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Global motivation

(I) Fix a prime p and L/Q, finite, "large enough” coefficient
field, with residue field k;.

(I1) For K < GL2(Af) compact open, Y(K) := open modular
curve /Q of level K.

(1) Let KP = GILp(ZP) and

AL = i HE (Y (5K, 01/ 7)
n K

= p — adic completion of lim Helt(Y(Kpr)@, o),
Ko

a Galg x GL(Qp)-module.
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Global motivation

(I) Key extra symmetry: big spherical Hecke algebra T

71,8l _ 71,g1
AYe = P Ay
meMax(T)

(I1) Each m comes with a py, : Galg 1y — GlL2(k.). For pm
absolutely irreducible, it lifts to

Pm - Gal(@’{p} — GLZ(Tm)

with specified traces of Frobenius at primes # p.



Global motivation

(I) The key global result:

Theorem (Emerton, idealised)
As T, [GL2(Qp) x Galg]-modules

AyE = N(pmlcaly, )1, T @1, Pim

where
o T* = O)-dual of Tp,.

e p — [(p) is the p-adic local Langlands correspondence.



Global motivation

(I) This has many deep consequences, e.g.

e for p: Galg ¢py — GlLa(L) odd and absolutely irreducible
(plus technical hypotheses)

Homga, (p, H#') ~ N(plcalg, )-
e (under suitable assumptions on p)

Homgai, (7, “7)"1 Ha (Y (KPKp)g, ki) = m(Blcag, ),
P

so LHS has finite length, highly nontrivial!



Global motivation

(I) Key facts used (all fail very badly in the local context):

o finiteness of HY (Y (KPK;)g,?) ~ admissibility of AY, nice
topological behaviour.

e H?> =0 for Y(KPK,,)@ ~~ easy passage char 0— char p,

good representation theoretic properties of I-Al,ln

e link between GILy(Zp)-algebraic vectors and crystalline
Galois representations.
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The Drinfeld tower
(I) Work over C,. Let

My =P\ PHQ))

with the natural action of G := GL(Q)).

(I1) Drinfeld: tower of finite étale G-equivariant coverings

—).//1 — H//o
Z

The spaces ., are Stein curves, defined over Q, (after
taking a suitable quotient).

(II1) The "limit" # is perfectoid (Scholze and Weinstein) and
Gal(M | o) = D™,

where D = quaternion division algebra /Q,.



And its subtleties...

(I) What happens if we replace the Y(KPKp)'s by the .#),'s?
Issues:

e _/, not qc, no "reasonable” compactification known.
o HL(A,, L) is huge, except for n = 0.
e no reasonable (co-)admissibility property.

e not clear/known if they are invariant under complete alg.
closed extensions of Cp,.

e topology is a nightmare!
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And its subtleties...

Passage char 0— char p hard: no control on HZ (4, k). If
nonzero (< Pic(.#,) not p-divisible), this space is an awful
mess!

Contrast to:

o H2(X, k) =0 for X perfectoid quasi-Stein, e.g. .Zx,
(Scholze+ Artin-Schreier+ Kedlaya-Liu).

e H2(X,0%/p) is almost 0 for a Stein curve X (Hansen).

e 3 Stein curves X for which H%(X,F,) # 0, e.g. open unit
disc /C, (but not over its spherical completion!).



Previous work

(1) still:

Theorem (CDN)
For absolutely irreducible p : Galg, — GLa(L)

JL(p) @ N(p)*, if p is nice

Homgay, (p, lim HY (A, L(1))) =
GlQp(PLnng o (1)) {Oifnot

nice: de Rham with weights 0,1, WD(p) irreducible. Also

JL(p) := JL(LL(WD(p))) € Ier*™(D™).



Pending questions

(I) A few natural questions:
e integral or mod p analogue?
e description of H (.#,, L) "4 la Emerton”?

e where are the other Galois representations???



Limitations of the previous method

(I) The proof of the previous th. gives no clue:
o replace étale by pro-étale coh.

e describe pro-étale coh. via coherent and Hyodo-Kato coh.

O(AM»)

cst

> HY et (M, L(1)) — (B By, Hic () 7=P V=0

o O(Mp) < M(p) via the Breuil-Strauch conjecture (Le
Bras-D).

e HK coh. computed by p-adic uniformisation and /-adic
(I # p, sic!) non-abelian Lubin-Tate theory.
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Limitations of the previous method

(I) Harder for étale coh:
= ,G—bd —p,N= G-
He (A, L(1)) = (B B Hriie ()P0 Q1P (),
but

o Hé’lf_bd(///n) <> [ with T discrete series rep. of G, and
IMis huge.

(1) Contrary to Q(.#,,) (described by DL), QL¢~P4(.#,) is
quite mysterious (not coadmissible).



The key new result

(1) Saw: Hom(p, H'(.#,, L)) = dual of a finite length Banach
G-representation. More delicate:

Theorem (CDN) Homgay,, (7, H'(-#, k1)) is the dual of a
finite length smooth G-module Vp : Galg, — GLa (k).

The method of proof is completely different and quite
indirect.
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Enters Paskunas’ theory

(I) Paskinas:
_ sm,Lf.1
C = Repm (G)

can be described in terms of p-adic local Langlands.
(I1) Gabriel's theory ~~

€ = H%B, {blocs B} +— {p : Galg, — GlLa(k.) ss},
B

(I11) Each B is finite and
%g ~ compact Eg — modaules,

™ — HOIHG(PB,WV), M — (M ®EB PB)V~

where

Eg = Endg(Pg), Pg = (inj. envelope of ®cp ).
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(I) Pasktinas: Eg <— Galois deformation rings, Pg <— p-adic
local Langlands. So Pg, Eg are "understood”.



Enters Paskunas’ theory

(I) Pasktinas: Eg <— Galois deformation rings, Pg <— p-adic
local Langlands. So Pg, Eg are "understood”.

(I1) "Simplest” example:
p : Galg, — GlLa(k.) abs. irr ~ B = B; = {n(p)}.
p"" : Galg, — GIL2(Rj5) = universal deformation of 5

Es = R5, Pg = R5 — dual of M(p™).



Completed cohomology of the Drinfeld tower

(I) Define
HI%L — I|_m> Hl(.%j, kL)GalQp—sm
J

The finiteness theorem+-previous discussion ~

Hil_ = @ Iﬁ ®Eﬁ Pﬁ’
ﬁ:GalQp‘)GLQ(kL)
SS

with Iﬁ a smooth D*-module with action of Gal@p.
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Completed cohomology of the Drinfeld tower

(1) Can define similarly A! for the Drinfeld tower and

At = P JL; @k, P;.

p ss
(I1) What is JL57 Need to "compute”
HOInG(ﬂ'V, Helt('%m ﬁL/pk)Gal@p_Sm)

for m a smooth finite length G-module.



Completed cohomology of the Drinfeld tower

(I) Rationally: "easy”. Proof: p-adic comparison
theorems+Breuil-Strauch conjecture, as before.

Theorem (CDN) For p : Galg, — GIL»(L) absolutely
irreducible

JL(p) ® p, if p is nice
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Completed cohomology of the Drinfeld tower

(I) Rationally: "easy”. Proof: p-adic comparison
theorems+Breuil-Strauch conjecture, as before.

Theorem (CDN) For p : Galg, — GIL»(L) absolutely
irreducible

JL(p) ® p, if p is nice

Homg (M(p)*, ||_m> H;t(.///n, L(1))) ~ {0 -

(1) For m smooth modulo p: p-adic uniformisation+LGC ~~
Homg (7%, HY (.4, k. (1))) is linked to Scholze's functor.
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Enters Scholze's functor

(I) Duality isomorphism (Faltings, Fargues, Scholze, Weinstein)
Moo ~ LT
with the infinite level Lubin-Tate space, a pro-étale G-torsor
of PL:
f: LTy — P

(I1) Scholze: 7 smooth mod p G-rep. ~» smooth D*-modules
with continuous Galg,-action

Si(n) = HI(PY, %), Fr = (fim)C.



Enters Scholze's functor

(I) The construction extends to smooth & -torsion modules, to
p-adic Banach reps, and works in families.

Theorem (Hansen, Ludwig, Scholze)
a) m — S'(m) preserves admissibility.

b) S?(7) = 0 if 7 (mod p) is principal series or
supersingular.



Enters Scholze's functor

(I) The construction extends to smooth & -torsion modules, to
p-adic Banach reps, and works in families.

Theorem (Hansen, Ludwig, Scholze)
a) m — S'(m) preserves admissibility.

b) S?(7) = 0 if 7 (mod p) is principal series or
supersingular.

(11) Paskiinas used this to study S(M) when MM is a Banach
representation.

Paskiinas, Schraen, D. (in progress): S'(I) has finite length
if I is irreducible and corresponds to a Galois representation
whose difference of Hodge-Tate weights ¢ Z.



Enters Scholze's functor

(I) The link to Scholze's functor:

Theorem (CDN) If 7 is a locally finite length smooth
representation of G, killed by p¥ and belonging to a generic
bloc, then

Homg (7", HY (M, 01/ p¥)) ~ S} (7).

Simple idea: analyse the Cech spectral sequence for the
covering f : LTs, — P. Problem: describe

H/(LTo x Gk,g), which comes down to controlling certain
RNim.
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Enters Scholze's functor
(I) One gets a spectral sequence
EP9 = HP(G, Hom ™ (7", HY( M s, ﬁL/pk))) = SPTI(7).
(1) EP-terms controlled by:
e Strauch’s description of mo(.#Zx)

e Fust's comparison theorem between continuous
cohomology and Ext groups

e results of Paskiinas to kill these Ext groups.

(111) Example (Paulina Fust): H?(SL2(Q,),7) =0 for 7
supersingular.



Completed cohomology of the Drinfeld tower

(I) The "simplest” case:

Theorem (CDN) If p: Galg, — GIL2(&.) has absolutely
irreducible reduction mod p, then

Hom(p, lim H* (4, ki) = 7(p)* @, Hom(p, S*(7(p))

and

Hom(p, A*) = M(p)*® 4, Hom(p, S*(N(p)))).

The proof is quite tricky (in particular uses the compatibility
of Scholze's functor and patching to avoid the problem of
H?(.#,, k) being unmanageable).
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Link with potentially crystalline deformation rings

(I) Fix n and an irreducible L-representation o of Gal(.#,/.#s),
of dimension > 1. If X is a D*-module write

X[o] = Hompx (o, X).
(I1) Define
AY (M, L(1)) = (lim H* (o, O1/P* (1) ™)1/ p),
K

a sort of completed cohomology of the tower .#,,/F for
F/Qp finite.



Link with potentially crystalline deformation rings

(I) One gets:

Theorem (CDN) For each semi-simple
p : Galg, — GLa(k.) there is a quotient Rg/sg)[l/p] — RZ

and a rank 2 Galois representation V7 over K3 such that

p—

A, L(1))[0] = @ﬁn(vg)*@RﬁR; ®r, V.
For p absolutely irreducible V7 is the universal potentially
crystalline deformation of p with Hodge-Tate weights 0, 1
and Weil-Deligne type determined by o.



