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Objectives

e Give examples of unitary Shimura varieties and the
structure of their supersingular loci

e Consider their associated Rapoport-Zink spaces

e Discuss some elements used in studying the geometry of
these Rapoport-Zink spaces



Historical Motivation
Study Yn(C) =
{(E,P,Q)| E an elliptic curve /C, (P, Q) generate E[N](C)}/
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Historial Motvation & /g

The supersingular locus (Yy);° parametrizes Cah e 5.5,
(E,P,Q) € (Vn)p(Fp) where E is supersingular. o N

Thm (Eichler-Deuring Mass Formula): If np is the number of
supersingular elliptic curves over Fp,
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GU(a, b) Shimura Variety @fi“%ye

Given a quad. im. field K and p # 2 unramified in K, the ¢
GU(a, b) Shimura variety M(a, b) parametrizes (A, ¢, A, n): 7/@4,

e Aan A.V. of dim a+b e anactionof O c K
e \:A-> AY * n level structure (hyp. at p)
det(T - ¢(k); Lie(A)) = (T — o1 (k))2(T - p2(k))®.
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The supersingular locus M(a, b),,° parametrizes (A, :, A, n)
where A is supersingular.




History
There are two important invariants of M(a, b);°: the signature
(a, b) and the factorization of p in K (split, inert).

* Note: as M(a, b) has relative dimension ab, consider
b>a> 0. Also, if p splits in K, M(a, b) is only nonempty
when a=b.

* In 2005, Vollaard described M(1,2)5° when pis inertin K.

e |[n 2008, Vollaard and Wedhorn extended these results to
M(1,n-1)z° when pis inert in K. Most detailed
descriptions in the case when n=2,3,4.

* In 2013, Howard and Pappas described M(2,2);° when p
is inertin K.

* In 2018, M(2,2);° when pis splitin K.

(More generally, can allow p to ramify in K.
Rapoport-Terstiege-Wilson described M(1,n-1),° in 2013;
Oki described M(2,2);° in 2020.)

We'll consider all nontrivial M(a, b),® where a+ b = 4.



The Supersingular Locus of M(1,3), Inert p
Theorem (Vollaard-Wedhorn °08)

Assume that pis inert in K, and n is suff. small. The
supersingular locus M(1,3),° equi-dimensional of dimension
1. Each irreducible component is isomorphic to the Fermat
curve C. There are p + 1 intersection points on each irreducible
component, and each int. point is the intersection of p° + 1
irreducible components.

M(1,3)p M(1,3)0 M(1,3)
Im3 dim 3
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The Supersingular Locus of M(2,2), Inert p
Theorem (Howard-Pappas '13)

Assume that p is inert in K, and 7 is suff. small. The
supersingular locus M(2,2),° equi-dimensional of dimension
2. Each irreducible component is isomorphic to the Fermat
surface S. Any two irr. components intersect trivially, in a
projective line, or in a point.

M(2,2), M(2,2)o M(2,2)
dim4 dim4
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The Supersingular Locus of M(2,2), Split p
Theorem (F. '18)

Assume that pis split in K, and n is suff. small. The
supersingular locus M(2,2),° equi-dimensional of dimension

1. Each irreducible component is isomorphic to IP’% . There are
p

p? + 1 intersection points on each irreducible component, and
each int. point is the intersection of p? + 1 irreducible
components.

M(2,2), M(2,2), M(2,2)
dim4 dim4
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G Rapoport-Zink Spaces By «
Socw
Let W { W(Fp). For S e Nilp(W), let Sp = S xyy Fp. ('L\\’M
Define: Noj, : Nilpy, — Sets, Non(S) = {(G, p)}/ =, where )
e (Gis a supersingular p-divisible group over S of dim. n ‘””:
* p: Gg, - Gg, is a quasi-isogeny to a fixed basepoint R
p-divisible group G (def. over [Fp.)
This is represented by a formal scheme, let A5, be the
underlying reduced scheme.
Example (Lubin-Tate):
(&\(uw

No=| |[M3=| |Spec(Fp) ok
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Where N} is the locus where p has height i



Unitary Rapoport-Zink Spaces

N(a,b)(S)={(G,t,\,p)}/ =, where: (9‘:‘<

e G a supersingular p-div. * 1:0®yZp— End(G) of
gp over Sofdima+b sign. (a, b)

* \:G— GY * p:Gg, ~> Gg,, quasi-isog

Rapoport-Zink Uniformization

M(a, b),’ = |i1| r\N(a,b)
iz

The I'; are discrete groups (depending on level structure) acting
on N(a,b).

Can study the Rapoport-Zink spaces N (a, b) to understand the
supersingular loci M(a, b),°
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The GU(1, 3) Rapoport-Zink Space '\(\L\'Qn .
&
Thm (Vollaard-Wedhorn): Wi
}O\(\Us
For pinertin K wv@“
e The GU(1,3) Rapoport-Zink space N (1,3) decomposes A
into connected components as N (1,3) = Ljz N(41’,34).
e Each irr. comp. of N 5, is isom to:
C : x(’;’+1 T xf” +x_§+1 =0c IP’%p.
e These irr. comp. are indexed by vertex lattices A of type 3,
inside a fixed hermitian space W.

e Each irr. comp. contains p® + 1 int. pts, and each int pt is
the intersection of p + 1 irr. comp.

N (1,3) has two Ekedahl-Oort strata: the superspecial
points, which are precisely the int. points, and their
complement.



Deligne-Lusztig Varieties

Given G over [ a reductive group (with Frob. F),
B c G(IFy) an F-stable Borel, and w e W:

X(w)={gBeG/B|g ' F(g) < BwB}.
{t—’\,
Can think of X(w) as a moduli space of Borel subgroups B

such that B and F(B) have “relative position w”

Example: G = SLy over IFy, B upper- triangular Borel.
Note that G/B < PL,andthat W={1,(97 )}

o

Two lines’in IF‘ ha%e rel. pos. 1 iff they are equal.

So,
X(1) =P'(Fq)

X(?‘J):]P)1 \P1(Fq).

The Fermat curve C arises as a DL variety for a unitary
group G and parabolic subgroup P c G.



A
(LW ) Bruhat-Tits Building

* From the Hermitian space W over QQ, of
Vollaard-Wedhorn, can construct a simplicial complex B:

* The 0-cells are given by vertex lattices: Zy-lattices A ¢ W
such that pAc AV <A\ uasce. (e ooy

e There is an m-simplex connecting Ag, A1, ..., Am whenever
NoEMEEAn

* Bisisom. to the Bruhat-Tits building of SU(W).

e For sign. (1,3): B is a tree, with two types of vertices:
“Type-1” and “Type-3.”
Type-1 vertices have degree p + 1, Type-3 have p3 + 1.
Type-1 vertices are only adjacent to Type-3 and vice versa.

e These combinatorics are reflected in the intersection
combinatorics of N'(1,3).
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Ekedahl-Oort Strata

e The Ekedahl-Oort stratification of A'(a, b) is based on the
isom class. of the p-torsion subgroups

e That is: two points (G, ¢, \,p) and (G',.", N, p") of
N (a,b)(Fp) are in the same EO stratum if and only if
Glp] = G'[p].

e Apoint (G,¢,\,p) e N(a,b)(Fp) is called superspecial if
and only if G is isomorphic to (not just isog. to!) the p-div
gp of a product of supersingular elliptic curves.

e In the examples today, the superspecial points form the
O-dimensional Ekedahl-Oort stratum.



The GU(1,3) Rapoport-Zink Space Again
Thm (Vollaard-Wedhorn):

For pinertin K

e The GU(1,3) Rapoport-Zink space N (1,3) decomposes

into connected components as AV (1,3) = Lz N(41",3).

e Each irr. comp. of N 5, is isom to:
C : xg+1 T xf” +x_§+1 =0c IP’%p.
e These irr. comp. are indexed by vertex lattices A of type 3,
inside a fixed hermitian space W.

e Each irr. comp. contains p® + 1 int. pts, and each int pt is
the intersection of p + 1 irr. comp.

N (1,3) has two Ekedahl-Oort strata: the superspecial
points, which are precisely the int. points, and their
complement.



The GU(1,3) Rapoport-Zink Space Again
For pinertin K: U\/
Thm (Vollaard-Wedhorn), Rephrased:

e The GU(1,3) Rapoport-Zink space N (1,3) decomposes
into connected components based on height of p.

e The irr. components of each fixed connected component
are indexed by certain vertices in a Bruhat-Tits building.
The intersection combinatorics reflect the combinatorics of
this building.

e Each irr. component is isomorphic to a particular kind of
Deligne-Lusztig variety.

e The EO strata respect this structure, the (closure of) each
EO in an irr. comp. is also a Deligne-Lusztig variety.
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The GU(2,2) Rapoport-Zink Spack > oo
Thm (Howard-Pappas): 6?
For pinertin K

* The GU(2,2) Rapoport-Zink space N, oy decomposes
into connected components as N(2,2) = Uiz V(3 5-

. " - oL
e Each irr. comp. of N*(2,2) is isom to: - OO O o
S : xg+1 +X4°Jr1 +x§Jr1 +X§+1 =0 CIP’%p.

e These irr. comp. are indexed by vertex lattices A of type 6,
inside a fixed quadratic space W2) .~ ), \,b
e Any two irr. comp. intersect trivially, intersect in a single

point, or have intersection isomorphic to C. These int.
combinatorics are controlled by the BT building of SO(W).

* The superspecial points (minimal EO stratum) are exactly
these intersection points.



(G, NP
The GU(2,2) Rapoport-Zink Space 0 b6=&
,—;(a;‘&“‘

/O-.G\bx(ﬂ\
Thm (F.): °
For p splitin K \“?g\w
e The GU(2,2) Rapoport-Zink space N (2,2) decomposes/| /s

into connected components as N'(2,2) = |ljez jez Nj“("z 2)-

e Each irr. comp. of V¥, , is isom to P! L DL

J Fp’ Va«'&)«a,
e These irr. comp. are indexed by vertex lattices A of type 4,
inside a fixed quadratic space () ¢~ 4, \
e Each irr. comp. contains p? + 1 int. pts, and each int pt is
the intersection of p? + 1 irr. comp. i S\ ‘ow\(k“*g 60(\%%
N (2,2) has two EO strata: the superspecial points, which
are precisely the int. points, and their complement.



General Situation

e The Rapoport-Zink spaces N(1,n-1) (pinert), N'(2,2) (p
inert), and AV (2,2) (p split) have similar structure: their irr.
components are Deligne-Lusztig varieties and intersection
combinatorics coming from a Bruhat-Tits building. The
Ekedahl-Oort stratification respects decomp. into ‘YU\'“'\\
Deligne-Lusztig varieties.

* These are all examples of Rapoport-Zink spaces of
Coxeter Type. Gortz, He, and Nie have classified which
Rapoport-Zink spaces have this structure, after perfection.
The first paper (2013) lists all 21 possibilities.

* There are also examples of Rapoport-Zink spaces that do
not have this structure: for example, those coming from
Siegel modular varieties for g > 3 and some unitary
Rapoport-Zink spaces.




A\ . .
/(“ A Particular Rapoport-Zink Space
Vo= DS C\k
Na(Fp) ={(G,p)}/ = where Gis of dim 2 X ¢
N(2,2)(Fo) = {(G,¢,\,p)}/ = where: O, %= @

.S,

a p-divisible gp of Gim 4 e 1:0®;Zp - End(G) of
e \: G5 GY sign. (2,2)

2 (% G — &\o" b * p: G- G, quasi-isog
.7(/“7 0 pze\nﬁ &a’\o
When p splits in K W= 0

Isomorphism: 0 \ 55,0’9‘ (}‘WKL
0 Nz A

(G, 1, A\, p) = (Go, pla, : Go = Go)

B G

With inverse: _
@ 1 :N4_>N(02,2) '\/W

(Go, po) = (Go x Gy, 4, A, po x (pg) ™)



Structure of Ny

Thm (F):
* The GL4 Rapoport-Zink space N4 decomposes mto
connected components as Nz = Lljcz N’ = "W 0,° XU
e Each irr. comp. of AV} is isom to P1 q&g\, R

e These irr. comp. are indexed by vertex lattices A of type 4,
inside a fixed quadratic space W.

e Each irr. comp. contains p? + 1 int. pts, and each int pt is
the intersection of p? + 1 irr. comp.

e N4 has two EO strata: the superspecial points, which are
precisely the int. points, and their complement.

(When p split, this description plus the observation /\/(02 2) & Ny
yields the description of A/(2,2).)



Ve
Quadratic Space and Building , e

e Let G be the basepoint for A/4. Construct , a
Qp-vector space of special quasi-endomorp s of \
G x GY, with quadratic composition form. ‘/dL\'o,kk\w

o A vertex lattice is a Z-lattice A c V® such that pA c AV c A.
The type of A is dimg,(A/AY). Based on V®, the type can
only be 2 or 4.

* The BT Building of SO(V®) is a tree, with vertices formed
by vertex lattices. There is an edge between A and A’ iff
one is contained in the other.

e Type-2 vertices are only adjacent to type-4 vertices, and
vice versa. Both types of vertices have degree p? + 1.

This building relates to Ny in two ways:
1. Given A of type 4, should have irr. comp. NP, a DL variety.

2. Intersection combinatorics of the A/{ should relate to
combinatorics of the tree.
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Nighe) alrreducible Component Indexed by A 266 ¢,&
Q"'N\ " A NN pi O L,-WAQ‘, wf. Udmp
Jed e Given A c V? of type{d (2 or 4), C V'Q C\/

Ao~ M={(Gp) e N2 | p*(V) € End(G x G”) Vv e AV}

Require p*(v) is a true endmorphism, not just quasi—end.o&g
WA

e Can use Dieudonné theory (etcz to identify: N \W(t;\

A Ly G (b Sau @
(&7 NEL(F,) = {McN|Mis aDieudonné module, A acts correctly}

PPIROGTEN ‘e
W &Y NSARY AeLe N

W _— ) . o I
\&&ud WU = {Z c V| L “a special end. lattice, an L
Kve O w0t W gk 3 L),

N
AN N\ — . +
O = {£ ¢ OGr(A/N) () (Fp) | dim(Frob(£) nd) = § -1}

o~
uC)Q\QO
SWegue s L JXelotvl o 3o Fepp- nish
This is a Deligne-Lusztig variety for SO(A/AY).

* If d =7, Y is a single point. If d = Bt ND =P



\(5 SNQ/\“ lomQ & \Q\ J\,q(_s (/d\\lo. W25 chom \93(5 c:"cl./g
) Combinatorics from Building

 Given Ay c V® of type d (2 or 4),

N2 = {(G.p) eND | p*(v) € End(Gx G*) Yv e Ay}
MaChu p Ve py

* Note: N} c Ny if and only if Az c Aq s (« Negged ek

Ag N, is either a type-2 lattice or trivial. A )
0 0 i i 0 P

Np, rwj\/,\:1 is either /\//\40,\:1 or empty. = (p © wﬁgf'

e Fix vertex lattice Ay, irr. comp A? . The int. pts on N} are
exactly the N c NV , param. by A c A4. Since v(A4) has

degree p? + 1, there are p® + 1 such int. pts.

* Fix vertex lattice Az, pt Y . The irr. comps NV containing
Ny are given by A4 containing Az. Since v(Az) has degree
p? + 1, there are p? + 1 such irr. comps.
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Some Takeaways

1. In some cases, the supersingular loci M(a, b),° have
especially nice structure (can be written as a union of
Deligne-Lusztig varieties, etc.)

2. The Rapoport-Zink spaces N (a, b) occur naturally in the
study of M(a, b),°. There is also some especially nice
structure (role of Bruhat-Tits building) that is more visible
on N(a,b).

3. Warning! This does not hold in general for all Shimura
varieties of PEL-type, or even for all unitary Shimura

varieties. . (O, of (@,



Thank you!



