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Notations

K : a finite extension of Qp with p > 2

ΓK := Gal(K̄ |K ) absolute Galois group of K

F: a finite field of characteristic p

ρ̄ : ΓK → GLn(F), a n-dimensional continuous representation
of ΓK .

RepFp
(ΓK ): category of finite dimensional continuous

Fp-representations of ΓK .

FGpK : category of (commutative) finite group schemes over
K which are p-torsion.

There is a natural equivalence of categories:

RepFp
(ΓK ) ' FGpK .

In particular, ρ̄ can be viewed as a finite group scheme over K .
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Kisin varieties

Kisin constructed a projective scheme C (ρ̄) over F such that for
any F′|F,

C (ρ̄)(F′) :=
{ finite flat group schemes over OK

with generic fiber ρ̄⊗F F′
}
.

When the ramfication index e(K |Qp) < p − 1, Raynaud showed
that C (ρ̄) has at most one point.

Motivation: modularity lifting

Kisin varieties ! Local deformation ring
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ρ̄ via p-adic Hodge theory

Recall ρ̄ : ΓK → GLn(F).

k: the residue field of K

π be a uniformizer of K

πn := π
1

pn be a compatible system of pn-th root of π for all
n ∈ N.

K∞ := ∪nK (πn).

Theorem (Fontaine-Wintenberger)

There exists a canonical isomprhism of absolute Galois groups

ΓK∞ ' Γk((u))

where ΓK∞ = Gal(K̄∞|K∞) and Γk((u)) = Gal(k((u))sep|k((u))).

ρ̄|ΓK∞
can be viewed as a F-representation of Γk((u)).
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Classification of mod p-representations of Γk((u))

Let ϕ be the absolute Frobenius on k((u)).
An étale ϕ-module over k((u)) is a pair (N,Φ) where

N is a k((u))-vector space of finite rank,

Φ : N → N is semi-linear with respect to ϕ,

such that 1⊗ Φ : ϕ∗(N)→ N is an isomorphism.

Let Modϕ,et
k((u)) be the category of étale ϕ-modules over k((u)).

Theorem (Fontaine)

There is an equivalence of categories

RepFp
(Γk((u))) ' Modϕ,et

k((u)).
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Breuil-Kisin classification of finite flat group schemes over
OK

FFGpOK
: the category of finite flat group schemes over OK

which is killed by p.

Modϕk[[u]]: the category of finite free k[[u]]-modules M with an
injective semi-linear map Φ : M→M such that the cokernel
of ϕ∗M→M is killed by ue , where e = e(K |Qp).

Note that M[ 1
u ] is an étale ϕ-module over k((u)), for

M ∈ Modϕk[[u]].
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Breuil-Kisin classification of finite flat group schemes over
OK

Theorem (Breuil-Kisin)

There is an equivalence of categories

FFGpOK

BK' Modϕk[[u]]

G 7→ BK(G)

Moreover, for G ∈ FFGpOK
, then there is a canonical isomorphism

of étale ϕ-modules over k((u)):

NGK (−1) ' BK(G)[
1

u
].
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Summary

ρ̄ ∈ RepFp
(ΓK ) // RepFp

(ΓK∞)
∼ // RepFp

(Γk((u)))

∼
��

FGpK

∼

OO

Modϕ,et
k((u))

FFGpOK

generic fiber

OO

BK
∼

//Modϕk[[u]]

(−)[ 1
u

](1)

OO
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ρ̄(−1)|ΓK∞
in terms of an étale ϕ-module

Recall: ρ̄|ΓK∞
: Γk((u)) → GLn(F).

Let ϕ : F⊗Fp k((u))
1⊗ϕ→ F⊗Fp k((u)).

Hence ρ̄|ΓK∞
(−1) can be viewed as an étale ϕ-module

Nρ̄ = (Nρ̄,Φρ̄) with F-action. More precisely,

Nρ̄ is a free F⊗Fp k((u))-module of rank n;

Φρ̄ : Nρ̄ → Nρ̄ is semi-linear with respect to ϕ such that
ϕ∗Nρ̄ → Nρ̄ is an isomorphism.
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Affine Grassmannian

Let G = Resk|Fp
GLn.

The affine Grassmannian for G is the ind-projective scheme over
Fp such that for any F′|Fp:

GrassG (F′) = G (F′((u)))/G (F′[[u]]).

This parametrizes lattices inside F′ ⊗Fp k((u))n.
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Kisin variety in terms of moduli space of lattices

For any F′|F,

C (ρ̄)(F′) = {M ⊂ Nρ̄ ⊗F F′ lattice such that

ueM ⊂ Φρ̄(ϕ∗M) ⊂M
},

where Φρ̄(ϕ∗M) denote the image of 1⊗ Φρ̄ : ϕ∗M→M.

 Kisin variety is a closed subscheme inside the affine
Grassmannian GrassG .
More generally, we consider a closed subscheme Cµ(ρ̄) inside C (ρ̄):

Cµ(ρ̄)(F′) :=
{ M ⊂ Nρ̄ ⊗F F′ lattice such that the relative

position of Φρ̄(ϕ∗M) and M is controlled by µ

}
where µ is a cocharacter of G .
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Relation of Kisin varieties and deformation rings

Rfl ,ν
ρ̄ : flat deformation ring of ρ̄ such that Hodge-Tate weights are

given by ν, which is a cocharacter of ResK |Qp
GLn.

To ν, we can associate a cocharacter of G :

µ(ν) : Gm,|F̄p

ν⊗F̄p→ ResOK |Zp
(GLn)|F̄p

→ Resk|Fp
(GLn)|F̄p

.

Theorem (Kisin)

There is a bijection:

π0(Cµ(ν)(ρ̄)) ' π0(Spec(Rfl ,ν
ρ̄ [

1

p
])).

Question: π0(Cµ(ρ̄)) =?
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Multiplicative and étale rank of finite flat groups over OK

G: a finite flat group scheme over OK ;

There is a connected-étale exact sequence:

0→ G0 → G → Get → 0.

Cartier dual G∨: for any scheme T over OK ,

G∨(T ) := HomT−gp(GT ,Gm,T ).

We have G∨∨ = G.

Gm := (G∨,et)∨ ⊂ G is the maximal multiplicative subgroup
scheme of G.
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Multiplicative and étale rank of finite flat groups over OK

Define:

dm(G) := rankGm multiplicative rank of G,

det(G) := rankGet étale rank of G .

Suppose (M,Φ) = BK(G).

G is étale (i.e. G = Get) if and only if Φ(ϕ∗M) = ueM;

G is multiplicative (i.e. G = Gm) if and only if Φ(ϕ∗M) = M.

Examples:

G = Z/pZ constant, dm(G) = 0, det(G) = 1;

G = µp multiplicative, dm(G) = 1, det(G) = 0.
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Kisin’s conjecture on the set of connected components

Cµ(ρ̄)dm,det : closed subscheme of Cµ(ρ̄) which paramatrizes finite
flat group schemes of multiplicative rank dm and étale rank det .

Cµ(ρ̄) =
∐

dm,det∈N2

Cµ(ρ̄)dm,det

Conjecture (Kisin)

If ρ̄ is indecomposable, then Cµ(ρ̄)dm,det is connected for any
(dm, det). In particular, if ρ̄ is irreducible, then Cµ(ρ̄) is connected.
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Known cases

n = 2

Kisin: K is totally ramified, µ is of particular form,

Gee, Imai: any K , µ is of particular form,

Hellmann: ρ̄ irreducible, any K , any µ.

Question: What happens for n ≥ 3?
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Group theoretic notations

G = Resk|Fp
(GLn).

T : a maximal torus of G .

X∗(T ): group of cocharacters of T . X∗(T ) ' Zn,Hom(k,F̄p).

X∗(T )+ ⊂ X∗(T ): subset of dominant cocharacters of T with
respect to a fixed Borel subgroup B containing T .

X∗(T )+ '
∏

τ∈Hom(k,F̄p)

Zn
+

µ 7→ (µτ )τ

with µτ = (µτ,1, · · · , µτ,n) ∈ Zn
+ where

Zn
+ := {(ai )i ∈ Zn|a1 ≥ · · · ≥ an}.
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Cartan decomposition inside the affine Grassmannian

Let L := F̄p((u)), OL := F̄p[[u]].
We have the Cartan decomposition

G (L) =
∐

µ∈X∗(T )+

G (OL)uµG (OL)

This gives a stratification inside the affine Grassmannian:

G (L)/G (OL) =
∐

µ∈X∗(T )+

G (OL)uµG (OL)/G (OL)

satisfying

G (OL)uµG (OL)/G (OL) =
∐

ν∈X∗(T )+

ν≤µ

G (OL)uνG (OL)/G (OL).
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Group theoretic description of Kisin varieties

Recall Nρ̄ ⊗ F̄p = (Nρ̄ ⊗F F̄p,Φρ̄) the étale ϕ-module with
F̄p-action associated to ρ̄(−1)⊗ F̄p, where

Nρ̄ ⊗ F̄p is a free k ⊗Fp L-module of rank n;

Φρ̄ : Nρ̄ ⊗ F̄p → Nρ̄ ⊗ F̄p is semi-linear with respect to ϕ such
that ϕ∗Nρ̄ ⊗ F̄p → Nρ̄ ⊗ F̄p is an isomorphism.

Fix a basis of Nρ̄ ⊗ F̄p, we have

(Nρ̄ ⊗ F̄p,Φρ̄) ' (k ⊗Fp L
n, bϕ)

where b ∈ G (L) with G = Resk|Fp
(GLn).

The isomorphism class of (Nρ̄ ⊗ F̄p,Φρ̄) depends on the
ϕ-conjugacy class of b ∈ G (L).
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Group theoretic description of Kisin varieties

For µ ∈ X∗(T )+,

Cµ(ρ̄)(F̄p) =
{ M ⊂ Nρ̄ ⊗F F̄p lattice such that the relative

position of Φρ̄(ϕ∗M) and M is controlled by µ

}
= {gG (OL) ∈ G (L)/G (OL)|g−1bϕ(g) ∈ G (OL)uµG (OL)}
:= Cµ(b)(F̄p).

This resemble affine Deligne-Lusztig varieties (ADLV) with a
different Frobenius ϕ.

Miaofen Chen (East China Normal University) Connectedness of Kisin varieties



Comparison of Kisin varieties and ADLV

ADLV Kisin varieties

Frobenius ϕ automorphism endomorphism

µ mostly minuscule arbitrary

G any type type A

ϕ-conjugacy Dieudonné-Manin only simple objects are
classes in G (L) classification classified by Caruso

Hypothesis: ρ̄ is absolutely irreducible.
Reason: We can get a good representative of b in its ϕ-conjugacy
class in G (L) by Caruso’s classification of simple étale ϕ-modules
over L.
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Main results

Theorem (C.-Nie)

Suppose ρ̄ is absolutely irreducible, then Cµ(ρ̄) is geometrically
connected if one of the following two conditions are satisfied:

1 K is totally ramified and n = 3 (i.e. G = GL3);

2 µ = (µτ )τ with µτ,2 = µτ,3 = · · · = µτ,n for all
τ ∈ Hom(k, F̄p).

The second part of the theorem is proved by Hellmann when n = 2.
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Counter-examples to Kisin’s conjecture

We have examples when ρ̄ is absolutely irreducible, Cµ(ρ̄) might
have two points in the following cases:

K is totally ramified with [K : Qp] ≥ 2p − 1 and n = 4.
Let G = GL4, b = u(2,0,2,0)(1243) ∈ G (Fp((u))) and
µ = (2p − 1, p, p, 1). Then

Cµ(b)(Fp) = Cµ(b)(F̄p) = {u(2,1,1,0), u(1,1,1,1)}.

f (K |Qp) = 2, e(K |Qp) ≥ p + 1 and n = 3.
Let G = Resk|Fp

GL3 with [k : Fp] = 2. Choose F containing
k. G|F ' GL3 ×GL3. Let

b = (u(2,0,1)(123), u(0,0,1)) ∈ G (F((u))) and
µ = ((p + 1, 0, 0), (p, p, 0)), then

Cµ(b)(F) = Cµ(b)(F̄p) = {uχ, uχ′},

where χ = ((1, 0, 1), (0, 0, 1)) and χ′ = ((1, 1, 0), (1, 0, 0)).
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Application to the connectedness of deformation rings

Corollary

Suppose ρ̄ is absolutely irreducible. For any minuscule
ν ∈ X∗(ResK |Qp

Gn
m)+ ' (Zn

+)Hom(K ,Q̄p), the scheme Spec(Rfl,ν
ρ̄ [ 1

p ])
is connected if one of the following two conditions holds:

1 K is totally ramified and n = 3;

2 ντ = (1, 0, · · · , 0) or central for all τ ∈ Hom(K , Q̄p).
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Strategy of Proof: Semi-module stratification

IAK decomposition inside the affine Grassmannian:

G (L)/G (OL) =
∐

λ∈X∗(T )

IuλG (OL)/G (OL),

where I is the standard Iwahori subgroup of G (i.e., I is the

preimage of Bop(F̄p) under natural map G (OL)
u 7→0→ G (F̄p)).

This induces the semi-module decomposition

Cµ(b)(F̄p) = tλ∈X∗(T )C
λ
µ (b)(F̄p),

where each piece Cλµ (b) is locally closed subscheme of Cµ(b)×F F̄p

with F̄p-points

Cλµ (b)(F̄p) = (IuλG (OL)/G (OL)) ∩ Cµ(b)(F̄p).
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Step 1: semi-module strata are connected

Key Proposition

Let b = uηw with η ∈ X∗(T ) and w ∈W0 such that
bϕ(I )b−1 ⊂ I . The following conditions are equivalent:

1 Cλµ (b) is non-empty;

2 uλ ∈ Cµ(b)(F̄p);

3 −λ+ η + wϕ(λ) ≤ µ.

Under these equivalent conditions, we have Cλµ (b) is connected.

Moreover, if µ is minuscule, there is a dimension formula for Cλµ (b).
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Step 2: Connecting different semi-module strata

K is totally ramified and n = 3:
Construct explicit lines to connect the representatives in
different semi-module strata.

µ is of a particular form:
Reduce to multi-copy case: CG•

µ• (b•)� CG
µ (b) with µ•

minuscule. The scheme CG•
µ• (b•) has only one 0-dimensional

semi-module stratum.
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Thank you!
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