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Objectives

● Give examples of unitary Shimura varieties and the
structure of their supersingular loci

● Consider their associated Rapoport-Zink spaces

● Discuss some elements used in studying the geometry of
these Rapoport-Zink spaces



Historical Motivation
Study YN(C) =

{(E ,P,Q) � E an elliptic curve �C, (P,Q) generate E[N](C)}� ≅

'(N)
�
i=1 �(N)�H ∼��→ YN(C)

More generally, if N ≥ 3, YN ∶ Schms S � Z[1�N]→ Sets
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Historial Motvation
The supersingular locus (YN)ss

p parametrizes
(E ,P,Q) ∈ (YN)p(Fp) where E is supersingular.

Thm (Eichler-Deuring Mass Formula): If np is the number of
supersingular elliptic curves over Fp,

np ≈
p
12

Spec(Z[ 1
N ])(0)(p) p � N

YN(YN)0(YN)p

≈ p
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points
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GU(a,b) Shimura Variety
Given a quad. im. field K and p ≠ 2 unramified in K , the
GU(a,b) Shimura varietyM(a,b) parametrizes (A, ◆,�,⌘):
● A an A.V. of dim a+b
● � ∶ A→ A∨

● ◆ an action of O ⊆ K
● ⌘ level structure (hyp. at p)

det(T − ◆(k);Lie(A)) = (T −'1(k))a(T −'2(k))b.

dimab

Spec(OF ⊗Z Z(p))(0)(p)

M(a,b)M(a,b)0M(a,b)p

M(a,b)ss
p ?

dimab

The supersingular locusM(a,b)ss
p parametrizes (A, ◆,�,⌘)

where A is supersingular.
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History
There are two important invariants ofM(a,b)ss

p : the signature
(a,b) and the factorization of p in K (split, inert).
● Note: asM(a,b) has relative dimension ab, consider

b ≥ a > 0. Also, if p splits in K ,M(a,b) is only nonempty
when a = b.
● In 2005, Vollaard describedM(1,2)ss

p when p is inert in K .
● In 2008, Vollaard and Wedhorn extended these results to
M(1,n − 1)ss

p when p is inert in K . Most detailed
descriptions in the case when n = 2,3,4.
● In 2013, Howard and Pappas describedM(2,2)ss

p when p
is inert in K .
● In 2018,M(2,2)ss

p when p is split in K .
(More generally, can allow p to ramify in K .
Rapoport-Terstiege-Wilson describedM(1,n − 1)ss

p in 2013;
Oki describedM(2,2)ss

p in 2020.)
We’ll consider all nontrivialM(a,b)ss

p where a + b = 4.



The Supersingular Locus ofM(1,3), Inert p
Theorem (Vollaard-Wedhorn ’08)

Assume that p is inert in K , and ⌘ is suff. small. The
supersingular locusM(1,3)ss

p equi-dimensional of dimension
1. Each irreducible component is isomorphic to the Fermat
curve C. There are p + 1 intersection points on each irreducible
component, and each int. point is the intersection of p3 + 1
irreducible components.

dim3

Spec(OK ⊗Z Z(p))(0)p

M(1,3)M(1,3)0M(1,3)p

M(1,3)ss
p
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The Supersingular Locus ofM(2,2), Inert p

Theorem (Howard-Pappas ’13)

Assume that p is inert in K , and ⌘ is suff. small. The
supersingular locusM(2,2)ss

p equi-dimensional of dimension
2. Each irreducible component is isomorphic to the Fermat
surface S. Any two irr. components intersect trivially, in a
projective line, or in a point.

dim4

Spec(Z(p))(0)p

M(2,2)M(2,2)0M(2,2)p

M(2,2)ss
p
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The Supersingular Locus ofM(2,2), Split p
Theorem (F. ’18)

Assume that p is split in K , and ⌘ is suff. small. The
supersingular locusM(2,2)ss

p equi-dimensional of dimension
1. Each irreducible component is isomorphic to P1

Fp
. There are

p2 + 1 intersection points on each irreducible component, and
each int. point is the intersection of p2 + 1 irreducible
components.

dim4

Spec(Z(p))(0)p

M(2,2)M(2,2)0M(2,2)p

M(2,2)ss
p
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Rapoport-Zink Spaces

Let W =W (Fp). For S ∈ Nilp(W ), let S0 = S ×W Fp.
Define: N2n ∶ NilpW → Sets, N2n(S) = {(G,⇢)}� ≅, where
● G is a supersingular p-divisible group over S of dim. n
● ⇢ ∶ GS0 → GS0 is a quasi-isogeny to a fixed basepoint

p-divisible group G (def. over Fp.)
This is represented by a formal scheme, let N2n be the
underlying reduced scheme.

Example (Lubin-Tate):

N2 ≅�
i∈ZN

i
2 ≅�

i∈ZSpec(Fp)

Where N i
2 is the locus where ⇢ has height i
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Unitary Rapoport-Zink Spaces
N (a,b)(S) = {(G, ◆,�,⇢)}� ≅, where:

● G a supersingular p-div.
gp over S of dim a + b
● � ∶ G ∼�→ G∨

● ◆ ∶ O ⊗Z Zp → End(G) of
sign. (a,b)
● ⇢ ∶ GS0 → GS0 , quasi-isog

Rapoport-Zink Uniformization

M(a,b)ss
p ≅

m
�
j=1�j�N (a,b)

The �j are discrete groups (depending on level structure) acting
on N (a,b).

Can study the Rapoport-Zink spaces N (a,b) to understand the
supersingular lociM(a,b)ss

p
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The GU(1,3) Rapoport-Zink Space
Thm (Vollaard-Wedhorn):

For p inert in K
● The GU(1,3) Rapoport-Zink space N (1,3) decomposes

into connected components as N (1,3) = �i∈ZN 4i(1,3).
● Each irr. comp. of N 4i(1,3) is isom to:

C ∶ xp+1
0 + xp+1

1 + xp+1
2 = 0 ⊂ P2

Fp
.

● These irr. comp. are indexed by vertex lattices ⇤ of type 3,
inside a fixed hermitian space W .
● Each irr. comp. contains p3 + 1 int. pts, and each int pt is

the intersection of p + 1 irr. comp.
● N (1,3) has two Ekedahl-Oort strata: the superspecial

points, which are precisely the int. points, and their
complement.
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Deligne-Lusztig Varieties
● Given G over Fq a reductive group (with Frob. F ),

B ⊂ G(Fq) an F -stable Borel, and w ∈W :

X(w) = {gB ∈ G�B �g−1F(g) ∈ BwB}.

● Can think of X(w) as a moduli space of Borel subgroups B
such that B and F(B) have “relative position w”
● Example: G = SL2 over Fq, B upper-triangular Borel.

Note that G�B ↔ P1
Fq

, and that W = {1, � 0 −1
1 0 �}.

● Two lines in F2
q have rel. pos. 1 iff they are equal.

● So,
X(1) = P1(Fq)

X� 0 −1
1 0 � = P

1 � P1(Fq).
● The Fermat curve C arises as a DL variety for a unitary

group G and parabolic subgroup P ⊂ G.
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Bruhat-Tits Building

● From the Hermitian space W over Qp of
Vollaard-Wedhorn, can construct a simplicial complex B:
● The 0-cells are given by vertex lattices: Zp-lattices ⇤ ⊂W

such that p⇤ ⊂ ⇤∨ ⊂ ⇤
● There is an m-simplex connecting ⇤0,⇤1, . . . ,⇤m whenever
⇤0 � ⇤1 � � � ⇤m

● B is isom. to the Bruhat-Tits building of SU(W ).
● For sign. (1,3): B is a tree, with two types of vertices:

“Type-1” and “Type-3.”
Type-1 vertices have degree p + 1, Type-3 have p3 + 1.
Type-1 vertices are only adjacent to Type-3 and vice versa.
● These combinatorics are reflected in the intersection

combinatorics of N (1,3).
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Ekedahl-Oort Strata

● The Ekedahl-Oort stratification of N (a,b) is based on the
isom class. of the p-torsion subgroups
● That is: two points (G, ◆,�,⇢) and (G′, ◆′,�′,⇢′) of
N (a,b)(Fp) are in the same EO stratum if and only if
G [p] ≅ G′ [p].
● A point (G, ◆,�,⇢) ∈N (a,b)(Fp) is called superspecial if

and only if G is isomorphic to (not just isog. to!) the p-div
gp of a product of supersingular elliptic curves.
● In the examples today, the superspecial points form the

0-dimensional Ekedahl-Oort stratum.



The GU(1,3) Rapoport-Zink Space Again
Thm (Vollaard-Wedhorn):

For p inert in K
● The GU(1,3) Rapoport-Zink space N (1,3) decomposes

into connected components as N (1,3) = �i∈ZN 4i(1,3).
● Each irr. comp. of N 4i(1,3) is isom to:

C ∶ xp+1
0 + xp+1

1 + xp+1
2 = 0 ⊂ P2

Fp
.

● These irr. comp. are indexed by vertex lattices ⇤ of type 3,
inside a fixed hermitian space W .
● Each irr. comp. contains p3 + 1 int. pts, and each int pt is

the intersection of p + 1 irr. comp.
● N (1,3) has two Ekedahl-Oort strata: the superspecial

points, which are precisely the int. points, and their
complement.



The GU(1,3) Rapoport-Zink Space Again

For p inert in K :

Thm (Vollaard-Wedhorn), Rephrased:

● The GU(1,3) Rapoport-Zink space N (1,3) decomposes
into connected components based on height of ⇢.
● The irr. components of each fixed connected component

are indexed by certain vertices in a Bruhat-Tits building.
The intersection combinatorics reflect the combinatorics of
this building.
● Each irr. component is isomorphic to a particular kind of

Deligne-Lusztig variety.
● The EO strata respect this structure, the (closure of) each

EO in an irr. comp. is also a Deligne-Lusztig variety.



The GU(2,2) Rapoport-Zink Space

Thm (Howard-Pappas):

For p inert in K
● The GU(2,2) Rapoport-Zink space N(2,2) decomposes

into connected components as N (2,2) = �i∈ZN 4i(2,2).
● Each irr. comp. of N 4i(2,2) is isom to:

S ∶ xp+1
0 + xp+1

1 + xp+1
2 + xp+1

3 = 0 ⊂ P3
Fp
.

● These irr. comp. are indexed by vertex lattices ⇤ of type 6,
inside a fixed quadratic space W .
● Any two irr. comp. intersect trivially, intersect in a single

point, or have intersection isomorphic to C. These int.
combinatorics are controlled by the BT building of SO(W ).
● The superspecial points (minimal EO stratum) are exactly

these intersection points.
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The GU(2,2) Rapoport-Zink Space

Thm (F.):

For p split in K
● The GU(2,2) Rapoport-Zink space N (2,2) decomposes

into connected components as N (2,2) = �i∈Z,j∈ZN 4i
j,(2,2).

● Each irr. comp. of N 4i
j,(2,2) is isom to P1

Fp
.

● These irr. comp. are indexed by vertex lattices ⇤ of type 4,
inside a fixed quadratic space W .
● Each irr. comp. contains p2 + 1 int. pts, and each int pt is

the intersection of p2 + 1 irr. comp.
● N (2,2) has two EO strata: the superspecial points, which

are precisely the int. points, and their complement.
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General Situation

● The Rapoport-Zink spaces N (1,n − 1) (p inert), N (2,2) (p
inert), and N (2,2) (p split) have similar structure: their irr.
components are Deligne-Lusztig varieties and intersection
combinatorics coming from a Bruhat-Tits building. The
Ekedahl-Oort stratification respects decomp. into
Deligne-Lusztig varieties.
● These are all examples of Rapoport-Zink spaces of

Coxeter Type. Görtz, He, and Nie have classified which
Rapoport-Zink spaces have this structure, after perfection.
The first paper (2013) lists all 21 possibilities.
● There are also examples of Rapoport-Zink spaces that do

not have this structure: for example, those coming from
Siegel modular varieties for g ≥ 3 and some unitary
Rapoport-Zink spaces.
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A Particular Rapoport-Zink Space
N4(Fp) = {(G,⇢)}� ≅, where G is of dim 2

N (2,2)(Fp) = {(G, ◆,�,⇢)}� ≅, where:
● G a p-divisible gp of dim 4
● � ∶ G ∼�→ G∨

● ◆ ∶ O ⊗Z Zp → End(G) of
sign. (2,2)
● ⇢ ∶ G → G, quasi-isog

When p splits in K

Isomorphism:
' ∶ N 0(2,2) →N4

(G, ◆,�,⇢)� (G0,⇢�G0 ∶ G0 → G0)

With inverse:
'−1 ∶ N4 →N 0(2,2)

(G0,⇢0)� (G0 ×G∨0 , ◆,�,⇢0 × (⇢∨0)−1)
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Structure of N4

Thm (F.):

● The GL4 Rapoport-Zink space N4 decomposes into
connected components as N4 = �i∈ZN i

4.

● Each irr. comp. of N i
4 is isom to P1

Fp
.

● These irr. comp. are indexed by vertex lattices ⇤ of type 4,
inside a fixed quadratic space W .
● Each irr. comp. contains p2 + 1 int. pts, and each int pt is

the intersection of p2 + 1 irr. comp.
● N4 has two EO strata: the superspecial points, which are

precisely the int. points, and their complement.

(When p split, this description plus the observation N 0(2,2) ≅N4

yields the description of N (2,2).)
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Quadratic Space and Building
● Let G be the basepoint for N4. Construct W = V�, a
Qp-vector space of special quasi-endomorphisms of
G ×G∨, with quadratic composition form.
● A vertex lattice is a Zp-lattice ⇤ ⊂ V� such that p⇤ ⊂ ⇤∨ ⊂ ⇤.

The type of ⇤ is dimFp(⇤�⇤∨). Based on V�, the type can
only be 2 or 4.
● The BT Building of SO(V�) is a tree, with vertices formed

by vertex lattices. There is an edge between ⇤ and ⇤′ iff
one is contained in the other.
● Type-2 vertices are only adjacent to type-4 vertices, and

vice versa. Both types of vertices have degree p2 + 1.
This building relates to N4 in two ways:

1. Given ⇤ of type 4, should have irr. comp. N 0
⇤ , a DL variety.

2. Intersection combinatorics of the N 0
⇤ should relate to

combinatorics of the tree.
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Irreducible Component Indexed by ⇤

● Given ⇤ ⊂ V� of type d (2 or 4),

N 0
⇤ = {(G,⇢) ∈N 0

4 � ⇢
∗(v) ∈ End(G ×G∨) ∀v ∈ ⇤∨}

Require ⇢∗(v) is a true endmorphism, not just quasi-end.
● Can use Dieudonné theory (etc) to identify:

N 0
⇤(Fp) = {M ⊂ N � M is a Dieudonné module, ⇤∨ acts correctly}

= {L ⊂ V � L “a special end. lattice,” and ⇤∨ ⊂ L}

= {L ∈ OGr(⇤�⇤∨)(d
2 )(Fp) � dim(Frob(L) ∩ L) = d

2 − 1}+

This is a Deligne-Lusztig variety for SO(⇤�⇤∨).
● If d = 1, N 0

⇤ is a single point. If d = 2, N 0
⇤ ≅ P1.
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Combinatorics from Building
● Given ⇤d ⊂ V� of type d (2 or 4),

N 0
⇤d
= {(G,⇢) ∈N 0

4 � ⇢
∗(v) ∈ End(G ×G∨) ∀v ∈ ⇤∨d}

● Note: N 0
⇤2
⊂N 0

⇤4
if and only if ⇤2 ⊂ ⇤4

⇤4 ∩ ⇤′4 is either a type-2 lattice or trivial.
N 0

⇤4
∩N 0

⇤′4 is either N 0
⇤4∩⇤′4 or empty.

● Fix vertex lattice ⇤4, irr. comp N 0
⇤4

. The int. pts on N 0
⇤4

are
exactly the N 0

⇤2
⊂N 0

⇤4
, param. by ⇤2 ⊂ ⇤4. Since v(⇤4) has

degree p2 + 1, there are p2 + 1 such int. pts.

● Fix vertex lattice ⇤2, pt N 0
⇤2

. The irr. comps N 0
⇤4

containing
N 0

⇤2
are given by ⇤4 containing ⇤2. Since v(⇤2) has degree

p2 + 1, there are p2 + 1 such irr. comps.
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Some Takeaways

1. In some cases, the supersingular lociM(a,b)ss
p have

especially nice structure (can be written as a union of
Deligne-Lusztig varieties, etc.)

2. The Rapoport-Zink spaces N (a,b) occur naturally in the
study ofM(a,b)ss

p . There is also some especially nice
structure (role of Bruhat-Tits building) that is more visible
on N (a,b).

3. Warning! This does not hold in general for all Shimura
varieties of PEL-type, or even for all unitary Shimura
varieties.
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Thank you!


