Cohomology of the Drinfeld tower, a family affair joint with Pierre Colmez and Wiesława Nizioł

Gabriel Dospinescu

CNRS, ENS Lyon

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

(1) Fix a prime p and L/\mathbb{Q}_p finite, "large enough" coefficient field, with residue field k_L .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- (1) Fix a prime p and L/\mathbb{Q}_p finite, "large enough" coefficient field, with residue field k_L .
- (II) For $K \leq \mathbb{GL}_2(\mathbb{A}_f)$ compact open, Y(K) := open modular curve $/\mathbb{Q}$ of level K.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Fix a prime p and L/Q_p finite, "large enough" coefficient field, with residue field k_L.
- (II) For $K \leq \mathbb{GL}_2(\mathbb{A}_f)$ compact open, Y(K) := open modular curve $/\mathbb{Q}$ of level K.

(III) Let
$$\mathcal{K}^{p} = \mathbb{GL}_{2}(\hat{\mathbb{Z}}^{p})$$
 and
 $\hat{H}^{1,\mathrm{gl}} = \varprojlim_{n} (\varinjlim_{\mathcal{K}_{p}} \mathcal{H}^{1}_{\mathrm{et}}(Y(\mathcal{K}_{p}\mathcal{K}^{p})_{\mathbb{Q}}, \mathcal{O}_{L}/p^{n}))$
 $= p - \mathrm{adic} \text{ completion of } \varinjlim_{\mathcal{K}_{p}} \mathcal{H}^{1}_{\mathrm{et}}(Y(\mathcal{K}_{p}\mathcal{K}^{p})_{\mathbb{Q}}, \mathcal{O}_{L}),$
a $\mathrm{Gal}_{\mathbb{Q}} \times \mathbb{GL}_{2}(\mathbb{Q}_{p})$ -module.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(I) Key extra symmetry: big spherical Hecke algebra ${\mathbb T}$

$$\hat{H}^{1,\mathrm{gl}} = igoplus_{m\in\mathrm{Max}(\mathbb{T})} \hat{H}^{1,\mathrm{gl}}_m.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(I) Key extra symmetry: big spherical Hecke algebra ${\mathbb T}$

$$\hat{H}^{1,\mathrm{gl}} = igoplus_{m\in\mathrm{Max}(\mathbb{T})} \hat{H}^{1,\mathrm{gl}}_m.$$

(II) Each *m* comes with a $\bar{\rho}_m$: $\operatorname{Gal}_{\mathbb{Q},\{p\}} \to \mathbb{GL}_2(k_L)$. For $\bar{\rho}_m$ absolutely irreducible, it lifts to

$$\rho_m : \operatorname{Gal}_{\mathbb{Q}, \{p\}} \to \mathbb{GL}_2(\mathbb{T}_m)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

with specified traces of Frobenius at primes $\neq p$.

(I) The key global result:

Theorem (Emerton, idealised) As $\mathbb{T}_m[\mathbb{GL}_2(\mathbb{Q}_p) \times \operatorname{Gal}_\mathbb{Q}]$ -modules

$$\hat{H}_m^{1,\mathrm{gl}} \simeq \Pi(\rho_m|_{\mathrm{Gal}_{\mathbb{Q}_p}}) \widehat{\otimes}_{\mathbb{T}_m} \mathbb{T}_m^* \otimes_{\mathbb{T}_m} \rho_m,$$

where

•
$$\mathbb{T}_m^* = \mathscr{O}_L$$
-dual of \mathbb{T}_m .

• $\rho \to \Pi(\rho)$ is the *p*-adic local Langlands correspondence.

(I) This has many deep consequences, e.g.

• for $\rho : \operatorname{Gal}_{\mathbb{Q}, \{p\}} \to \mathbb{GL}_2(L)$ odd and absolutely irreducible (plus technical hypotheses)

$$\operatorname{Hom}_{\operatorname{Gal}_{\mathbb{Q}}}(\rho, \hat{H}^{1, \operatorname{gl}}) \simeq \Pi(\rho|_{\operatorname{Gal}_{\mathbb{Q}_{p}}}).$$

• (under suitable assumptions on $\bar{
ho}$)

$$\operatorname{Hom}_{\operatorname{Gal}_{\mathbb{Q}}}(\bar{\rho}, \varinjlim_{\mathcal{K}_{\rho}} H^{1}_{\operatorname{et}}(Y(\mathcal{K}^{\rho}\mathcal{K}_{\rho})_{\bar{\mathbb{Q}}}, k_{L})) = \pi(\bar{\rho}|_{\operatorname{Gal}_{\mathbb{Q}_{\rho}}}),$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

so LHS has finite length, highly nontrivial!

(I) Key facts used (all fail very badly in the local context):

• finiteness of $H^1_{\text{et}}(Y(K^pK_p)_{\overline{\mathbb{Q}}},?) \rightsquigarrow$ admissibility of \hat{H}^1 , nice topological behaviour.

• $H^2 = 0$ for $Y(K^p K_p)_{\bar{\mathbb{Q}}} \rightsquigarrow$ easy passage char 0- char p, good representation theoretic properties of \hat{H}_m^1 .

• link between $\mathbb{GL}_2(\mathbb{Z}_p)$ -algebraic vectors and crystalline Galois representations.

The Drinfeld tower

(I) Work over \mathbb{C}_p . Let

$$\mathscr{M}_0 = \mathbb{P}^1 \setminus \mathbb{P}^1(\mathbb{Q}_p)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

with the natural action of $G := \mathbb{GL}_2(\mathbb{Q}_p)$.

The Drinfeld tower

(I) Work over \mathbb{C}_p . Let

$$\mathscr{M}_0 = \mathbb{P}^1 \setminus \mathbb{P}^1(\mathbb{Q}_p)$$

with the natural action of $G := \mathbb{GL}_2(\mathbb{Q}_p)$.

(II) Drinfeld: tower of finite étale G-equivariant coverings

$$\dots \to \mathscr{M}_1 \to \coprod_{\mathbb{Z}} \mathscr{M}_0$$

The spaces \mathcal{M}_n are Stein curves, defined over \mathbb{Q}_p (after taking a suitable quotient).

The Drinfeld tower

(I) Work over \mathbb{C}_p . Let

$$\mathscr{M}_0 = \mathbb{P}^1 \setminus \mathbb{P}^1(\mathbb{Q}_p)$$

with the natural action of $G := \mathbb{GL}_2(\mathbb{Q}_p)$.

(II) Drinfeld: tower of finite étale G-equivariant coverings

$$\dots \to \mathscr{M}_1 \to \coprod_{\mathbb{Z}} \mathscr{M}_0$$

The spaces \mathcal{M}_n are Stein curves, defined over \mathbb{Q}_p (after taking a suitable quotient).

(III) The "limit" \mathscr{M}_{∞} is perfectoid (Scholze and Weinstein) and $\operatorname{Gal}(\mathscr{M}_{\infty}/\mathscr{M}_0) = D^{\times},$

where D = quaternion division algebra $/\mathbb{Q}_p$.

And its subtleties...

- (I) What happens if we replace the Y(K^pK_p)'s by the M_n's? Issues:
 - \mathcal{M}_n not qc, no "reasonable" compactification known.
 - $H^1_{\text{et}}(\mathcal{M}_n, L)$ is huge, except for n = 0.
 - no reasonable (co-)admissibility property.
 - not clear/known if they are invariant under complete alg. closed extensions of \mathbb{C}_p .

• topology is a nightmare!

And its subtleties...

 Passage char 0− char p hard: no control on H²_{et}(M_n, k_L). If nonzero (⇔ Pic(M_n) not p-divisible), this space is an awful mess!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

And its subtleties...

 Passage char 0− char p hard: no control on H²_{et}(M_n, k_L). If nonzero (⇔ Pic(M_n) not p-divisible), this space is an awful mess!

(II) Contrast to:

- $H^2_{\text{et}}(X, k_L) = 0$ for X perfectoid quasi-Stein, e.g. \mathcal{M}_{∞} (Scholze+ Artin-Schreier+ Kedlaya-Liu).
- $H^2_{\text{et}}(X, \mathcal{O}^+/p)$ is almost 0 for a Stein curve X (Hansen).

• \exists Stein curves X for which $H^2_{\text{et}}(X, \mathbb{F}_p) \neq 0$, e.g. open unit disc $/\mathbb{C}_p$ (but not over its spherical completion!).

Previous work

(I) Still:

Theorem (CDN) For absolutely irreducible $\rho : \operatorname{Gal}_{\mathbb{Q}_p} \to \mathbb{GL}_2(L)$

$$\operatorname{Hom}_{\operatorname{Gal}_{\mathbb{Q}_p}}(\rho, \varinjlim_n H^1_{\operatorname{et}}(\mathscr{M}_n, L(1))) = \begin{cases} JL(\rho) \otimes \Pi(\rho)^*, \text{ if } \rho \text{ is nice} \\ 0 \text{ if not} \end{cases}$$

nice: de Rham with weights 0, 1, $WD(\rho)$ irreducible. Also

 $JL(\rho) := JL(LL(WD(\rho))) \in \operatorname{Irr}^{\operatorname{sm}}(D^{\times}).$

Pending questions

(I) A few natural questions:

- integral or mod *p* analogue?
- description of $H^1_{\text{et}}(\mathcal{M}_n, L)$ "à la Emerton"?
- where are the other Galois representations???

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(I) The proof of the previous th. gives no clue:

- replace étale by pro-étale coh.
- describe pro-étale coh. via coherent and Hyodo-Kato coh.

$$0 \to \frac{\mathscr{O}(\mathscr{M}_n)}{\mathrm{cst}} \to H^1_{\mathrm{proet}}(\mathscr{M}_n, L(1)) \to (B^+_{\mathrm{st}} \widehat{\otimes}_{\check{\mathbb{Q}}_p} H^1_{\mathrm{HK}}(\mathscr{M}_n))^{\varphi = p, N = 0} \to \mathbb{C}_{\mathrm{st}}^{\mathrm{cst}}$$

• $\mathcal{O}(\mathcal{M}_n) \longleftrightarrow \Pi(\rho)$ via the Breuil-Strauch conjecture (Le Bras-D).

• HK coh. computed by *p*-adic uniformisation and *l*-adic $(l \neq p, \text{ sic!})$ non-abelian Lubin-Tate theory.

(I) Harder for étale coh:

$$H^1_{\mathrm{\acute{e}t}}(\mathscr{M}_n, L(1)) \simeq (B^+_{\mathrm{st}} \widehat{\otimes}_{\widetilde{\mathbb{Q}}_p} H^{1, \mathcal{G}-\mathrm{bd}}_{\mathrm{HK}}(\mathscr{M}_n))^{\varphi=p, N=0} \cap \Omega^{1, \mathcal{G}-\mathrm{bd}}(\mathscr{M}_n),$$

but

・ロト・日本・モン・モン・ ヨー うへぐ

• $H^{1,G-\mathrm{bd}}_{\mathrm{HK}}(\mathscr{M}_n) \longleftrightarrow \widehat{\Pi}$ with Π discrete series rep. of G, and $\widehat{\Pi}$ is huge.

(I) Harder for étale coh:

$$H^1_{\mathrm{\acute{e}t}}(\mathscr{M}_n, L(1)) \simeq (B^+_{\mathrm{st}} \widehat{\otimes}_{\widetilde{\mathbb{Q}}_p} H^{1, \mathcal{G}-\mathrm{bd}}_{\mathrm{HK}}(\mathscr{M}_n))^{\varphi=p, N=0} \cap \Omega^{1, \mathcal{G}-\mathrm{bd}}(\mathscr{M}_n),$$

but

・ロト・日本・モン・モン・ ヨー うへぐ

• $H^{1,G-\mathrm{bd}}_{\mathrm{HK}}(\mathscr{M}_n) \longleftrightarrow \widehat{\Pi}$ with Π discrete series rep. of G, and $\widehat{\Pi}$ is huge.

(I) Harder for étale coh:

$$\begin{aligned} & H^{1}_{\mathrm{\acute{e}t}}(\mathscr{M}_{n}, L(1)) \simeq (B^{+}_{\mathrm{st}} \widehat{\otimes}_{\tilde{\mathbb{Q}}_{p}} H^{1, \mathsf{G}-\mathrm{bd}}_{\mathrm{HK}}(\mathscr{M}_{n}))^{\varphi=p, \mathsf{N}=0} \cap \Omega^{1, \mathsf{G}-\mathrm{bd}}(\mathscr{M}_{n}), \\ & \mathsf{but} \end{aligned}$$

• $H^{1,G-\mathrm{bd}}_{\mathrm{HK}}(\mathscr{M}_n) \longleftrightarrow \widehat{\Pi}$ with Π discrete series rep. of G, and $\widehat{\Pi}$ is huge.

(II) Contrary to $\Omega^1(\mathcal{M}_n)$ (described by DL), $\Omega^{1,G-\mathrm{bd}}(\mathcal{M}_n)$ is quite mysterious (not coadmissible).

The key new result

(I) Saw: Hom $(\rho, H^1(\mathcal{M}_n, L))$ = dual of a finite length Banach *G*-representation. More delicate:

Theorem (CDN) $\operatorname{Hom}_{\operatorname{Gal}_{\mathbb{Q}_p}}(\bar{\rho}, H^1(\mathscr{M}_n, k_L))$ is the dual of a finite length smooth *G*-module $\forall \bar{\rho} : \operatorname{Gal}_{\mathbb{Q}_p} \to \mathbb{GL}_2(k_L)$.

The method of proof is completely different and quite indirect.

(I) Paskūnas:

$$\mathscr{C} = \operatorname{Rep}_{\mathscr{O}_L}^{\mathrm{sm,l.f.l}}(G)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

can be described in terms of *p*-adic local Langlands.

(I) Paskūnas:

$$\mathscr{C} = \operatorname{Rep}_{\mathscr{O}_L}^{\operatorname{sm,l.f.l}}(G)$$

can be described in terms of *p*-adic local Langlands.

(II) Gabriel's theory \rightsquigarrow

$$\mathscr{C} = \prod_{B} \mathscr{C}_{B}, \ \{ blocs \ \mathsf{B} \} \longleftrightarrow \{ \bar{\rho} : \operatorname{Gal}_{\mathbb{Q}_{p}} \to \mathbb{GL}_{2}(k_{L}) ss \},$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(I) Paskūnas:

$$\mathscr{C} = \operatorname{Rep}_{\mathscr{O}_L}^{\mathrm{sm,l.f.l}}(G)$$

can be described in terms of *p*-adic local Langlands.

(II) Gabriel's theory \rightsquigarrow

$$\mathscr{C} = \prod_{B} \mathscr{C}_{B}, \ \{ blocs \ \mathsf{B} \} \longleftrightarrow \{ \bar{\rho} : \operatorname{Gal}_{\mathbb{Q}_{p}} \to \mathbb{GL}_{2}(k_{L}) ss \},$$

(III) Each B is finite and

 $\mathscr{C}_B \simeq ext{compact } E_B - ext{modules},$ $\pi o ext{Hom}_{\mathcal{G}}(\mathcal{P}_B, \pi^{ee}), \ \mathcal{M} \to (\mathcal{M} \otimes_{E_B} \mathcal{P}_B)^{ee}.$

where

$$E_B = \operatorname{End}_G(P_B), \ P_B = (\text{inj. envelope of } \oplus_{\pi \in B} \pi)^{\vee}.$$

(I) Paskūnas: $E_B \longleftrightarrow$ Galois deformation rings, $P_B \longleftrightarrow p$ -adic local Langlands. So P_B, E_B are "understood".

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

(I) Paskūnas: $E_B \longleftrightarrow$ Galois deformation rings, $P_B \longleftrightarrow p$ -adic local Langlands. So P_B, E_B are "understood".

(II) "Simplest" example:

 $\bar{\rho}: \operatorname{Gal}_{\mathbb{Q}_p} \to \mathbb{GL}_2(k_L) \text{ abs. irr } \rightsquigarrow B = B_{\bar{\rho}} = \{\pi(\bar{\rho})\}.$

 $ho^{\mathrm{un}}: \mathrm{Gal}_{\mathbb{Q}_p}
ightarrow \mathbb{GL}_2(R_{ar{
ho}}) = \mathsf{universal} \ \mathsf{deformation} \ \mathsf{of} \ ar{
ho}$

$$E_B=R_{ar
ho}, \ P_B=R_{ar
ho}-{\sf dual} \ {\sf of} \ \Pi(
ho^{{
m un}}).$$

(I) Define

$$H^1_{k_L} = \varinjlim_j H^1(\mathscr{M}_j, k_L)^{\operatorname{Gal}_{\mathbb{Q}_p} - \operatorname{sm}}$$

The finiteness theorem+previous discussion \rightsquigarrow

$$H^1_{k_L} = igoplus_{ar{
ho}: \operatorname{Gal}_{\mathbb{Q}_p} o \mathbb{GL}_2(k_L)} \overline{JL}_{ar{
ho}} \otimes_{E_{ar{
ho}}} P_{ar{
ho}},$$

・ロト・日本・モン・モン・ ヨー うへぐ

with $\overline{JL}_{\overline{\rho}}$ a smooth D^{\times} -module with action of $\operatorname{Gal}_{\mathbb{Q}_{\rho}}$.

(I) Can define similarly \hat{H}^1 for the Drinfeld tower and

$$\hat{H}^1 = \widehat{\bigoplus_{\bar{\rho} \text{ ss}}} JL_{\bar{\rho}} \widehat{\otimes}_{E_{\bar{\rho}}} P_{\bar{\rho}}.$$

・ロト・日本・モン・モン・ ヨー うへぐ

(I) Can define similarly \hat{H}^1 for the Drinfeld tower and

$$\hat{H}^1 = \widehat{\bigoplus_{\bar{\rho} \text{ ss}}} JL_{\bar{\rho}} \widehat{\otimes}_{E_{\bar{\rho}}} P_{\bar{\rho}}.$$

(II) What is $JL_{\bar{\rho}}$? Need to "compute"

$$\operatorname{Hom}_{\boldsymbol{G}}(\pi^{\vee}, H^1_{\operatorname{et}}(\mathscr{M}_n, \mathscr{O}_L/p^k)^{\operatorname{Gal}_{\mathbb{Q}_p} - \operatorname{sm}})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for π a smooth finite length *G*-module.

(I) Rationally: "easy". Proof: *p*-adic comparison theorems+Breuil-Strauch conjecture, as before.

Theorem (CDN) For $\rho : \operatorname{Gal}_{\mathbb{Q}_p} \to \mathbb{GL}_2(L)$ absolutely irreducible

$$\operatorname{Hom}_{\mathcal{G}}(\Pi(\rho)^*, \varinjlim_n H^1_{\operatorname{et}}(\mathscr{M}_n, L(1))) \simeq \begin{cases} JL(\rho) \otimes \rho, \text{ if } \rho \text{ is nice} \\ 0 \text{ if not} \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Rationally: "easy". Proof: *p*-adic comparison theorems+Breuil-Strauch conjecture, as before.

Theorem (CDN) For $\rho : \operatorname{Gal}_{\mathbb{Q}_p} \to \mathbb{GL}_2(L)$ absolutely irreducible

$$\operatorname{Hom}_{G}(\Pi(\rho)^{*}, \varinjlim_{n} H^{1}_{\operatorname{et}}(\mathscr{M}_{n}, L(1))) \simeq \begin{cases} JL(\rho) \otimes \rho, \text{ if } \rho \text{ is nice} \\ 0 \text{ if not} \end{cases}$$

(II) For π smooth modulo p: p-adic uniformisation+LGC \rightsquigarrow Hom_G $(\pi^*, H^1_{et}(\mathcal{M}_n, k_L(1)))$ is linked to Scholze's functor.

(I) Duality isomorphism (Faltings, Fargues, Scholze, Weinstein)

$$\mathscr{M}_{\infty} \simeq LT_{\infty}$$

with the infinite level Lubin-Tate space, a pro-étale G-torsor of \mathbb{P}^1 :

$$f: LT_{\infty} \to \mathbb{P}^1.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(I) Duality isomorphism (Faltings, Fargues, Scholze, Weinstein)

$$\mathscr{M}_{\infty} \simeq \mathrm{LT}_{\infty}$$

with the infinite level Lubin-Tate space, a pro-étale *G*-torsor of \mathbb{P}^1 :

$$f: LT_{\infty} \to \mathbb{P}^1.$$

(II) Scholze: π smooth mod p G-rep. \rightsquigarrow smooth D^{\times} -modules with continuous $\operatorname{Gal}_{\mathbb{Q}_p}$ -action

$$S^i(\pi) = H^i(\mathbb{P}^1, \mathscr{F}_\pi), \ \mathscr{F}_\pi = (f_*\underline{\pi})^{\mathsf{G}}.$$

(I) The construction extends to smooth \mathcal{O}_L -torsion modules, to *p*-adic Banach reps, and works in families.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Hansen, Ludwig, Scholze)

a) $\pi
ightarrow S^i(\pi)$ preserves admissibility.

b) $S^2(\pi) = 0$ if $\pi \pmod{p}$ is principal series or supersingular.

(I) The construction extends to smooth \mathcal{O}_L -torsion modules, to *p*-adic Banach reps, and works in families.

Theorem (Hansen, Ludwig, Scholze)

a) $\pi
ightarrow S^i(\pi)$ preserves admissibility.

b) $S^2(\pi) = 0$ if $\pi \pmod{p}$ is principal series or supersingular.

(II) Paskūnas used this to study $S^1(\Pi)$ when Π is a Banach representation.

Paskūnas, Schraen, D. (in progress): $S^1(\Pi)$ has finite length if Π is irreducible and corresponds to a Galois representation whose difference of Hodge-Tate weights $\notin \mathbb{Z}$.

(I) The link to Scholze's functor:

Theorem (CDN) If π is a locally finite length smooth representation of G, killed by p^k and belonging to a generic bloc, then

$$\operatorname{Hom}_{G}(\pi^{\vee}, H^{1}(\mathscr{M}_{\infty}, \mathscr{O}_{L}/p^{k})) \simeq S^{1}(\pi).$$

Simple idea: analyse the Cech spectral sequence for the covering $f : LT_{\infty} \to \mathbb{P}^1$. Problem: describe $H^i(LT_{\infty} \times G^k, \underline{\pi})$, which comes down to controlling certain R^1 lim.

(I) One gets a spectral sequence

$$E_2^{p,q} = H^p(G, \operatorname{Hom}^{\operatorname{cont}}(\pi^{\vee}, H^q(\mathscr{M}_{\infty}, \mathscr{O}_L/p^k))) \Longrightarrow S^{p+q}(\pi).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(I) One gets a spectral sequence

 $E_2^{p,q} = H^p(G, \operatorname{Hom}^{\operatorname{cont}}(\pi^{\vee}, H^q(\mathscr{M}_{\infty}, \mathscr{O}_L/p^k))) \Longrightarrow S^{p+q}(\pi).$

(II) $E_2^{p,0}$ -terms controlled by:

• Strauch's description of $\pi_0(\mathscr{M}_\infty)$

• Fust's comparison theorem between continuous cohomology and Ext groups

• results of Paskūnas to kill these Ext groups.

(I) One gets a spectral sequence

 $E_2^{p,q} = H^p(G, \operatorname{Hom}^{\operatorname{cont}}(\pi^{\vee}, H^q(\mathscr{M}_{\infty}, \mathscr{O}_L/p^k))) \Longrightarrow S^{p+q}(\pi).$

(II) $E_2^{p,0}$ -terms controlled by:

• Strauch's description of $\pi_0(\mathscr{M}_\infty)$

• Fust's comparison theorem between continuous cohomology and Ext groups

- results of Paskūnas to kill these Ext groups.
- (III) Example (Paulina Fust): $H^2(SL_2(\mathbb{Q}_p), \pi) = 0$ for π supersingular.

(I) The "simplest" case:

Theorem (CDN) If $\rho : \operatorname{Gal}_{\mathbb{Q}_p} \to \mathbb{GL}_2(\mathcal{O}_L)$ has absolutely irreducible reduction mod p, then

$$\operatorname{Hom}(\bar{\rho}, \varinjlim_{n} H^{1}(\mathscr{M}_{n}, k_{L})) = \pi(\bar{\rho})^{*} \otimes_{k_{L}} \operatorname{Hom}(\bar{\rho}, S^{1}(\pi(\bar{\rho})))$$

and

$$\operatorname{Hom}(\rho, \hat{H}^{1}) = \Pi(\rho)^{*} \widehat{\otimes}_{\mathscr{O}_{L}} \operatorname{Hom}(\rho, S^{1}(\Pi(\rho)))).$$

The proof is quite tricky (in particular uses the compatibility of Scholze's functor and patching to avoid the problem of $H^2(\mathcal{M}_n, k_L)$ being unmanageable).

Link with potentially crystalline deformation rings

(I) Fix *n* and an irreducible *L*-representation σ of Gal $(\mathcal{M}_n/\mathcal{M}_0)$, of dimension > 1. If *X* is a D^{\times} -module write

 $X[\sigma] = \operatorname{Hom}_{D^{\times}}(\sigma, X).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Link with potentially crystalline deformation rings

(I) Fix *n* and an irreducible *L*-representation σ of Gal $(\mathcal{M}_n/\mathcal{M}_0)$, of dimension > 1. If X is a D^{\times} -module write

 $X[\sigma] = \operatorname{Hom}_{D^{\times}}(\sigma, X).$

(II) Define

$$\tilde{H}^{1}(\mathcal{M}_{n}, L(1)) = (\varprojlim_{k} H^{1}(\mathcal{M}_{n}, \mathcal{O}_{L}/p^{k}(1))^{\operatorname{Gal}_{\mathbb{Q}_{p}} - \operatorname{sm}})[1/p],$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

a sort of completed cohomology of the tower \mathcal{M}_n/F for F/\mathbb{Q}_p finite.

Link with potentially crystalline deformation rings

(I) One gets:

Theorem (CDN) For each semi-simple $\bar{\rho}: \operatorname{Gal}_{\mathbb{Q}_p} \to \mathbb{GL}_2(k_L)$ there is a quotient $R_{\operatorname{tr}(\bar{\rho})}^{\operatorname{ps}}[1/p] \to R_{\bar{\rho}}^{\sigma}$ and a rank 2 Galois representation $V_{\bar{\rho}}^{\sigma}$ over $R_{\bar{\rho}}^{\sigma}$ such that

$$\widetilde{H}^1(\mathscr{M}_n,L(1))[\sigma] = \widehat{\bigoplus}_{\overline{\rho}} \Pi(V^{\sigma}_{\overline{\rho}})^* \widehat{\otimes}_{R_{\overline{\rho}}} R^*_{\overline{\rho}} \otimes_{R_{\overline{\rho}}} V^{\sigma}_{\overline{\rho}}.$$

For $\bar{\rho}$ absolutely irreducible $V_{\bar{\rho}}^{\sigma}$ is the universal potentially crystalline deformation of $\bar{\rho}$ with Hodge-Tate weights 0, 1 and Weil-Deligne type determined by σ .