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Global Langlands correspondence

Notation:

F = global function field, e.g. F`(t)

G = reductive group over F , e.g. SLn

k = Fp (coefficients), p 6= char(F )

Vincent Lafforgue constructed

8
<

:

irreducible cuspidal

automorphic representations

of G over k

9
=

;!
⇢

Langlands parameters

Gal(F s/F )! L
G (k)/ ⇠

�
.

Does it have expected properties?



Langlands functoriality:



8
<

:

irreducible

automorphic representations

of G over k

9
=

;!
⇢

Langlands parameters

Gal(F s/F )! L
G (k)/ ⇠

�
.

Global base change functoriality: Suppose

H reductive over F ,

E/F field extension, G := ResE/F (HE ).



Previous proofs of base change (for GLn) are based on the trace formula.

Novelty for general G : can have

f , f 0 generating isomorphic
automorphic representations

! different L-parameters.

Indistinguishable by the trace formula!



Local Langlands correspondence

Notation:

Fv = local function field of char 6= p, e.g. F`((t)).

H = reductive group over Fv .

Genestier-Lafforgue constructed:

⇢
irreducible representations

of H(Fv ) over k

�
/ ⇠�!

8
<

:

semi-simple

Langlands parameters

Weil(Fv )! L
H(k)/ ⇠

9
=

; .

Does it have expected properties?



We will investigate local base change:

Ev/Fv extension, Gal(Ev/Fv ) ⇡ Z/p = h�i.

G = ResEv/Fv
(HEv

)

⇢
irreducible representations

of H(Fv ) over k

�
BC99K

⇢
irreducible representations

of G (Fv ) over k

�



Tate cohomology



Treumann-Venkatesh Conjecture

Conjecture (Treumann-Venkatesh)
Let ⇧ be an irreducible �-fixed representation of G (Fv ). Then any
irreducible subquotient of T i (⇧) transfers under LLC to

⇧(p) := ⇧⌦k,Frobp k .





Treumann-Venkatesh Conjecture

Conjecture (Treumann-Venkatesh)
Let ⇧ be an irreducible �-fixed representation of G (Fv ). Then any
irreducible subquotient of T i (⇧) transfers under LLC to

⇧(p) := ⇧⌦k,Frobp k .

Theorem (F.)

Assume p is odd and good for bG . Then any irreducible subquotient of
T

i (⇧) transfers under the Genestier-Lafforgue correspondence to ⇧(p).

Previously proved by Ronchetti for depth zero supercuspidals of GLn

induced from cuspidal Deligne-Lusztig representations.



Plan

1 Statement of the results. X
2 Summary of Lafforgue’s idea.

3 Equivariant localization.

4 Modular representation theory.



The excursion algebra

Let � be a group, bG a reductive group over k .



Can present Exc(�, bG ) explicitly by generators and relations.

Generators: Sn,f ,(�i )i=1,...,n



Relations are complicated:



Actions of the excursion algebra

How to construct Exc(�, bG ) y V







Summary of Lafforgue’s correspondence

Where does this structure come from?

F $ X smooth projective curve.



Summary of Lafforgue’s correspondence

Where does this structure come from?

Geometric Satake equivalence:

Repk( bG ) ⇠= PG(Ov )( G (Fv )/G (Ov )| {z }
“affine Grassmannian” GrG

).

Viewed as sheaves on moduli spaces of shtukas:





Summary

Source of Galois representations: cohomology of moduli spaces of

shtukas.

Excursion operators: endomorphisms of automorphic forms coming

from “combinatorial” pattern of maps between cohomology groups.

Langlands parametrization comes from having sheaves indexed by

Rep( bG ).



Suppose we want Langlands functoriality between H and G :

(Topology) Need mechanism to relate cohomology of shtukas for G

and for H  equivariant localization.

(Representation Theory) Need mechanism to relate sheaves indexed by

Rep( bG ) and by Rep( bH)  sheaf-theoretic Smith theory.



Equivariant localization

Equivariant localization =) relationship between the cohomology of a

space and its fixed point subspace under a group action.



Base change situation: G = ResE/F (HE ).



For global base change, we need to transfer eigensystems for the excursion

operators.

Need to study possible extensions of a character of Exc(�, bG )0 to all of

Exc(�, bG ).



For local base change, we need to examine the construction of the

Genestier-Lafforgue correspondence.

Study Sn,f ,(�i ) for {�i} ⇢Weil(F v/Fv ) ⇢ Gal(F/F ).

Details omitted here.



Equivariant localization and excursion operators

Excursion operators:

T
0
H

0
c (ShtG ; Sat( )) T

0(ShtG ; Sat(W )) . . .

T
0
H

0
c (ShtH ; Sat( )) T

0(ShtH , Sat(Res(W ))) . . .

? ?

Want to identify all steps of the excursion.

Topological aspect: relate (Tate) cohomology of a space with (Tate)

cohomology of its fixed points.

Representation-theoretic aspect: geometric interpretation of

restriction functor Repk(
L
G )

Res
��! Repk(

L
H).



Tate cohomology

Suppose h�i ⇡ Z/p y X , F 2 D
b
�(X ; k).

T
i (X ;F) :=

H
i (Tot(. . . N

�! C
⇤(X ;F)

1��
��! C

⇤(X ;F)
N
�! C

⇤(X ;F)
1��
��! . . .))



Equivariant localization (Smith, Quillen, Treumann)

T
i (X ;F) ⇠= T

i (X �;F|X�).

Can apply this to shtukas because (Lemma): Sht
�
G = ShtH .



Summary

We have explained the topological input into functoriality.

Now zoom in on the representation-theoretic input:

Hecke category for G Hecke category for H

Repk(
L
G ) Repk(

L
H)



Smith theory

Notation:

H = reductive group over Fv .

Ev/Fv extension, Gal(Ev/Fv ) ⇡ Z/p = h�i.

G = ResEv/Fv
(HEv

)

(Coefficients) k = Fp.

Treumann-Venkatesh construct Brauer homomorphism

k-Hecke algebra for G k-Hecke algebra for H

K0 Repk(
L
G ) K0 Repk(

L
H)

br

Res



With Gus Lonergan we construct a categorification

k-Hecke category for G k-Hecke category for H

Repk(
L
G ) Repk(

L
H)

BC

Res

using recent tools in geometric representation theory:

parity sheaves (Juteau-Mautner-Williamson),

Smith-Treumann theory (Treumann, Leslie-Lonergan,

Riche-Williamson).



Brauer homomorphism

Assume: [ G(Fv )
G(Ov )

]� = [ H(Fv )
H(Ov )

]

k-Hecke algebra for G k-Hecke algebra for H

Func

G(Fv )
( G(Fv )
G(Ov )

⇥
G(Fv )
G(Ov )

, k) Func

H(Fv )
( H(Fv )
H(Ov )

⇥
H(Fv )
H(Ov )

, k)

br





Base change functor

k-Hecke category for G k-Hecke category for H

PG(Ov )(GrG ) PH(Ov )(GrH)

BC







Parity sheaves

Given a suitable stratification:

(Juteau-Mautner-Williamson) Parity sheaves are K 2 D
b

whose

⇤-stalks and !-stalks have cohomology concentrated either even

degrees or odd degrees.

(Leslie-Lonergan) Tate-Parity sheaves are K 2 D
b/Perf whose

⇤-stalks and !-stalks have Tate cohomology concentrated in either

even degrees or odd degrees.

Feature: (Tate-)Parity sheaves enjoy strong rigidity properties.



Parity
0
G(O)(GrG ) Parity

0
G(O)o�(GrG ) DH(O)o�(GrH)

F F ⇤
�
F ⇤ . . . ⇤ �p�1

F

DH(O)o�(GrH)/Perf

PH(O)(GrH)

Res



This is interesting even for H = GL(1), for which GrH is (étale homotopic

to) a discrete union of points.










