjecture is consistent with Theorem 4.3.1:

Theorem 4.4.7. Let Y/Qnr
p be a smooth Galois cover of X1(N) with group G2. Assume

that Y admits a stable model Y over some extension field of Qnr
p for which the special

fiber Ys of the form appearing in Conjecture 4.4.6. Then as G2 × IQp-modules,

H1(Yη,Q`) ∼= H1(X2,η,Q`).

Proof. Theorem 4.3.1 predicts the structure of H1(X2,η,Q`) as a module for G2×WQp :

H1(X2,η,Q`) ∼=
⊕

f

π
K(p2)
f,p ⊗ ρ∨f,p,

where f runs over newforms whose prime-to-p conductor divides N and for which πf,p

admits a nonzero vector fixed by K(p2). We will show that for each ρ∨ ∈ GI
2(Qp), the

ρ∨-isotypic part of H1(Yη,Q`) is rec(ρ)K(2) ⊗ ρ∨ with the correct multiplicity.
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By Theorem 4.2.3, we have a diagram

0

��
H1(Γ,Q`)

��
0 // H1(Ys,Q`)

��

// H1(Yη,Q`) // H1(Γ,Q`)(−1) // 0,

H1(Ỹs,Q`)

��
0

(4.6)

where Ỹ is the normalization of Ys and Γ is its dual graph, and

H1(Ys,Q`) = H1(Yη,Q`)
IM . (4.7)

Let S be the set of supersingular points of X1(N)s.

First we consider those ρ∨ ⊂ H1(Yη,Q`) which are contained in the cohomology

of the special fiber H1(Ys,Q`) and which are isomorphic to their image in H1(Ỹ,Q).

The normalization is

Ỹ =

∐
a,b

Ca,b
2

∐ (#S copies of XLT ) ,

where a runs over (Z/p2Z)∗, b runs over P1(Z/p2Z) and ρ runs over all the inertial

WD representations belonging to the species S2, Si
3 and S4. Already by part 1 of

Theorem 4.3.1 we have ⊕
a,b

H1(Ca,b
2 ,Q`) ∼=

⊕
f

π
K(p2)
f,p ⊗ ρ∨f,p,

where f ranges over those forms with ρf,p decomposable.

Now let ρ∨ be an irreducible inertial WD representation appearing in H1(Ỹ,Q`).

We claim that

#S ×
〈
τ(ρ),H1(XLT ,Q`)

〉
G2

=
〈
τ(ρ),H1(X2,η,Q`)

〉
G2
. (4.8)
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In view of Theorem 4.3.1 and Proposition 4.4.3, this would mean that τ(ρ)⊗ρ∨ appears

in the cohomology of Y with the same multiplicity as it does for X2. By Remark 4.4.5,

the LHS of Equation 4.8 is 2#S dim τ(ρ)/(p− 1), regardless of the species to which ρ

belongs. We are reduced to showing that

〈
τ(ρ),H1(X2,η,Q`)

〉
= 2#S dim τ(ρ)/(p− 1) (4.9)

For the RHS, we consider the generic fiber of the cover X2 → X1(N) with Galois

group G2. In characteristic zero, this cover is unramified away from the cusps. Let c

be the number of cusps of X1(N). The preimage of each of these cusps in X2 can be

identified as a G2-set with G2/U , where up to conjugacy U =
(

1 ∗
1

)
⊂ G2. There

exists an integer m for which we have as an equality in R(G2):

[H∗(X2,η,Q`)] = mQ`G2 + c IndG2
U 1, (4.10)

obtained by comparing the traces of both sides on an element g ∈ G2\ {Id2} and

applying the Lefshetz fixed-point formula. Let g be the genus of X1(N). By Riemann-

Hurwitz,

−dimH∗(X2,η,Q`) = (2g − 2)#G2 + c(#G2 −#G2/U); (4.11)

using this to solve for m in Equation 4.10 gives m = 2− 2g − c and

[H1(X2,η,Q`)] = (2g−2+c)Q`G2−c IndG2
U 1+[H0(X2,η,Q`)]+[H1(X2,η,Q`)]. (4.12)

Now
〈
τ(ρ), IndG2

U 1
〉

G2

= 〈τ(ρ)|U , 1〉U = 0 by [Cas73b]: The restriction of τ(ρ) to U

only contains nontrivial characters of U . The action of G2 on H i(X2,η,Q`) for i = 0, 2

factors through the determinant map, so these spaces cannot contain τ(ρ). We find

that the multiplicity of τ(ρ) in H1(X2,η,Q`) is

〈
τ(ρ),H1(X2,η,Q`)

〉
= (2g − 2 + c) dim τ(ρ). (4.13)

To deduce Equation 4.9 from Equation 4.13, we are down to showing that

2#S = (2g − 2 + c)(p− 1). (4.14)
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Consider the curve X = X(Γ0(p)∩Γ1(N)); by a well-known result of Deligne-Rapoport,

X admits a model over Znr
p whose reduction consists of two copies of X1(N) crossing

transversely at each of the #S supersingular points. On the one hand, by Remark 4.2.4

the genus of X is

gX = 2g + #S − 1, (4.15)

because in this situation the dual graph of the special fiber of the Deligne-Rapoport

model has Betti number #S−1. On the other hand, the cover X → X1(N) has degree

(p + 1) and is ramified at exactly one point in the preimage of each cusp of X1(N),

with index p. Therefore Riemann-Hurwitz gives

2gX − 2 = (2g − 2)(p+ 1) + c(p− 1). (4.16)

Putting together Equations 4.15 and 4.16 establishes Equation 4.14.

We turn now to the graph Γ. It has connected components Γa for a ∈ (Z/p2Z)∗,

and each Γa is homotopic to the graph with vertices va,b for each b ∈ P1(Z/p2Z)

(these represent the Igusa curves Ca,b
2 ) and wa

x for each x ∈ S (these represent Xa
LT,

whose dual graph was assumed contractible), with an edge connecting each va
b to each

wa
x. An element α ∈ IQp takes Γa to Γχp2 (α)(a), where χ : WQp → (Z/p2Z)∗ is the

cyclotomic character. An element g ∈ G2 sends the vertex va,b to va det g, gb. Therefore

as a G2 × IQp-module we have

H1(Γ,Q`) ∼=
⊕

χ

[
χ · St2⊗χ−1

]⊕(#S−1)
, (4.17)

where χ runs over characters of (Z/p2Z)∗ and St2 is the complement of the G2-fixed

line in the permutation representation of G2 on P1(Z/p2Z).

Now consider the case where an inertial representation ρ∨ ⊂ H1(Yη,Q`) is inde-

composable and not contained in H1(Ys,Q). Such a ρ∨ must remain ramified when

restricted to M , by Equation 4.7. But then by the above description of the IQp-module

structure of H1(Γ,Q`), the image of ρ∨ in H1(Γ,Q`) must be a single character of IQp

factoring through a character χ−1 of Qnr
p (ζp2) ⊂M . It follows that ρ∨∩H1(Ys,Q`) 6= 0
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and that ρ∨ is reducible; i.e. ρ is the `-adic representation corresponding to χSp(2).

We also find that ρ∨ ∩ H1(Ys,Q`) is a copy of χ−1; the image of this in H1(Ỹ,Q)

is 0 because the latter space is already “filled up” by the irreducible WD representa-

tions appearing in H1(Yη,Q`). Finally, rec(Sp(2)) is the Steinberg representation St of

GL2(Qp) and it is easy to check that StK(2) = St2. We conclude that rec(ρ)K(2) ⊗ ρ∨

appears in H1(Yη,Q`) with multiplicity #S − 1.

The proof of the theorem is complete as soon as we establish that the number of

weight 2 newforms f with πf,p Steinberg and with prime-to-p conductor dividing N is

#S − 1. This number of newforms is simply the dimension of S2(Γ0(p)∩Γ1(N))p−new,

and we have

dimS2(Γ0(p) ∩ Γ1(N))p−new = dimS2(Γ0(p) ∩ Γ1(N))− 2 dimS2(Γ1(N))

= gX − 2g

= #S − 1

by Equation 4.15.

Remark 4.4.8. There is no obstacle to generalizing Conjecture 4.4.6 to the modular

curves Xn for higher n. In fact, we suspect that one can write down a plausible

candidate for the stable reduction of the projective limit X∞ = lim←−Xn, and that it will

be simpler to describe than it would be for any particular Xn!

The long-term hope is that one can prove a form of Conjecture 4.4.6 in all levels

and then use an analogue of Theorem 4.4.7 to deduce the theorems of Deligne-Carayol

(3.2.1 and 4.3.1) in a rather new manner, at least in the case of supercuspidal πf,p.

A promising method for carrying out this program is that of R. Coleman and K.

McMurdy, where the structure of a rigid model of a curve is obtained from a special

type of covering of the rigid-analytic space associated to its generic fiber. This method

has worked successfully in the case of X0(Np3), see [CM06]. There, the rigid-analytic

space associated to Xn contains certain points (called “fake CM points” in [CM06])
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corresponding to formal groups with endomorphisms by a ring of integers in a quadratic

extension Ω/Qp. The action of inertia on such points is already known by classical

Lubin-Tate theory.

Generally, one might hope to find within the rigid-analytic space associated to Xn

certain affinoid neighborhoods of the fake CM points whose reductions are the curves

XS considered appearing in Prop. 4.4.3. In the case of n = 2, one hopes the peculiar

subgroupsH ⊂ G2×IQp appearing as the stabilizers of these curves in Proposition 4.4.3

might have a natural interpretation in terms of classical Lubin-Tate theory for the

fields Ωi. There are two potential problems with this approach. One is that we are

only considering the action of inertia on the special fiber and therefore cannot hope

to recover the full theory of Deligne-Carayol, rather only “up to inertia.” The other

is the troublesome case of p = 2, wherein primitive WD representations are admitted.

There, one might have to use some sort of base-change technique of the sort employed

for primitive representations in [Car83].

Yet more speculative is the possibility of applying these techniques to the case of

GLn. Here, the correct object of study seems to be the formal scheme parametrizing

deformations with level structure of a fixed one-dimensional formal group of height

n− 1, as in [HT01]. Now the hope is that a model for this sort of object can be found

which is strictly semi-stable; then, an appropriate form of Theorem 4.2.3 could be

applied to calculate cohomology. In the best possible scenario, the LLC for GLn ought

to be lurking in this cohomology space and a purely local proof for it might be found

which avoids the use of techniques in the theory of global automorphic representations.
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