Linus Hamann

Princeton University

October 2020

Table of Contents

1 The Main Theorem

- **2** The Fargues-Scholze LLC and compatibility for $G = GL_n$
- 3 Compatibility for $G = GSp_4$ and $GU_2(D)$ and Applications

4 Proof of the Key Proposition

└─ The Main Theorem

Table of Contents

1 The Main Theorem

- **2** The Fargues-Scholze LLC and compatibility for $G = GL_n$
- 3 Compatibility for $G = GSp_4$ and $GU_2(D)$ and Applications
- 4 Proof of the Key Proposition

Notation

We let:

- **1** p and ℓ be distinct primes.
- **2** G/\mathbb{Q}_p be a connected reductive group.
- 3 $W_{\mathbb{Q}_p}$ be the Weil group of \mathbb{Q}_p
- 4 \hat{G} the Langlands dual group of G viewed as a reductive group over $\overline{\mathbb{Q}}_{\ell}$

$$5 \ ^LG := W_{\mathbb{Q}_p} \ltimes \hat{G}$$

6 $i: \overline{\mathbb{Q}}_{\ell} \xrightarrow{\simeq} \mathbb{C}$ and $j: \overline{\mathbb{Q}}_p \xrightarrow{\simeq} \mathbb{C}$ be fixed isomorphisms.

Notation

We set:

- **1** $\Pi(G)$ to be isomorphism classes of smooth irreducible representations of $G(\mathbb{Q}_p)$.
- **2** $\Phi(G)$ to be the set of conjugacy classes of admissible homomorphisms:

$$\phi: W_{\mathbb{Q}_p} \times SL(2, \overline{\mathbb{Q}}_\ell) \to {}^L G(\overline{\mathbb{Q}}_\ell)$$

3 $\Phi^W(G)$ to be the set of conjugacy classes of continuous semisimple homomorphisms:

$$\phi: W_{\mathbb{Q}_p} \to {}^L G(\overline{\mathbb{Q}}_\ell)$$

Theorem (Harris-Taylor/Henniart/Scholze)

Let $G = GL_n$ then, for every $n \ge 1$, there exists a unique bijection:

$$\Pi(G) \xrightarrow{LLC_n} \Phi(G)$$

$\pi \mapsto \phi_{\pi}$

generalizing local class field theory and characterized by the preservation of character twists, L, ϵ , and γ factors.

Theorem (Fargues-Scholze)

For any G, there exists a map:

$$\Pi(G) \xrightarrow{LLC_G^{FS}} \Phi^W(G)$$
$$\pi \mapsto \phi_\pi^{FS}$$

enjoying the following properties:

- 1 It is compatible with tensor product of representations.
- 2 It is is compatible with parabolic induction of representations.
- 3 It is compatible with the correspondence of Harris-Taylor/Henniart for $G = GL_n$ and its inner forms.

Question:

Can we show that the Fargues-Scholze Local Langlands correspondence is compatible with other instances of the correspondence? Namely, given a "known local Langlands correspondence":

 $\Pi(G) \xrightarrow{LLC_G} \Phi(G)$

We expect a commutative diagram of the form:

where the right horizontal arrow precomposes the map $\phi \in \Phi(G)$ with $g \in W_{\mathbb{Q}_p} \mapsto (g, \begin{pmatrix} |g|^{\frac{1}{2}} & 0\\ 0 & |g|^{\frac{-1}{2}} \end{pmatrix}) \in W_{\mathbb{Q}_p} \times SL(2, \overline{\mathbb{Q}}_{\ell})$

Theorem (Gan-Takeda/Gan-Tantono)

- **1** Let L/\mathbb{Q}_p be a finite extension.
- 2 $G = Res_{L/\mathbb{Q}_p}GSp_4$ or $G = Res_{L/\mathbb{Q}_p}GU_2(D)$, where D is the quaternion division algebra over L.
- **3** Up to the choice of the fixed isomorphism *i*, there exists a unique map:

$$LLC_G: \Pi(G) \to \Phi(G)$$

 $\pi \mapsto \{\phi_{\pi}: W_L \times SL(2, \overline{\mathbb{Q}}_{\ell}) \to \hat{G}(\overline{\mathbb{Q}}_{\ell}) = GSpin_5(\overline{\mathbb{Q}}_{\ell}) \simeq GSp_4(\overline{\mathbb{Q}}_{\ell})\}$

characterized by preservation of character twists, L, ϵ , γ factors, and a condition on the Plancharel measure of a family of induced representations.

Remarks

- **1** For the representations π contained in an *L*-packet with no supercuspidals, compatibility with the Fargues-Scholze LLC follows formally from known properties of the Fargues-Scholze correspondence.
- 2 We will be interested in the case where a representation π of G is in an L-packet containing only supercuspidals, which implies that ϕ_{π} is supercuspidal. I.e. the restriction to the $SL(2, \overline{\mathbb{Q}}_{\ell})$ factor is trivial and the induced parameter:

$$\phi_{\pi}: W_L \to GSp_4(\overline{\mathbb{Q}}_\ell)$$

is irreducible.

Remarks

- Given a supercuspidal parameter $\phi: W_L \to GSp_4(\overline{\mathbb{Q}}_\ell)$, the *L*-packet $\Pi_\phi := LLC_G^{-1}(\phi)$ has size 1 or 2, we say that ϕ is stable or endoscopic, respectively.
- **2** Let $std: GSp_4(\overline{\mathbb{Q}}_{\ell}) \to GL_4(\overline{\mathbb{Q}}_{\ell})$ be the standard embedding.
 - (stable) $std \circ \phi$ is irreducible.
 - (endoscopic) $std \circ \phi \simeq \phi_1 \oplus \phi_2$, with ϕ_1 and ϕ_2 distinct irreducible 2-dimensional reps of GL_2 such that $det(\phi_1) = det(\phi_2)$.

The Main Theorem

Theorem (H)

- Assume L/\mathbb{Q}_p is an unramified extension.
- $\bullet \ p>2.$
- π is a representation of $G = GSp_4$ or $GU_2(D)$ such that the Gan-Takeda or Gan-Tantono parameter ϕ_{π} is supercuspidal, respectively.
- Then we have an equality: $\phi_{\pi} = \phi_{\pi}^{FS}$

Remark

The assumption that L/\mathbb{Q}_p is unramified and that p > 2 is needed to apply basic uniformization for Shimura varieties of abelian type, as proven by Shen.

 \Box The Fargues-Scholze LLC and compatibility for $G = GL_n$

Table of Contents

1 The Main Theorem

2 The Fargues-Scholze LLC and compatibility for $G = GL_n$

3 Compatibility for $G = GSp_4$ and $GU_2(D)$ and Applications

4 Proof of the Key Proposition

Rappaport-Zink Spaces

A key insight of Harris and Taylor was to geometrically realize the Local Langlands correspondence for $G = GL_n$ in the cohomology of Rapoport-Zink spaces. The generic fiber of these spaces at infinite level can be reinterpreted as shtuka spaces, which in turn relate to the Fargues-Scholze LLC.

Definition

We set $k := \overline{\mathbb{F}}_p$, $\mathbb{Z}_p := W(k)$. We consider \mathbb{X} a *p*-divisible group over k of dimension d and height n. We consider the formal scheme:

 $\mathcal{M}_{\mathbb{X}}/Spf(\mathbb{Z}_p)$

parametrizing, for $S/Spf(\mathbb{Z}_p)$, pairs (X, ρ) , where X/S is a p-divisible group, and $\rho: X \times_S \overline{S} \to \mathbb{X} \times_k \overline{S}$ is a quasi-isogeny, where $\overline{S} = S \times_{Spf(\mathbb{Z}_p)} Spec(k)$ is the special fiber.

 \Box The Fargues-Scholze LLC and compatibility for $G = GL_n$

Lubin-Tate Space

Example

In the case, that d = 1, we recover the Lubin-Tate space parametrizing \mathbb{Z} disjoint copies of the space of deformations of a 1-dimensional formal group with height n:

$$LT_n := \mathcal{M}_{\mathbb{X}} \simeq \sqcup_{\mathbb{Z}} Spf(\check{\mathbb{Z}}_p[|T_1, \dots, T_{n-1}|])$$

Denote by $\mathcal{M}_{\mathbb{X},\check{\mathbb{Q}}_p}$, the adic generic fiber of this moduli space, and let $\mathcal{M}_{\mathbb{X},\infty,\check{\mathbb{Q}}_p}$ be the moduli space at infinite level. Scholze-Weinstein provide a moduli interpretation of this space in terms of shtuka spaces on the Fargues-Fontaine curve.

Definition

- Let *Perf* be the category of perfectoid spaces in characteristic *p*.
- 2 For any $S \in Ob(Perf)$, we have an associated relative Fargues-Fontaine curve X_S .

Remark

 X_S has the property that its primitive Cartier divisors correspond to characteristic 0 untilts of S.

Theorem (Fargues)

- **1** Fix an algebraically closed complete field F of characteristic p.
- 2 Then G-bundles on $X := X_F$ correspond to elements of the Kottwitz set $B(G) := G(\breve{\mathbb{Q}}_p)/(b \sim gb\sigma(g)^{-1})$, where σ is the Frobenius on $\breve{\mathbb{Q}}_p$. In other words, we have an isomorphism:

$$B(G) \xrightarrow{\simeq} |Bun_G|$$
$$b \mapsto |Bun_G^b| = *$$

Remark

Elements of B(G) parametrize G-isocrystals over k

Definition

- Let $\mu \in X_*(G_{\overline{\mathbb{Q}}_p})^+$ be a minuscule cocharacter with reflex field E.
- 2 Let $b \in B(G,\mu) \subset B(G)$ be the unique basic element. We call the triple (G,b,μ) a local Shimura datum.
- $\breve{E} = E\breve{\mathbb{Q}}_p$
- 4 Let \mathcal{E}_b be the bundle on X corresponding to $b \in B(G)$.
- 5 We define the diamond $Sh(G, b, \mu)_{\infty}/Spd(\check{E})$, parametrizing for $S \in Ob(Perf)$, with a map $S \to Spd(\check{E})$ and associated untilt S^{\sharp} over \check{E} , modifications:

$$\mathcal{E}_{0,S} \to \mathcal{E}_{b,S}$$

at the Cartier divisor S^{\sharp} with meromorphy bounded by μ .

Remark

The space $Sh(G, b, \mu)_{\infty}$ has commuting actions by $G(\mathbb{Q}_p) = Aut(\mathcal{E}_0)$ and $J_b(\mathbb{Q}_p) = Aut(\mathcal{E}_b)$, where J_b is the σ -centralizer of $b \in G(\mathbb{Q}_p)$. We have similar actions on $\mathcal{M}_{\mathbb{X},\infty,\mathbb{Q}_p}$.

Theorem (Scholze-Weinstein)

For the fixed *p*-divisible group \mathbb{X}/k of dimension *d* and height *n* as before, let $\mu = (1, \ldots, 1, 0, \ldots, 0)$ be the minisicule cocharacter of GL_n with *d* 1s and $b \in B(G)$ be the element corresponding to the isogeny class of \mathbb{X}/k . Then we have a $G(\mathbb{Q}_p) \times J_b(\mathbb{Q}_p)$ -equivariant isomorphism of diamonds over $Spd(\mathbb{Q}_p)$:

$$\mathcal{M}^{\diamond}_{\mathbb{X},\infty,\check{\mathbb{Q}}_p} \simeq Sh(G,\mu,b)_{\infty}$$

The Fargues-Scholze LLC and compatibility for $G = GL_n$

The Cohomology of the Lubin-Tate Tower

Example

Suppose that X has dimension 1 and height n, so that $\mu = (1, 0..., 0)$, then $LT_{n,\infty}^{\diamond} \simeq Sh(GL_n, \mu, b)_{\infty}$ parametrizes injections of the form:

$$\mathcal{O}_X^n \hookrightarrow \mathcal{O}(\frac{1}{n})$$

with cokernel of length 1 supported at a single closed point of X, where $\mathcal{O}(\frac{1}{n})$ is the rank n bundle on X of slope $\frac{1}{n}$ and \mathcal{E}_0 is the trivial bundle of rank n. In this case, $J_b(\mathbb{Q}_p) = D^*_{1/n}$, where $D_{1/n}$ is the division algebra of invariant 1/n.

The Fargues-Scholze LLC and compatibility for $G = GL_n$

The Cohomology of the Lubin-Tate Tower

Definition

- **1** Let (G, b, μ) be a local Shimura datum.
- **2** Let $\pi \in \Pi(G)$ and $\rho \in \Pi(J_b)$.
- 3 Let $\mathcal{H}(G) := C_c^{\infty}(G(\mathbb{Q}_p), \overline{\mathbb{Q}}_{\ell})$ and $\mathcal{H}(J_b) := C_c^{\infty}(J_b(\mathbb{Q}_p), \overline{\mathbb{Q}}_{\ell})$ denote the usual smooth Hecke algebras.
- 4 Set $R\Gamma_c(G, b, \mu) := R\Gamma_c(Sh(G, b, \mu)_{\infty}, \overline{\mathbb{Q}}_{\ell}).$
- **5** Set $R\Gamma_c(G, b, \mu)[\pi] := R\Gamma_c(G, b, \mu) \otimes_{\mathcal{H}(G)}^{\mathbb{L}} \pi$ and $R\Gamma_c(G, b, \mu)[\rho] := R\Gamma_c(G, b, \mu) \otimes_{\mathcal{H}(J_b)}^{\mathbb{L}} \rho.$

The Fargues-Scholze LLC and compatibility for $G = GL_n$

The Cohomology of the Lubin-Tate Tower

Theorem (Harris-Taylor)

- Let $(GL_n, b, (1, 0, ..., 0))$ be the Local Shimura datum defining the Lubin-Tate tower.
- **2** Let π be a supercuspidal representation of $G(\mathbb{Q}_p)$.

3 Let
$$\rho := JL^{-1}(\pi) \in \Pi(D^*_{\frac{1}{n}}).$$

4 Then $R\Gamma_c(G, b, \mu)[\pi]$ is concentrated in middle degree n-1, and its cohomology decomposes as a $J_b(\mathbb{Q}_p) \times W_{\mathbb{Q}_p}$ representation as:

$$\rho \boxtimes \phi_{\pi} \otimes |\cdot|^{(1-n)/2}$$

where $\phi_{\pi} \in \Phi^{W}(G)$ is the semi-simplified Weil parameter associated to π by Harris-Taylor.

Remarks

- **1** The idea behind the proof of this Theorem is to relate this cohomology to the cohomology of a global Shimura variety associated to an inner form of GL_n/\mathbb{Q} , via basic uniformization, and appeal to Global Results.
- 2 Using this dictionary between Shtukas and *p*-divisible groups, we will see that this theorem gives rise to the compatibility with the Fargues-Scholze correspondence.
- 3 In a similar fashion, we will realize the Gan-Takeda/Gan-Tantono parameter in the cohomology of $R\Gamma_c(G,b,\mu)$, where $G = GSp_4$ and $\mu = (1,1,0,0)$ is the Siegel cocharacter.

Function-Sheaf Dictionary

To a diamond or v-stack X, Fargues-Scholze define a triangulated category $D(X):=D_{lis}(X,\overline{\mathbb{Q}}_{\ell})$

Proposition (Fargues-Scholze)

- **1** For a connected reductive group G/\mathbb{Q}_p , define the *v*-stack $BG(\mathbb{Q}_p) := [*/G(\mathbb{Q}_p)].$
- 2 We have an equivalence of categories:

$$D(B(G(\mathbb{Q}_p))) \xrightarrow{\simeq} D(G(\mathbb{Q}_p), \overline{\mathbb{Q}}_\ell)$$

where the RHS is the unbounded derived category of smooth $\overline{\mathbb{Q}}_{\ell}$ -representations of $G(\mathbb{Q}_p)$ and Verdier duality corresponds to smooth duality.

The Fargues-Scholze LLC and compatibility for $G = GL_n$

Function-Sheaf Dictionary

• We have an open immersion:

$$j: B\underline{G(\mathbb{Q}_p)} \simeq Bun_G^1 \hookrightarrow Bun_G$$

given by the inclusion of the HN-strata of Bun_G corresponding to the trivial bundle.

Given $\pi \in \Pi(G)$, we can use the previous proposition to construct a sheaf:

$$j_!(\mathcal{F}_\pi) \in D(Bun_G)$$

• Following V.Lafforgue, Fargues-Scholze construct an excursion algebra acting on $D(Bun_G)$, which acts on this sheaf via eigenvalues determined by the parameter ϕ_{π} .

The Fargues-Scholze LLC and compatibility for $G = GL_n$

Hecke Operators

- For any finite set *I*, let *X^I* be the product of *I*-copies of the diamond *X* = Spd(Ŏ_p)/Frob^Z.
- We then have the Hecke-Stack:

parametrzing for $S \in Ob(Perf)$ triples $(\mathcal{E}_0, \mathcal{E}_1, j, S_i^{\sharp} i \in I)$, where $j : \mathcal{E}_0 \to \mathcal{E}_1$ is a modification of two *G*-bundles on X_S away from the Cartier divisors defined by the untilts S_i^{\sharp} for $i \in I$ of *S*.

 \Box The Fargues-Scholze LLC and compatibility for $G = GL_n$

Hecke Operators

- Given $W \in Rep_{\overline{\mathbb{Q}}_{\ell}}({}^{L}G^{I})$, Geometric Satake furnishes a sheaf S_{W} on Hck.
- We then define the Hecke operator:

$$T_W: D(Bun_G) \to D(Bun_G \times X^I)$$

 $\mathcal{F} \mapsto R(h^{\to} \times supp)_*(h^{\leftarrow *}(\mathcal{F}) \otimes^{\mathbb{L}} \mathcal{S}_W)$

 \Box The Fargues-Scholze LLC and compatibility for $G = GL_n$

Drinfeld's Lemma

Theorem (Fargues-Scholze)

The natural map:

$$Spd(\check{\mathbb{Q}}_p)/Frob^{\mathbb{Z}} = X \to [*/W_{\mathbb{Q}_p}]$$

induces a pullback map:

$$D(Bun_G \times [*/W^I_{\mathbb{Q}_p}]) \to D(Bun_G \times X^I)$$

is fully faithful and an equivalence if I is a singleton. The functor T_W takes values in:

$$D(Bun_G \times [*/W^I_{\mathbb{Q}_p}])$$

 \Box The Fargues-Scholze LLC and compatibility for $G = GL_n$

Excursion Operators

Definition

1 Let $(I, W, (\gamma_i)_{i \in I}, \beta, \alpha)$ be the datum of:

- A finite set I
- A representation $W \in \operatorname{Rep}_{\overline{\mathbb{Q}}_{e}}({}^{L}G^{I})$
- A tuple of elements $(\gamma_i)_{i \in I} \in W^I_{\mathbb{Q}_n}$
- Maps of representations: $\overline{\mathbb{Q}}_{\ell} \xrightarrow{\alpha} \Delta^* W \xrightarrow{\beta} \overline{\mathbb{Q}}_{\ell}$
- 2 Given such a datum, one defines the excursion operator on $D(Bun_G)$ to be the endomorphism of the identity functor:

$$id = T_{\overline{\mathbb{Q}}_{\ell}} \xrightarrow{\alpha} T_{\Delta^*W} = T_W \xrightarrow{(\gamma_i)_{i \in I}} T_W = T_{\Delta^*W} \xrightarrow{\beta} T_{\overline{\mathbb{Q}}_{\ell}} = id$$

The Fargues-Scholze LLC and compatibility for $G = GL_n$

Excursion Operators

Via looking at the action of this natural transformation on the triangulated sub-category:

$$D(G(\mathbb{Q}_p), \overline{\mathbb{Q}}_\ell) \simeq D(B\underline{G}(\mathbb{Q}_p)) \subset D(Bun_G)$$

we can apply V. Lafforgue's reconstruction theorem to deduce:

Theorem (Fargues-Scholze)

Given $\pi \in \Pi(G)$, there is a unique continuous semisimple map:

$$\phi_{\pi}^{FS}: W_{\mathbb{Q}_p} \to^L G(\overline{\mathbb{Q}}_{\ell})$$

characterized by the property that the action on π by an excursion operator is the composite:

$$\overline{\mathbb{Q}}_{\ell} \xrightarrow{\alpha} \Delta^* W = W \xrightarrow{(\phi_{\pi}^{FS}(\gamma_i))_{i \in I}} W = \Delta^* W \xrightarrow{\beta} \overline{\mathbb{Q}}_{\ell}$$

 \Box The Fargues-Scholze LLC and compatibility for $G = GL_n$

Upshot

- Let's fix $\pi \in \Pi(G)$ and let (G, b, μ) be a local Shimura datum with E the reflex field of μ .
- Consider the case where $I = \{*\}$ and $W = V_{\mu}$ is a highest weight rep of highest weight μ . The sheaf S_W is then supported on Hck_{μ} the subspace parametrizing modifications of type μ , $S_W \simeq \overline{\mathbb{Q}}_{\ell}[d](\frac{d}{2})$, where $d = \langle 2\rho_G, \mu \rangle$.
- We look at the Hecke-Correspondence:

$$\begin{array}{cccc} Hck_{\mu} & & & \\ & & & & \\ Bun_{G}^{1} \xrightarrow{j} Bun_{G} & & & \\ Bun_{G} \times X_{E} \xleftarrow{} Bun_{G}^{b} \times X_{E} \end{array}$$

We consider the sheaf:

 $(j_b \times id)^* T_W(j_!(\mathcal{F}_\pi)) \in D(J_b(\mathbb{Q}_p) \times W_E, \overline{\mathbb{Q}}_\ell)$

 \Box The Fargues-Scholze LLC and compatibility for $G = GL_n$

Upshot

The simultaneous fibers of Hck_µ over Bun¹_G and Bun^b_G is given by:

$$[Gr^b_{G,\mu}/\underline{G(\mathbb{Q}_p)}]$$

where $Gr^b_{G,\mu} \subset Gr_{G,\mu}$ is the open Newton strata in the Schubert cell of the B^+_{dR} -affine Grassmanian parametrizing modifications $\mathcal{E}_0 \to \mathcal{E}$ of type μ , where $\mathcal{E} \simeq \mathcal{E}_b$, after pulling back to each geometric point.

■ The Shtuka space sits as $G(\mathbb{Q}_p) \times J_b(\mathbb{Q}_p)$ -torsor over this space:

$$Sh(G, b, \mu)_{\infty} \to [Gr^b_{G, \mu}/\underline{G(\mathbb{Q}_p)}]$$

This gives rise to the key identification:

$$R\Gamma_c(G,b,\mu)[\pi][d](\frac{d}{2}) \simeq (j_b \times id)^* T_W(j_!(\mathcal{F}_{\pi}))$$

The Fargues-Scholze LLC and compatibility for $G = GL_n$

Compatibility for $G = GL_n$

• Let $(G, b, \mu) = (GL_n, b, (1, 0, \dots, 0))$ be the Shimura datum defining the Lubin-Tate tower. Then d = n - 1 and the work of Harris-Taylor combined with the previous result gives us an isomorphism:

$$(j_b \times id)^* T_W(j_!(\mathcal{F}_\pi)) \simeq R\Gamma_c(G, b, \mu)[\pi][d](\frac{d}{2}) \simeq \rho \boxtimes \phi_\pi$$

where $\rho := JL^{-1}(\pi)$.

• However, it follows from the Fargues-Scholze construction that the LHS should be valued in the category generated by ϕ_{π}^{FS} , so in particular $\phi_{\pi}^{FS} = \phi_{\pi}$.

Compatibility for $G = GSp_4$ and $GU_2(D)$ and Applications

Table of Contents

1 The Main Theorem

2 The Fargues-Scholze LLC and compatibility for $G = GL_n$

3 Compatibility for $G = GSp_4$ and $GU_2(D)$ and Applications

4 Proof of the Key Proposition

Compatibility for $G = GSp_4$ and $GU_2(D)$ and Applications

Compatibility for $G = GSp_4$

- Let L/\mathbb{Q}_p be a finite extension and $(G, b, \mu) := (Res_{L/\mathbb{Q}_p}(GSp_4), b, (1, 1, 0, 0))$, where $b \in B(G, \mu)$ is the unique basic element.
- $J_b = Res_{L/\mathbb{Q}_p} GU_2(D)$, where D is the quaternionic division algebra over L.
- Note that the rep $\hat{G} \simeq GSp_4$ induced by μ is the representation:

$$std: GSp_4 \to GL_4$$

and that $\langle 2\rho_G, \mu \rangle = 3$.

Given $\pi \in \Pi(GSp_4)$, with supercuspidal Gan-Takeda parameter ϕ_{π} , compatibility should follow from showing that:

$$R\Gamma_c(G, b, \mu)[\pi]$$

is concentrated in degree 3 and is $std \circ \phi_{\pi} \otimes |\cdot|^{-\frac{3}{2}}$ -isotypic.

Compatibility for $G = GSp_4$ and $GU_2(D)$ and Applications

Comaptibility for $G = GSp_4$

- One issue is that std ∘ φ_π is not enough to uniquely determine the parameter φ_π. However, if one also includes the datum of a W_L-invariant symplectic similitude pairing on std ∘ φ_π it is.
- Moreover, note that, since the excursion algebra is acting on $R\Gamma_c(G, b, \mu)[\pi]$ as a complex of $J_b(\mathbb{Q}_p)$ -representations via scalars, it suffices to identify $std \circ \phi_{\pi}$ with its symplectic similitude pairing on a non-zero sub-quotient.
\Box Compatibility for $G = GSp_4$ and $GU_2(D)$ and Applications

This leads us to the key Proposition:

Assume from now on that p>2 and L/\mathbb{Q}_p is unramified.

Proposition (H)

- Assume that $\rho \in \Pi(GU_2(D))$ has supercuspidal Gan-Tantono parameter ϕ_{ρ} .
- Let $R\Gamma_c(G, b, \mu)[\rho]_{sc}$ denote the sub-complex where $G(\mathbb{Q}_p)$ acts via a supercuspidal representation.
- $R\Gamma_c(G, b, \mu)[\rho]_{sc}$ is non-zero concentrated in degree 3 and is $std \circ \phi_\rho \otimes |\cdot|^{-\frac{3}{2}}$ -isotypic as a W_L -representation.
- $R\Gamma_c(G, b, \mu)[\rho]_{sc}$ carries a non-degenerate W_L -invariant symplectic similitude form.

 \Box Compatibility for $G = GSp_4$ and $GU_2(D)$ and Applications

Applications

- The previous proposition, through the formal considerations sketched before, gives compatibility for $\rho \in \Pi(GU_2(D))$ with supercuspidal Gan-Tantono parameter.
- We would like to apply this compatibility together with the previous description of the W_L -action to give a full description of $R\Gamma_c(G, b, \mu)[\rho]$.

We set:

 $R\Gamma_c^{KW}(G,b,\mu)[\rho] := R\mathcal{H}om_{J_b(\mathbb{Q}_p)}(R\Gamma_c(G,b,\mu),\rho)[-2d](-d)$

Kaletha-Weinstein give a general description of this in the Grothendieck Group of admissible representations.

 \Box Compatibility for $G = GSp_4$ and $GU_2(D)$ and Applications

Applications

Theorem (Kaletha-Weinstein)

For $\rho \in \Pi(GU_2(D))$ with supercuspidal Gan-Tantono parameter.

• Let
$$S_{\phi_{\rho}} = Cent(\phi_{\rho}, \hat{G}).$$

- Let $\Pi_{\phi_{\rho}}(GSp_4)$ denote the *L*-packet over ϕ_{ρ} .
- Then the cohomology of RΓ^{KW}_c(G, b, μ)[ρ] is valued in admissible G(Q_p)-representations and we have the following equality in K₀(G(Q_p)) the Grothendieck group of admissible G(Q_p)-modules:

$$[R\Gamma_c^{KW}(G,b,\mu)[\rho])] = -\sum_{\pi \in \Pi_{\phi_{\rho}}(G)} Hom_{S_{\phi_{\rho}}}(\delta_{\pi,\rho}, std \circ \phi_{\rho})\pi$$

where $\delta_{\pi,\rho}$ is the algebraic representation of $S_{\phi_{\rho}}$ defined by the refined Local Langlands correspondence for $GU_2(D)$.

 \Box Compatibility for $G = GSp_4$ and $GU_2(D)$ and Applications

Applications

The Refined LLC

- Note that we have $Z(\hat{G}) = GL_1$.
- The refined Local Langlands correspondence defines a bijection:

$$\Pi_{\phi}(GSp_4) \leftrightarrow \{ \text{irred. reps } \tau \text{ of } S_{\phi} \text{ s.t } \tau |_{Z(\hat{G})} = \mathbf{1} \}$$

And a bijection:

 $\Pi_{\phi}(GU_2(D)) \leftrightarrow \{ \text{irred. reps } \tau \text{ of } S_{\phi} \text{ s.t } \tau|_{Z(\hat{G})} = id_{GL_1} \}$

These bijections are characterized by the character identities proven by Gan-Chan, after fixing $(B, \psi) =: \mathfrak{m}$ for GSp_4 .

Compatibility for $G = GSp_4$ and $GU_2(D)$ and Applications

Applications

The Refined LLC

- If ϕ is a stable supercuspidal parameter (i.e $std \circ \phi$ is irreducible) then the *L*-packet are singletons and $S_{\phi} = Z(\hat{G}) = GL_1$.
- If φ is an endoscopic parameter (i.e std ∘ φ ≃ φ₁ ⊕ φ₂, with φ_i distinct 2-dimensional irreducibles and det(φ₁) = det(φ₂))
 This gives rise to an identification:

 $S_{\phi} = \{(a,b) \in GL_1 \times GL_1 | a^2 = b^2\} \subset GL_2 \times GL_2 \subset GL_4$

where the $Z(\hat{G}) = GL_1$ embeds diagonally.

• We see that $\pi_0(S_{\phi}) \simeq \mathbb{Z}/2\mathbb{Z}$. The *L*-packet of $\Pi_{\phi}(GSp_4) = \{\pi^+, \pi^-\}$ is indexed by the reps τ_{π^+} and τ_{π^-} of S_{ϕ} defined by the trivial and non-trivial character of $\pi_0(S_{\phi})$.

Compatibility for $G = GSp_4$ and $GU_2(D)$ and Applications

Applications

• The *L*-packet $\Pi_{\phi}(GU_2(D)) = \{\rho_1, \rho_2\}$ is indexed by the representations τ_{ρ_1} and τ_{ρ_2} corresponding to projection to the two GL_1 s.

Definition

Given $\pi \in \Pi_{\phi}(GSp_4)$ and $\rho \in \Pi_{\phi}(GU_2(D))$, we set:

$$\delta_{\pi,\rho} := \tau_{\pi}^{\vee} \otimes \tau_{\rho}$$

where τ_{π}^{\vee} denotes the contragradient.

 \Box Compatibility for $G = GSp_4$ and $GU_2(D)$ and Applications

Applications

With these identifications pinned down, we can now write the down the RHS of the Kottwitz conjecture:

$$-\sum_{\pi\in\Pi_{\phi_{\rho}}(G)}Hom_{S_{\phi_{\rho}}}(\delta_{\pi,\rho},std\circ\phi_{\rho})\pi$$

with $\delta_{\pi,\rho}$ as above.

Corollary

If $\rho \in \Pi(GU_2(D))$ has a stable supercuspidal Gan-Tantono parameter ϕ_{ρ} , we have that:

 $[R\Gamma_c^{KW}(G,\mu,b)[\rho]] = -Hom_{id}(id,std\circ\phi_\rho)\pi = -4\pi$

where $\Pi_{\phi_{\rho}}(GSp_4) = \{\pi\}.$

Compatibility for $G = GSp_4$ and $GU_2(D)$ and Applications

Applications

Corollary

If $\rho = \rho_i \in \Pi(GU_2(D))$ has endoscopic Gan-Tantono parameter, we have that $[R\Gamma_c^{KW}(G,\mu,b)[\rho]]$ is equal to:

$$-Hom_{S_{\phi\rho}}(\tau_{\rho_i}, std \circ \phi_{\rho})\pi^+ + -Hom_{S_{\phi\rho}}(\tau_{\rho_{3-i}}, std \circ \phi_{\rho})\pi^-$$

Writing $std \circ \phi \simeq \phi_1 \oplus \phi_2$ this identifies with:

$$-Hom_{id}(id,\phi_i)\pi^+ + -Hom_{id}(id,\phi_{3-i})\pi^- = -2\pi^+ + -2\pi^-$$

where $\Pi_{\phi_{\rho}} = \{\pi^+, \pi^-\}.$

 \Box Compatibility for $G = GSp_4$ and $GU_2(D)$ and Applications

Applications

Theorem (H.)

- For any $\rho \in \Pi(GU_2(D))$ such that the Gan-Tantono parameter ϕ_{ρ} is supercuspidal, $R\Gamma_c(G, b, \mu)[\rho]$ is concentrated in degree 3 and is isomorphic to $R\Gamma_c^{KW}(G, \mu, b)[\rho]$.
- If ρ is stable supercuspidal, we have an isomorphism of $G(\mathbb{Q}_p) \times W_L$ representations:

$$H^{3}(R\Gamma_{c}(G, b, \mu)[\rho]) \simeq \pi \boxtimes std \circ \phi_{\rho} \otimes |\cdot|^{-\frac{3}{2}}$$

If $\rho = \rho_i$ is endoscopic, we have an isomorphism of $G(\mathbb{Q}_p) \times W_L$ representations:

 $H^3(R\Gamma_c(G,b,\mu)[\rho]) \simeq \pi^+ \boxtimes \phi_i \otimes |\cdot|^{-3/2} \oplus \pi^- \boxtimes \phi_{3-i} \otimes |\cdot|^{-3/2}$

 \Box Compatibility for $G = GSp_4$ and $GU_2(D)$ and Applications

Applications

Proof.

We know from our previous result that the supercuspidal Gan-Tantono parameter ϕ_{ρ} is the same as the Fargues-Scholze parameter. The geometry of the Fargues-Scholze construction gives us information about the sheaves associated to the representations with such parameters.

Definition

For G any connected reductive group, we let $j: Bun_G^1 \hookrightarrow Bun_G$ be the open immersion as before. We say a representation $\rho \in \Pi(G)$ is inert if the sheaf \mathcal{F}_{ρ} satisfies that the natural map:

$$j_!(\mathcal{F}_{\rho}) \xrightarrow{\simeq} R j_*(\mathcal{F}_{\rho})$$

is an isomorphism.

 \Box Compatibility for $G = GSp_4$ and $GU_2(D)$ and Applications

Applications

Theorem (Fargues-Scholze)

If ρ has supercuspidal Fargues-Scholze parameter then ρ is inert.

Proof.

If $(Res_{L/\mathbb{Q}_p}(GSp_4), b, \mu)$ is the local Shimura datum from before, the dual Shimura datum is given by $(Res_{L/\mathbb{Q}_p}(GU_2(D)), \hat{b}, \mu^{-1})$. Applying our key isomorphism, we get:

$$R\Gamma_c(G,b,\mu)[\rho][d](\frac{d}{2}) \simeq$$

 $R\Gamma_{c}(Res_{L/\mathbb{Q}_{p}}(GU_{2}(D)), \mu^{-1}, \hat{b})[\rho][d](\frac{d}{2}) \simeq (j_{\hat{b}} \times id)^{*}T_{\mu^{-1}}j_{!}(\mathcal{F}_{\rho})$

 \Box Compatibility for $G = GSp_4$ and $GU_2(D)$ and Applications

Applications

Proof.

We now apply Verdier duality to both sides of:

$$R\Gamma_c(G, b, \mu)[\rho][d](\frac{d}{2}) \simeq (j_{\hat{b}} \times id)^* T_{\mu^{-1}} j_!(\mathcal{F}_{\rho})$$

The RHS becomes isomorphic to:

 $\mathbb{D}(j_{\hat{b}} \times id)^* T_{\mu^{-1}} j_!(\mathcal{F}_{\rho}) \simeq (j_{\hat{b}} \times id)^* T_{\mu^{-1}} j_!(\mathbb{D}(\mathcal{F}_{\rho})) \simeq (j_{\hat{b}} \times id)^* T_{\mu^{-1}} j_!(\mathcal{F}_{\rho^*}))$

$$\simeq R\Gamma_c(G, b, \mu)[\rho^*][d](\frac{d}{2})$$

while the LHS is acted on by Verdier duality on $Sh(G, \mu, b)_{\infty}$, which is a cohomologically smooth diamond of dimension d and so the dualizing object is isomorphic to $\overline{\mathbb{Q}}_{\ell}[2d](d)$

 \Box Compatibility for $G = GSp_4$ and $GU_2(D)$ and Applications

Applications

Proof.

This allows us to deduce that:

 $R\mathcal{H}om(R\Gamma_c(G,b,\mu)[\rho],\overline{\mathbb{Q}}_\ell) \simeq R\Gamma_c(G,b,\mu)[\rho^*][2d](d)$

In particular, we have a natural W_L -equivariant isomorphism of admissible $G(\mathbb{Q}_p)$ -representations for all $0 \le i \le 2d$:

 $H^{i}(R\Gamma_{c}(G,b,\mu)[\rho])^{*} \simeq H^{2d-i}(R\Gamma_{c}(G,b,\mu)[\rho^{*}])(d)$

Moreover, the local Shimura datum occurs in the basic uniformization of a global Shimura variety. Applying global vanishing results for (g, K)-cohomology with regular weights and the previous duality theorem, one can show that this must be concentrated in middle degree 3.

 \Box Compatibility for $G = GSp_4$ and $GU_2(D)$ and Applications

Applications

Proof.

We note that:

 $R\Gamma_c(G,b,\mu)[\rho^*][2d](d)\simeq$

 $R\mathcal{H}om(R\Gamma_c(G,b,\mu)[\rho],\overline{\mathbb{Q}}_\ell) = R\mathcal{H}om(R\Gamma_c(G,b,\mu)\otimes^{\mathbb{L}}_{\mathcal{H}(J_b)}\rho,\overline{\mathbb{Q}}_\ell)$

 $\simeq R\mathcal{H}om_{J_b(\mathbb{Q}_p)}(R\Gamma_c(G,b,\mu),\rho^*) = R\Gamma_c^{KW}(G,\mu,b)[\rho^*][2d](d)$

 In particular, after taking contragradients and moving the shifts/Tate-Twists, we get:

 $R\Gamma_c(G, b, \mu)[\rho] \simeq R\Gamma_c^{KW}(G, b, \mu)[\rho]$

 \Box Compatibility for $G = GSp_4$ and $GU_2(D)$ and Applications

Applications

Proof.

- Assume ϕ_{ρ} is stable supercuspidal, for simplicity.
- We have, by Kaletha-Weinstein and the previous results, that:

$$[H^3(R\Gamma_c(G,b,\mu)[\rho])] = -4\pi$$

where $\{\pi\} = \prod_{\phi_{\rho}} (GSp_4).$

If ω denotes the central character of ρ, RΓ_c(G, b, μ)[ρ] is a complex of admissible G(Q_p) representations with central character ω.

Compatibility for $G = GSp_4$ and $GU_2(D)$ and Applications

Applications

Proof.

 π is supercuspidal, so it is injective/projective in the category of admissible representations with fixed central character. Therefore, as G(Q_p)-representations:

 $H^3(R\Gamma_c(G,b,\mu)[\rho]_{sc}) = H^3(R\Gamma_c(G,b,\mu)[\rho]) \simeq \pi^{\oplus 4}$

• However, our previous proposition tells us that $H^3(R\Gamma_c(G, b, \mu)[\rho]_{sc})$ is $std \circ \phi_\rho \otimes |\cdot|^{-\frac{3}{2}}$ -isotypic.

Compatibility for $G = GSp_4$ and $GU_2(D)$ and Applications

Applications

• What about $G = GSp_4$? Basic uniformization is not known to hold in this case because $GU_2(D)$ is non-split.

Theorem (H.)

For $\pi\in \Pi(GSp_4)$ with supercuspidal Gan-Takeda parameter $\phi_\pi,$ we have that:

$$\phi_{\pi} = \phi_{\pi}^{FS}$$

 \Box Compatibility for $G = GSp_4$ and $GU_2(D)$ and Applications

Applications

Proof.

Our key isomorphism tells us that:

$$R\Gamma_c(G, b, \mu)[\pi][d](\frac{d}{2}) \simeq (j_b \times id)^* T_\mu j_!(\mathcal{F}_\pi)$$

- The excursion algebra commutes with Hecke operators/restriction to HN-strata. Therefore, it acts on the LHS via the parameter φ^{FS}_π.
- However, we have:

 $R\mathcal{H}om(R\Gamma_c(G,b,\mu)[\pi],\overline{\mathbb{Q}}_\ell) \simeq R\Gamma_c^{KW}(G,b,\mu)[\pi^*][2d](d)$

 \Box Compatibility for $G = GSp_4$ and $GU_2(D)$ and Applications

Applications

Proof.

Applying Kaletha-Weinstein, will tell us that the excursion algebra acts on the LHS of our key isomorphism as:

$$\phi_{\rho}^{FS} = \phi_{\rho} = \phi_{\pi}$$

where the equalities follow by the character identities and our previous theorem. Therefore, $\phi_{\pi} = \phi_{\pi}^{FS}$.

Compatibility for $G = GSp_4$ and $GU_2(D)$ and Applications

Applications

By applying formal properties from the Fargues-Scholze construction, together with our previous results we can deduce:

Theorem (H.)

- Assume $\pi \in \Pi(G)$ has supercuspidal Gan-Takeda parameter ϕ_{π} .
- Then $R\Gamma_c(G, b, \mu)[\pi]$ is concentrated in middle degree 3.
- If ϕ_{π} is stable supercuspidal, then the middle cohomology is isomorphic to:

$$\rho \boxtimes std \circ \phi_{\pi} \otimes |\cdot|^{-\frac{3}{2}}$$

as a $G(\mathbb{Q}_p) \times W_L$ representation, where $\{\rho\} = \prod_{\phi_{\pi}} (GU_2(D))$.

Compatibility for $G = GSp_4$ and $GU_2(D)$ and Applications

Applications

Theorem (H.)

If ϕ_{π} is endoscopic and $\pi = \pi^+$ then the middle cohomology is isomorphic to:

$$\rho_1 \boxtimes \phi_1 \otimes |\cdot|^{-\frac{3}{2}} \oplus \rho_2 \boxtimes \phi_2 \otimes |\cdot|^{-\frac{3}{2}}$$

and if $\pi = \pi^-$ then it is isomorphic to:

$$\rho_1 \boxtimes \phi_2 \otimes |\cdot|^{-\frac{3}{2}} \oplus \rho_2 \boxtimes \phi_1 \otimes |\cdot|^{-\frac{3}{2}}$$

where $std \circ \phi_{\pi} \simeq \phi_1 \oplus \phi_2$.

Proof of the Key Proposition

Table of Contents

1 The Main Theorem

2 The Fargues-Scholze LLC and compatibility for $G = GL_n$

3 Compatibility for $G = GSp_4$ and $GU_2(D)$ and Applications

4 Proof of the Key Proposition

We will now discuss the proof of the key Proposition:

Proposition (H)

- Assume that $\rho \in \Pi(GU_2(D))$ has supercuspidal Gan-Tantono parameter ϕ_{ρ} .
- Let $R\Gamma_c(G, b, \mu)[\rho]_{sc}$ denote the sub-complex where $G(\mathbb{Q}_p)$ acts via a supercuspidal representation.
- $R\Gamma_c(G, b, \mu)[\rho]_{sc}$ is non-zero concentrated in degree 3 and is $std \circ \phi_\rho \otimes |\cdot|^{-\frac{3}{2}}$ -isotypic as a W_L -representation.
- $R\Gamma_c(G, b, \mu)[\rho]_{sc}$ carries a non-degenerate W_L -invariant symplectic similitude form.

Basic Uniformization

The key idea will be to use basic uniformization to apply global results:

- \blacksquare Let \mathbf{G}/\mathbb{Q} be a connected reductive group over the rational numbers.
- We let (\mathbf{G}, X) be a Shimura datum of abelian type.
- We set $G = \mathbf{G}_{\mathbb{Q}_p}$ and, using the isomorphism $j : \overline{\mathbb{Q}}_p \simeq \mathbb{C}$, we regard $X_{\mathbb{C}}^{-1}$ as a conjugacy class of cocharacters

$$\mu: \mathbb{G}_{m,\overline{\mathbb{Q}}_p} \to G_{\overline{\mathbb{Q}}_p}$$

and consider the Kottwitz set $B(G, \mu)$.

• We let $b \in B(G, \mu)$ be the unique basic element and let J_b be the σ -centralizer of b.

Basic Uniformization

- For any compact open $K \subset \mathbf{G}(\mathbb{A}^f)$, we let $\mathcal{S}(\mathbf{G}, X)_K$ be the rigid analytic global Shimura variety over \mathbb{C}_p of level K.
- We write $K = K^p K_p$ for compact opens $K_p \subset G(\mathbb{Q}_p)$ and $K^p \subset \mathbf{G}(\mathbb{A}^{f,p}).$

We define:

$$\mathcal{S}(\mathbf{G}, X)_{K^p} = \lim_{K_p \to \{1\}} \mathcal{S}(\mathbf{G}, X)_{K^p K_p}$$

This is representable by a perfectoid space after completing the structure sheaf.

Basic Uniformization

By results of Shen, there exists a canonical G(Q_p)-equivariant Hodge-Tate period map:

$$\pi_{HT}: \mathcal{S}(\mathbf{G}, X)_{K^p} \to \mathcal{F}\ell_{G,\mu}$$

where $\mathcal{F}\ell_{G,\mu} := (G_{\mathbb{C}_p}/P_{\mu})^{ad}$.

For $b \in B(G, \mu)$, we define the Newton strata $\mathcal{S}(\mathbf{G}, X)_{K^p}^b$ by pulling back the Newton strata $\mathcal{F}\ell^b_{G,\mu}$ along π_{HT} .

Proof of the Key Proposition

Basic Uniformization

Definition

We say a global Shimura datum (\mathbf{G}, X) satisfies basic uniformization at p if there exists a unique up to isomorphism \mathbb{Q} -inner form \mathbf{G}' of \mathbf{G} satisfying:

$$\label{eq:G_A} \blacksquare \ \mathbf{G}_{\mathbb{A}^{\{p\infty\}}}' \simeq \mathbf{G}_{\mathbb{A}^{\{p\infty\}}} \text{ as algebraic groups over } \mathbb{A}^{\{p\infty\}}$$

2
$$\mathbf{G}'_{\mathbb{Q}_p} \simeq J_b$$

3 $\mathbf{G}'(\mathbb{R})$ is compact modulo center.

such that ...

Basic Uniformization

Definition

There is a $\mathbf{G}(\mathbb{A}^{f})$ -equivariant isomorphism of diamonds over \mathbb{C}_{p} :

$$\lim_{K^p} \mathcal{S}(\mathbf{G}, X)_{K^p}^b \simeq \underline{\mathbf{G}'(\mathbb{Q})} \setminus \underline{\mathbf{G}'(\mathbb{A}^f)} \times_{Spd(\mathbb{C}_p)} Sh(G, \mu, b)_{\infty} / \underline{J_b(\mathbb{Q}_p)}$$

such that

$$\pi_{HT} : \lim_{K^p} \mathcal{S}(\mathbf{G}, X)^b_{K^p} \to \mathcal{F}\ell^b_{G,\mu} \simeq Sh(G, \mu, b)_{\infty} / \underline{J_b(\mathbb{Q}_p)}$$

agrees with projection to the second factor. Moreover, we assume this descends to an isomorphism of diamonds over \breve{E} , where E is the reflex field of μ .

Proof of the Key Proposition

Basic Uniformization

Theorem (Shen)

If (\mathbf{G}, X) is a Shimura datum of abelian type and p > 2 is a prime where $G_{\mathbb{Q}_p}$ is unramified then (\mathbf{G}, X) satisifies basic uniformization at p.

Basic Uniformization

From now on, we let:

- F/\mathbb{Q} be a totally real field such that:
 - p is totally inert in F and $F_p \simeq L$.
- G a \mathbb{Q} -inner form of $Res_{F/\mathbb{Q}}GSp_4 =: \mathbf{G}^*$ such that:

$$\mathbf{G}_{\mathbb{Q}_p} \simeq Res_{L/\mathbb{Q}_p} GSp_4 = G$$

- Let ξ be the highest weight of an algebraic representation of G.
- The isomorphism $i : \overline{\mathbb{Q}}_{\ell} \simeq \mathbb{C}$ determines a $\overline{\mathbb{Q}}_{\ell}$ local system on $\mathcal{S}(\mathbf{G}, X)_{K^p}$, denoted \mathcal{L}_{ξ} .
- We now consider the space of Gross's algebraic automorphic forms valued in this algebraic representation:

$$\mathcal{A}(\mathbf{G}'(\mathbb{Q})\backslash\mathbf{G}'(\mathbb{A}^f)/K^p,\mathcal{L}_{\xi})$$

Basic Uniformization

Under the assumptions on L and p, we can apply the theorem of Shen to $({\bf G},X)$ to deduce:

Corollary

There exists a $G(\mathbb{Q}_p) \times W_L$ -invariant map:

$$\Theta: R\Gamma_c(G, b, \mu) \otimes^{\mathbb{L}}_{\mathcal{H}(J_b)} \mathcal{A}(\mathbf{G}'(\mathbb{Q}) \backslash \mathbf{G}'(\mathbb{A}^f) / K^p, \mathcal{L}_{\xi}) \to$$

 $R\Gamma_c(\mathcal{S}(\mathbf{G},X)_{K^p},\mathcal{L}_{\xi})$

where $(G, b, \mu) = (Res_{L/\mathbb{Q}_p}GSp_4, b, (1, 1, 0, 0))$ is the local Shimura datum from before.

Proof of the Key Proposition

Basic Uniformization

Proposition

Let $R\Gamma_c(\mathcal{S}(\mathbf{G}, X)_{K^p}, \mathcal{L}_{\xi})_{sc}$ denote the part of the cohomology where $G(\mathbb{Q}_p)$ acts via a supercuspidal representation. Then Θ induces an isomorphism:

$$\Theta: R\Gamma_c(G, b, \mu)_{sc} \otimes^{\mathbb{L}}_{\mathcal{H}(J_b)} \mathcal{A}(\mathbf{G}'(\mathbb{Q}) \backslash \mathbf{G}'(\mathbb{A}^f) / K^p, \mathcal{L}_{\xi, E}) \simeq R\Gamma_c(\mathcal{S}(\mathbf{G}, X)_{K^p}, \mathcal{L}_{\xi})_{sc}$$

of $G(\mathbb{Q}_p) \times W_L$ -representations.

Proof of the Key Proposition

Global Input

We assume, for simplicity, that $[F:\mathbb{Q}]$ is odd. We fix a totally inert prime q in F and assume that G satisifies:

$$\mathbf{I} \ \mathbf{G}(\mathbb{R}) \simeq GSp_4(\mathbb{R}) \times GU_2(\mathbb{H})^{[F:\mathbb{Q}]-1}$$

2 $\mathbf{G}_{F_v} \simeq GSp_4/F_v$ at all finite places v.

Global Input

- We let ρ be a representation of $J_b(\mathbb{Q}_p) = GU_2(D)(L)$, with supercuspidal Gan-Tantono parameter.
- Let G' be the inner form of G furnished by basic uniformization.
- Using the simple trace formula, for sufficiently large ξ, we can choose a globalization of a character twist of ρ to a cuspidal automorphic representation of π' of G' which occurs as a J_b(Q_p)-stable direct summand of:

$$\mathcal{A}(\mathbf{G}'(\mathbb{Q})\backslash\mathbf{G}'(\mathbb{A}^f)/K^p,\mathcal{L}_{\xi})$$

the space of algebraic automorphic forms, satisfying the condition that π'_q is an unramified twist of the Steinberg representation, where K^p is hyperspecial away from pq. Let $S = \{p, q\}$.

Proof of the Key Proposition

Global Input

• The previous isomorphism then furnishes a $G(\mathbb{Q}_p) \times W_L$ -invariant split injection:

 $\Theta_{\rho}: R\Gamma_{c}(G, b, \mu)[\rho]_{sc} \to R\Gamma_{c}(\mathcal{S}(\mathbf{G}, X)_{K^{p}}, \mathcal{L}_{\xi})_{sc}$

We now prove the following theorem:

Theorem (H.)

There exists a globally generic cuspidal automorphic representation τ of $\mathbf{G}^* = Res_{F/\mathbb{Q}}GSp_4$ such that:

- At q, τ_q is an unramified twist of the Steinberg representation.
- At p, τ_p has Gan-Takeda parameter ϕ_{ρ} .
- At ∞ , τ_{∞} is cohomological of weight ξ .
- $\pi'^S \simeq \tau^S$.

Global Input

We can then apply the following theorem of Sorensen to the transfer $\tau:$

Theorem

There exists, a unique (after fixing an isomorphism $i : \mathbb{C} \xrightarrow{\simeq} \overline{\mathbb{Q}}_{\ell}$) irreducible continuous representation $\rho_{\tau} : Gal(\overline{F}/F) \to GSp_4(\overline{\mathbb{Q}}_{\ell})$ characterized by the property that, for each finite place $v \nmid \ell$ of F, we have:

$$WD(\rho_{\tau,i}|_{W_{F_v}})^{F-s.s} \simeq \phi_{\tau_v} \otimes |\cdot|^{-3/2}$$

where ϕ_{τ_v} is the semi-simplified Gan-Takeda parameter associated to τ_v .
Global Input

Under the split injection:

 $\Theta_{\rho}: R\Gamma_{c}(G, b, \mu)[\rho]_{sc} \to R\Gamma_{c}(\mathcal{S}(\mathbf{G}, X)_{K^{p}}, \mathcal{L}_{\xi})_{sc}$

will map to the $\pi'^{p\infty}$ -isotypic part, where $\pi'^{p\infty}$ is regarded as a representation of $\mathbf{G}'(\mathbb{A}^{p\infty}) \simeq \mathbf{G}(\mathbb{A}^{p\infty})$.

- Kret-Shin show that the $\pi'^{p\infty}$ -isotypic part is concentrated in degree 3 and compute the traces of Frobenius as a Galois representation in terms of the Langlands parameters of τ .
- This allows us to conclude that $R\Gamma_c(G, b, \mu)[\rho]_{sc}$ concentrated in degree 3 and is $std \circ \rho_\tau|_{W_{\mathbb{Q}_p}} = std \circ \phi_\rho \otimes |\cdot|^{-\frac{3}{2}}$ -isotypic.

Global Input

- It remains to see that RΓ_c(G, b, μ)_{sc} is concentrated in degree non-zero and carries a non-degenerate W_L-invariant symplectic similitude form.
- Using the identification:

 $R\mathcal{H}om(R\Gamma_c(G,b,\mu)[\rho]_{sc},\overline{\mathbb{Q}}_\ell) \simeq R\Gamma_c^{KW}(G,b,\mu)[\rho^*]_{sc}[2d](d)$

We can apply the work of Kaletha-Weinstein to conclude this is non-zero.

The Zelevinsky Involution

• We consider the Zelevinsky involution:

 $Zel: D(G(\mathbb{Q}_p), \overline{\mathbb{Q}}_\ell) \to D(G(\mathbb{Q}_p), \overline{\mathbb{Q}}_\ell)$

 $A \mapsto R\mathcal{H}om_{G(\mathbb{Q}_p)}(A, \mathcal{H}(G))$

Fargues-Scholze extend this to an involution:

$$\tilde{Zel}: D(Bun_G) \to D(Bun_G)$$

which induces the Zelevinsky involution on the basic HN-strata under the function-sheaf dictionary and commutes with Hecke operators.

T

The Zelevinsky Involution

With this, and our key isomorphism, one can deduce the existence of an isomorphism:

$$Zel(R\Gamma_c(G, b, \mu)[\rho][d](\frac{d}{2})) \simeq R\Gamma_c(G, b, \mu)[Zel(\rho)][d](\frac{d}{2})$$

which induces an isomorphism:

$$Zel(R\Gamma_c(G, b, \mu)[\rho]_{sc}[d](\frac{d}{2})) \simeq R\Gamma_c(G, b, \mu)[Zel(\rho)]_{sc}[d](\frac{d}{2})$$

hen we have an identification:

$$R\Gamma_c(G,b,\mu)[Zel(\rho)]_{sc}[d](\frac{d}{2}) \simeq R\Gamma_c(G,b,\mu)[\rho^*]_{sc}[d](\frac{d}{2})$$

However, we have $\rho^* \simeq \rho \otimes \chi$, where χ is a character. So we get a non-degenerate W_L -invariant pairing:

$$R\Gamma_c(G,b,\mu)[\rho]_{sc}[d](\frac{d}{2}) \otimes_{\mathcal{H}(G)}^{\mathbb{L}} R\Gamma_c(G,b,\mu)[\rho \otimes \chi]_{sc}[d](\frac{d}{2}) \to \overline{\mathbb{Q}}_{\ell}$$

The Zelevinsky Involution

Using work of Chen on the connected components of $Sh(G,\mu,b)_\infty$, we can see that:

$$R\Gamma_c(G,b,\mu)[\rho\otimes\chi]_{sc}\simeq R\Gamma_c(G,b,\mu)[\rho]_{sc}\otimes\chi$$

Thus, we get a non-degenerate W_L -invariant pairing of complexes:

$$R\Gamma_c(G,b,\mu)[\rho]_{sc} \otimes^{\mathbb{L}} R\Gamma_c(G,b,\mu)[\rho]_{sc} \to \chi^{-1}[-2d](-d)$$

which induces the desired non-degenerate W_L -invariant symplectic similitude pairing in degree 3 = d.

Compatibility of the Fargues-Scholze and Gan-Takeda Local Langlands Correspondences

Proof of the Key Proposition

Thanks

I would like to thank:

- David Hansen for the invitation and the project!
- All of you for attending the lecture!