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Introduction

Notations:

F a non-archimedean local field, e.g. Qp, Fq((t))

G/F connected reductive group

` 6= p a prime

Local Langlands correspondence: Classify irreducible smooth
representations of G (F ) in terms of Langlands parameters

{ϕ : WF → LG (Q`)}/Ĝ

RAMpAGe Seminar 3 / 36



Introduction

Categorical local Langlands correspondence: Describe the derived
category Rep(G (F ),Q`) of smooth representations in terms of Galois data.

Hope: an object V ∈ Rep(G (F ),Q`) should correspond to a
quasi-coherent sheaf over a stack classifying families of Langlands
parameters.

Related work:

1 Emerton-Helm: local correspondence for GLn in families.

2 Fargues-Scholze: bundles on the Fargues-Fontaine curve

3 Hellmann

4 Ben-Zvi, Chen, Helm, Nadler: Coherent Springer theory
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Introduction

The category Rep(G (F ),Q`) needs to be modified

This can be seen from several points of view:

Local Langlands correspondence (Vogan, Bernstein, Kaletha):
Better to study representation theory of G (F ) together with that of its
extended pure inner forms.

Geometric Langlands (Drinfeld, Gaitsgory): the ”local Langlands
category” should be the categorical Frobenius fixed points of the category
of Q`-sheaves on the loop group of G .

Arithmetic geometry (Xiao-Zhu): the study of correspondences
between mod p fibers of different Shimura varieties.

p-adic Hodge theory (Fargus-Scholze): moduli of G -bundles on the
Fargues-Fontaine curve.
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Introduction

A common motif: study the representation theory G (F ) together with its
forms {Jb(F )} arising from the Kottwitz set B(G )

It turns out that the categories Rep(Jb(F ),Q`) can be glued together via
the category of sheaves on certain geometric objects.

Fargues-Scholze: the categories can be glued via the moduli stack of
bundles on the Fargues-Fontaine curve XFF. The set of isomorphism
classes of G -bundles on XFF identifies with B(G ) (Fargues-Fontaine,
Fargues).

Today: a (simpler) alternative approach using sheaves on the Kottwitz
stack, an algebro-geometric object arising naturally from categorical
considerations and the study of mod p fibers of Shimura varieties.
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A Categorical Local Langlands Conjecture

Notations:

OF ring of integers of F , $ ∈ OF a uniformizer

Residue field kF = OF/$ of characteristic p > 0 and |kF | = q.

F̆ the completion of the maximal unramified extension

OF̆ ring of integers, k residue field (note k = kF )

Λ ∈ {Q`,Z`,Fq} or any algebraic extension

G be a parahoric model for G over OF

Ĝ the Langlands dual of G , as a group over Z
F̃/F extension splitting G , Galois group Γ

F̃/F
.
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The Kottwitz Stack

For a perfect kF -algebra R, let

WO(R) = W (R)⊗W (kF ) OF , WO,n(R) = WO(R)/$n

denote DR = SpecWO(R) and D∗R = Spec(WO(R)[1/$])

Recall positive loop group L+G and loop group LG defined by

L+G(R) = G(WO(R)), LG (R) = G (WO(R)[1/$])

the functor L+G is represented by a perfect affine scheme.

Let GrG = LG/L+G be the associated flag variety. The functor GrG is
represented by an ind-projective perfect ind-scheme.
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The Kottwitz Stack

The Kottwitz stack is the prestack B(G ) assigning to a perfect kF -algebra
R the groupoid

B(G )(R) =
{

(E , ϕ)
∣∣ E is an étale G -torsor on D∗R , ϕ : E ' σ∗RE

}
where E is a G -torsor over D∗R , which can be trivialized over D∗R′ for some
étale covering map R → R ′,

Equivalently,
B(G ) = (LG/AdσLG )ét ,

i.e. the étale sheafification of the prestack quotient of LG by
Adσ-conjugation by LG .
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The Newton Stratification

For every separably closed field K over kF set of isomorphism classes of
the groupoid B(G )(K ) identifies with the Kottwitz set.

B(G ) is stratified by the poset B(G ), for an element b define

B(G )≤b(R) =
{

(E , ϕ) ∈ B(G )(R)
∣∣ bx := (Ex , ϕx) ≤ b, x ∈ SpecR,

}
Results of Rapoport-Richartz imply that the inclusion B(G )≤b ⊂ B(G ) is
a finitely presented closed embedding.

For b ∈ B(G ) set

B(G )b = B(G )b \ ∪b′<bB(G )b′

B(G )b ⊂ B(G )≤b is a finitely presented affine open embedding (follows
from results of Vasiu, Hartl-Viehmann)
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Sheaves on the Kottwitz Stack

We can make sense of the category of Λ-sheaves on objects like B(G ).

For a perfect ring R with presentation R = colimi Ri as a colimit of
(perfectly) finite type k-algebras

Shv(SpecR,Λ) = lim−→
i

Ind
(
Dctf(SpecRi ,Λ)

)
transition maps are given by !-pullbacks.For example,

Shv(L+G,Λ) = lim−→
n

Shv(LnG,Λ),

where LnG is the partial jet scheme LnG(R) = G(WO,n(R)).
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Sheaves on the Kottwitz Stack

For every functor X : Affpf
k → Ani (also called a prestack)

Shv(X ,Λ) = lim
SpecR→X

Shv(SpecR,Λ)

A natural transformation f : X → Y induces a functor

f ! : Shv(Y,Λ)→ Shv(X ,Λ)

For specific types of prestacks X ,Y and morphisms f , one can also define
other functors like f!, f

∗, f∗ satisfying expected properties.

In particular, we have categories Shv(B(G ),Λ) and Shv(B(G )b,Λ) for
every b ∈ B(G ).
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Sheaves on the Kottwitz Stack

As in the case of schemes, there are adjunctions

Shv(B(G )b,Λ) Shv(B(G )≤b,Λ) Shv(B(G )<b,Λ)

j!

j∗

j∗ i∗

i∗

i !

For F ∈ Shv(B(G )≤b,Λ) there are natural fiber sequences

i∗i
!F → F → j∗j

∗F
j!j
∗F → F → i∗i

∗F

inducing a semi-orthogonal decomposition of Shv(B(G ),Λ) in terms of
the categories Shv(B(G )b,Λ)

When b ∈ B(G ) is basic, B(G )b = B(G )≤b.
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Sheaves on the Kottwitz Stack

Theorem (H.-Zhu)

1 For every b ∈ B(G ) there is a canonical equivalence

Rep(Jb(F ),Λ) ' Shv(B(G )b,Λ)

2 The category Shv(B(G ),Λ) is compactly generated. An object is
compact if and only if the restriction to each Newton stratum is
compact.

3 There is a self-duality Shv(B(G ),Λ)

Dcoh : Shv(B(G ),Λ)ω ' (Shv(B(G ),Λ)ω)op

such that for every b ∈ B(G )

Dcohib,∗ ' ib,!Dcoh
Rep(Jb(F ),Λ)[−〈2ρ, νb〉]
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The Stack of Langlands Parameters

Consider the C -group cG = Ĝ o (Gm × Γ
F̃/F

) as a group scheme over Z.

There is a stack LoccG ,F over Z` classifying families of Langlands
parameters considered independently by Dat-Helm-Kurinczuk-Moss,
Scholze, and Zhu.

Loc�cG ,F (A) = {continuous ρ : WF → cG (A)}, LoccG ,F := Loc�cG ,F/Ĝ

LoccG ,F is representable, reduced, flat and locally of finite presentation
over Z`, and a local complete intersection.

We denote by LoccG ,F ,Λ the base change of LoccG ,F to Λ.
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The Stack of Langlands Parameters

Assume F̃/F is tamely ramified. In this case there is an open and closed
substack Loctame

cG ,F ⊆ LoccG ,F classifying parameters whose kernel includes
the wild inertia subgroup.

Fix a topological generator τ of tame inertia and fix a Frobenius σ.

We have a presentation:

Loctame
cG ,F '

{
(g , h) ∈ Ĝτ × Ĝσ ⊂ cG × cG | hgh−1 = gq

}
/Ĝ
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The Stack of Langlands Parameters

The tangent complex at a point ρ of LoccG is quasi-isomorphic to the
continuous cohomology complex C ∗cts(WF ,Adρ)[1].

In particular,

Sing(LoccG ,F ) =
{

(ρ, ξ)
∣∣ ρ ∈ LoccG ,F , ξ ∈ H2(WF ,Ad∗ρ)

}
By Tate duality, H2(WF ,Ad∗ρ) ∼= (ĝ∗)ρ|IF =1,ρ(σ)=q−1

.

Let N̂ ∗ ⊆ ĝ∗ be the nilpotent cone. We can then define

N̂cG ,F =
{

(ρ, ξ) ∈ Sing(LoccG ,F )
∣∣ ρ ∈ LoccG ,F , ξ ∈ N̂ ∗

}
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Categorical Arithmetic Local Langlands Correspondence

Conjecture (Zhu)

Assume G is quasi-split and fix Whittaker data (U, ψ). There is a
canonical equivalence of ∞-categories

LG : Ind
(
CohN̂cG ,F ,Λ

(LoccG ,F ,Λ)
)
' Shv(B(G ),Λ)

Which is compatible with parabolic induction, intertwines cohomological
duality and Serre duality (up to Cartan involution), and sends the object

OLoccG ,F
to the object ie,∗

(
c-ind

G(F )
U(F )ψ

)

Analogous to the conjecture made by Fargues-Scholze

If Λ is of characteristic zero, N̂cG ,F = Sing(LoccG ,F ,Λ)

Follows from class field theory for unramified tori
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The Unipotent Langlands Category

Assume G is unramified, i.e. that the extension F̃/F is unramified.
We fix a pinning (G ,B,T , e).

Consider the full subcategory

Shvunip(B(G ),Q`) ⊆ Shv(B(G ),Q`)

consisting of objects F ∈ Shv(B(G ),Q`) such that for all b ∈ B(G ), the
cohomologies of the complex

i !b(F) ∈ Rep(Jb(F ),Q`)

are unipotent in the sense of Lusztig.

By duality, this is equivalent to the same condition for i∗b (F).
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The Stack of Unipotent Langlands Parameters

On the other hand, consider the substack LocunipcG ,F ⊆ Loctame
cG ,F classifying

representations which factor through the tame quotient of WF and carry
unipotent monodromy,

LocunipcG ,F '
{

(g , h) ∈ Û × Ĝσ ⊂ cG × cG | hgh−1 = gq
}
/Ĝ

for Λ of characteristic zero, LocunipcG ,F ,Λ ⊆ Loctame
cG ,F ,Λ is open and closed.

Consider the map πunip : LocunipcB,F ,Λ → LocunipcG ,F ,Λ. The object

CohSprunipcG ,F ,Λ = πunip∗ O
LocunipcB,F ,Λ

is called the coherent Springer sheaf
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cG ,F classifying
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Unipotent Arithmetic Local Langlands Correspondence

Theorem (H.-Zhu)

There is a canonical equivalence of ∞-categories

LG : Ind(Coh(LocunipcG ,F ,Q`
)) ' Shvunip(B(G ),Q`)

Such that for I ⊂ K ⊂ G (F ) determined by the pinning:

LG (CohSprunipcG ,F ) ' ie,∗(C
∞
c (G (F )/I ,Q`))

LG (OLocunrcG ,F
) = ie,∗(C

∞
c (G (F )/K ,Q`))

LG (O
LocunipcG ,F

) ' ie,∗
(
C∞c (G (F )/I ,Q`)⊗HI

(C∞c (I\G (F )/I u)
)

Related results of Ben-Zvi-Chen-Helm-Nadler by a different method

Generalizes to F` once Bezrukavnikov’s equivalence is available
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Unipotent Arithmetic Local Langlands Correspondence

Corollary

There are canonical equivalences

HI ' End
LocunipcG ,F ,Q`

(
CohSprunipcG ,F

)
, HK ' End

LocunipcG ,F ,Q`

(
OLocunrcG ,F

)

For every basic b ∈ B(G ) let Ib ⊆ Jb(F ) denote the corresponding Iwahori.
The theorem implies the existence of a coherent sheaf Ab such that

LG (Ab) = (ib)∗(C
∞
c (Jb(F )/Ib,Q`))

and consequently,
HIb ' End

LocunipcG ,F ,Q`

(Ab).

The sheaves Ab can be explicitly described.
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The Stack of Local Shtukas

Recall the stack of local shtukas

Shtloc(R) =
{

(E , ϕ) | E is a G-torsors on DR , ϕ : E 99K σ∗RE
}

Studied by Genestier-Lafforgue, Hartl-Viehmann, Xiao-Zhu.

There is an isomorphism

Shtloc ∼=
(
LG/AdσL

+G
)
ét

Restriction of torsors from DR to D∗R gives the Newton map

Nt : Shtloc → B(G )

Key fact: Nt is ind-proper, looks like a fibration with fiber GrG .
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Local Shtukas and the Kottwitz Stack

More generally, we have the n-th iterated local Hecke stack:

Hkn(Shtloc)(R) =

{
E0 99K · · · 99K En 99K σE0

∣∣∣∣Ei a G-torsor on DR .

}

There is an equivalence Hkn
∼= (LGn+1/L+Gn+1

)ét with action

(k0, k1, . . . , kn) · (g0, g1, . . . , gn) = (k0g0k
−1
1 , k1g2k

−1
2 , . . . , kngnσ(k0)−1),

Consider the simplicial object Hk•(Shtloc)

· · · Hk1(Shtloc) Shtloc B(G )Nt

di (g0, . . . , gi−1, gi , . . . gn) =

{
(g0, . . . gi−1gi , . . . , gn), i 6= 0

(g1, g2, . . . , gnσ(g0)), i = 0
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Local Shtukas and the Kottwitz Stack

Hk•(Shtloc) is isomorphic to Čech nerve of the Newton map

Nt : Shtloc → B(G )

Ind-proper descent gives a colimit of presentable ∞-categories

· · · Shv(Hk1(Shtloc),Λ) Shv(Shtloc,Λ) Shv(B(G ),Λ)
Nt!

There is a Verdier duality on the ind-stacks Hkn(Shtloc), subject to a
choice of dimension theory. Compatible choices of dimensions induce the
duality

Dcoh : Shv(B(G ),Λ)
∼−→ Shv(B(G ),Λ)∨
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Local Shtukas and the Kottwitz Stack

Now fix the following situation:

G is the smooth model over OF corresponding to I .

Denote L+G by I so that I(kF ) = I .

We denote GrI by Fl, π : LG → Fl the projection

W̃ the Iwahori-Weyl group, W ⊆ W̃ finite Weyl group.

Decomposition into affine Schubert cells

Fl =
⋃

w∈W̃

Flw , LG =
⋃

w∈W̃

LGw , Shtloc =
⋃

w∈W̃

Shtlocw

with LGw = π−1(Flw ) and Shtlocw ' (LGw/AdσI)ét
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Local Shtukas and the Kottwitz Stack

Denote iw : Shtlocw → Shtloc. For w = 1, by Lang’s theorem

Shtloc1 '
(
I/AdσI

)
ét
'
(
I/AdσI

)
fpqc
'
(

Spec k/I
)
fpqc

Fits intro a commutative diagram

Rep(I ,Λ) Shv(Shtloc,Λ)

Rep(G (F ),Λ) Shv(B(G ),Λ)

ie,∗

c-ind
G(F )
I

Nt!

ie,∗

In particular

Nt!(ie,∗Λ) ' ie,∗c-ind
G(F )
I (Λ)

This can be generalized to any b ∈ B(G )
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Local Shtukas and the Kottwitz Stack

w ∈ W̃ is called σ-straight if `(wσ(w) · · ·σn−1(w)) = n`(w)., n > 0

A σ-conjugacy class of W̃ is straight if it contains a σ-straight element.

Theorem (X. He){
straight σ-conjugacy classes in W̃

}
←→ B(G ).

If wb is σ-straight corresponding to b then Shtlocwb
∼=
(

Spec k/Ib
)
fpqc

Rep(Ib,Λ) Shv(Shtloc,Λ)

Rep(Jb(F ),Λ) Shv(B(G ),Λ)

iw,∗

c-ind
Jb(F )

Ib
Nt!

ib,∗

,

and similarly with ib,! instead of ib,∗.
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Unipotent Arithmetic Local Langlands Correspondence

Theorem (Bezrukavnikov)

There is a canonical equivalence of monoidal categories

B : Ind
(
Coh(Stunip

Ĝ
/Ĝ )

) ∼= Shv(I\LG/I,Q`)

ŨĜ → Ĝ the (multiplicative) Springer resolution

Stunip
Ĝ

= ŨĜ ×
L
Ĝ
ŨĜ is the unipotent Steinberg variety

Intertwines the pullback of Frobenius on I\LG/I with the pullback of
the map on Stunip

Ĝ
induced by the map g 7→ σ−1(gq) on Ĝ .
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Unipotent Arithmetic Local Langlands Correspondence

Consider the stack L̃oc
unip
cG ,F classifying triples (g , h, B̂ ′) consisting of a

unipotent parameter (g , h) and a Borel B̂ ′ ⊂ Ĝ containing g .

L̃oc
unip
cG ,F ' LocunipcG ,F ×Ĝ/Ĝ ŨĜ/Ĝ

There is a map

L̃oc
unip
cG ,F → Stunip

Ĝ
/Ĝ

Sending a triple (g , h, B̂ ′) to the triple (g , B̂ ′, hB̂ ′)

For w ∈W let Stunipw ⊆ Stunip
Ĝ

be the corresponding irreducible
component. Denote

L̃oc
unip
cG ,F ,w = L̃oc

unip
cG ,F ,w ×Stunip

Ĝ
/Ĝ

Stunipw /Ĝ

called the spectral Deligne-Lusztig stack of w .
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There is a map

L̃oc
unip
cG ,F → Stunip

Ĝ
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Unipotent Arithmetic Local Langlands Correspondence

Denote:

πunipw : L̃oc
unip
cG ,F ,w → LocunipcG ,F

Then for a basic element b ∈ B(G ) we can write wb = λbwb,f with λb
anti-dominant and wb,f ∈W .

Using Bezrukavnikov’s equivalence we show:

LG (πunipwb,f ,∗(OL̃oc
unip
cG ,F ,wb,f

(λb)) = ib,∗(C
∞
c (Jb(F )/Ib,Q`))

Where O
L̃oc

unip
cG ,F ,wb,f

(λb) is the line bundle corresponding to λb considered

as a character B̂ → Gm.
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The Categorical Trace Construction

Given a Λ-linear monoidal category A with a monoidal endomorphism
φ : A → A we can consider the Hochschild homology

Tr(φ,A) := HH(A, φA) = A⊗A⊗Arev
φA

It can be computed by realization of the (twisted) cyclic bar resolution
A ' |A⊗(•+2)|

HH•(A, φA) = A⊗(•+2) ⊗A⊗Arev
φA ' A⊗•

di (a0 ⊗ . . . , ai−1 ⊗ ai ⊗ · · · ⊗ an) =

{
a0 ⊗ · · · ⊗ ai−1ai ⊗ · · · ⊗ an, i 6= 0

a1 ⊗ a2 ⊗ · · · ⊗ anφ(a0), i = 0
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The Categorical Trace of Frobenius

Now consider the situation of convolution monoidal structures. In general,
these arise from:

A map f : (X , φX )→ (Y , φY ) of ”geometric objects”

D(−) a ”sheaf theory”

Then D(X ×Y X ) has a convolution monoidal structure

X ×Y X ×Y X (X ×Y X )× (X ×Y X )

X ×Y X

∆

m ,

F ? G := m∗∆
!(F � G), F ,G ∈ D(X ×Y X )

RAMpAGe Seminar 33 / 36



The Categorical Trace of Frobenius

Now consider the situation of convolution monoidal structures. In general,
these arise from:

A map f : (X , φX )→ (Y , φY ) of ”geometric objects”

D(−) a ”sheaf theory”

Then D(X ×Y X ) has a convolution monoidal structure

X ×Y X ×Y X (X ×Y X )× (X ×Y X )

X ×Y X

∆

m ,

F ? G := m∗∆
!(F � G), F ,G ∈ D(X ×Y X )

RAMpAGe Seminar 33 / 36



The Categorical Trace of Frobenius

Lφ(Y ) Y

Y Y

∆Y

idY×φY

,

Lφ(Y )×Y X X ×Y X

Lφ(Y )

Using the identification X ×Y Lφ(Y ) ' X ×Y×Y Y .

There is a natural commutative diagram:

D(X ×Y X )⊗(•+1) Tr(φ∗,D(X ×Y X ))

D(X×Y (•+1) ×Y Lφ(Y )) D(Lφ(Y ))

We can apply this paradigm to both sides of Bezrukavnikov’s equivalence
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The Categorical Trace of Frobenius

Representation theory side: (BL+G,Fr)→ (BLG ,Fr)

Shv(I\LG/I,Q`)
⊗(•+1) Tr(Fr∗, Shv(I\LG/I,Q`))

Shv(Hk•(Shtloc),Q`) Shv(B(G ),Q`)

The spectral side: (ŨĜ/Ĝ , φ)→ (Ĝ/Ĝ , φ)

Coh(Stunip
Ĝ

/Ĝ )⊗(•+1) Tr(φ∗,Coh(Stunip
Ĝ

/Ĝ ))

Coh
((
UĜ/Ĝ

)×Ĝ/Ĝ (•+1) ×Ĝ/Ĝ LocunipcG ,F

)
Coh(LocunipcG ,F )
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Ĝ
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Thank you!
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