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Introduction

Notations:

@ F a non-archimedean local field, e.g. Qp, Fq((t))
e G/F connected reductive group

@ { # p a prime

Local Langlands correspondence: Classify irreducible smooth
representations of G(F) in terms of Langlands parameters

{p: Wr = 6(Qu)}/6

RAMpAGe Seminar 3/36



Introduction

Categorical local Langlands correspondence: Describe the derived
category Rep(G(F), Qy) of smooth representations in terms of Galois data.

Hope: an object V' € Rep(G(F), Q) should correspond to a
quasi-coherent sheaf over a stack classifying families of Langlands
parameters.
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Introduction

Categorical local Langlands correspondence: Describe the derived
category Rep(G(F), Qy) of smooth representations in terms of Galois data.

Hope: an object V' € Rep(G(F), Q) should correspond to a
quasi-coherent sheaf over a stack classifying families of Langlands
parameters.

Related work:

© Emerton-Helm: local correspondence for GL,, in families.
@ Fargues-Scholze: bundles on the Fargues-Fontaine curve
© Hellmann

@ Ben-Zvi, Chen, Helm, Nadler: Coherent Springer theory
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Introduction

The category Rep(G(F),Qy) needs to be modified
This can be seen from several points of view:

Local Langlands correspondence (Vogan, Bernstein, Kaletha):
Better to study representation theory of G(F) together with that of its
extended pure inner forms.

Geometric Langlands (Drinfeld, Gaitsgory): the "local Langlands
category” should be the categorical Frobenius fixed points of the category
of Qg-sheaves on the loop group of G.

Arithmetic geometry (Xiao-Zhu): the study of correspondences
between mod p fibers of different Shimura varieties.

p-adic Hodge theory (Fargus-Scholze): moduli of G-bundles on the
Fargues-Fontaine curve.
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Introduction

A common motif: study the representation theory G(F) together with its
forms {Jp(F)} arising from the Kottwitz set B(G)
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Introduction

A common motif: study the representation theory G(F) together with its
forms {Jp(F)} arising from the Kottwitz set B(G)

It turns out that the categories Rep(Jp(F), Q;) can be glued together via
the category of sheaves on certain geometric objects.

Fargues-Scholze: the categories can be glued via the moduli stack of
bundles on the Fargues-Fontaine curve Xgp. The set of isomorphism
classes of G-bundles on Xpp identifies with B(G) (Fargues-Fontaine,
Fargues).

Today: a (simpler) alternative approach using sheaves on the Kottwitz
stack, an algebro-geometric object arising naturally from categorical
considerations and the study of mod p fibers of Shimura varieties.
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A Categorical Local Langlands Conjecture

Notations:

@ OFf ring of integers of F, w € Of a uniformizer
o Residue field ke = Of /w of characteristic p > 0 and |kg| = q.
o F the completion of the maximal unramified extension

o O ring of integers, k residue field (note k = kF)

RAMpAGe Seminar 7/36



A Categorical Local Langlands Conjecture

Notations:

@ OFf ring of integers of F, w € Of a uniformizer

Residue field ke = Of/w of characteristic p > 0 and |kr| = g.
F the completion of the maximal unramified extension

O ring of integers, k residue field (note k = kr)

N € {Qq,Z¢,Fq} or any algebraic extension

G be a parahoric model for G over Of

G the Langlands dual of G, as a group over Z

I?/F extension splitting G, Galois group F,;/,_..
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The Kottwitz Stack

For a perfect ke-algebra R, let
W@(R) = W(R) ®W(kp) OF, Wom(R) = W@(R)/wn

denote D = Spec Wp(R) and D} = Spec(Wp(R)[1/w])
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The Kottwitz Stack

For a perfect ke-algebra R, let
Wo(R) = W(R) @w (k) OF,  Wo.n(R) = Wo(R) /="
denote D = Spec Wp(R) and D} = Spec(Wp(R)[1/w])
Recall positive loop group LG and loop group LG defined by
LTG(R) = G(Wo(R)), LG(R)= G(Wo(R)[1/=])
the functor LG is represented by a perfect affine scheme.

Let Grg = LG/L"G be the associated flag variety. The functor Grg is
represented by an ind-projective perfect ind-scheme.
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The Kottwitz Stack

The Kottwitz stack is the prestack B(G) assigning to a perfect kg-algebra
R the groupoid

B(G)(R) = {(&€, )| € is an étale G-torsor on Dp, ¢ : € ~ oRE}

where £ is a G-torsor over D, which can be trivialized over D, for some
étale covering map R — R/,

Equivalently,
B(G) = (LG/Ad,LG)gt,

i.e. the étale sheafification of the prestack quotient of LG by
Ad,-conjugation by LG.
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The Newton Stratification

For every separably closed field K over kg set of isomorphism classes of
the groupoid B(G)(K) identifies with the Kottwitz set.
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The Newton Stratification

For every separably closed field K over kg set of isomorphism classes of
the groupoid B(G)(K) identifies with the Kottwitz set.

B(G) is stratified by the poset B(G), for an element b define
B(G)<b(R) = {(£,9) € B(G)(R)| bx := (Ex ¢x) < b, x € SpecR, }

Results of Rapoport-Richartz imply that the inclusion B(G)<, C B(G) is
a finitely presented closed embedding.
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The Newton Stratification

For every separably closed field K over kg set of isomorphism classes of
the groupoid B(G)(K) identifies with the Kottwitz set.

B(G) is stratified by the poset B(G), for an element b define
B(G)<b(R) = {(£,9) € B(G)(R)| bx := (Ex ¢x) < b, x € SpecR, }

Results of Rapoport-Richartz imply that the inclusion B(G)<, C B(G) is
a finitely presented closed embedding.

For b € B(G) set
B(G)p =B(G)p \ Up<pB(G)w

B(G)p C B(G)<yp is a finitely presented affine open embedding (follows
from results of Vasiu, Hartl-Viehmann)
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Sheaves on the Kottwitz Stack

We can make sense of the category of A-sheaves on objects like B(G).
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Sheaves on the Kottwitz Stack

We can make sense of the category of A-sheaves on objects like B(G).

For a perfect ring R with presentation R = colim; R; as a colimit of
(perfectly) finite type k-algebras

Shv(Spec R, \) = IL” Ind (D (Spec Rj, A))

1

transition maps are given by !-pullbacks.
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Sheaves on the Kottwitz Stack

We can make sense of the category of A-sheaves on objects like B(G).

For a perfect ring R with presentation R = colim; R; as a colimit of
(perfectly) finite type k-algebras

Shv(Spec R, \) = IL” Ind (D (Spec Rj, A))

1

transition maps are given by !-pullbacks.For example,

Shv(L*G, A) = lim Shv(L"G, A),

where L"G is the partial jet scheme L"G(R) = G(Wp n(R)).
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Sheaves on the Kottwitz Stack

For every functor X: Affif — Ani (also called a prestack)

Shv(X,A) = Spe‘I:i?%X Shv(Spec R, \)

A natural transformation f: X — ) induces a functor
f': Shv(),\) — Shv (X, A)

For specific types of prestacks X', ) and morphisms f, one can also define
other functors like fi, f*, f, satisfying expected properties.

In particular, we have categories Shv(B(G),A) and Shv(B(G)p, ) for
every b € B(G).
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Sheaves on the Kottwitz Stack

As in the case of schemes, there are adjunctions

Jt i*

— —
Shv(B(G)p, N) «Jj* — Shv(B(G)<p, N) «i. = Shv(B(G)<p, N)
—_ —_

Jx it
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Sheaves on the Kottwitz Stack

As in the case of schemes, there are adjunctions

Jt i*

— —
Shv(B(G)p, N) «Jj* — Shv(B(G)<p, N) «i. = Shv(B(G)<p, N)
—_ —_

Jx it
For F € Shv(B(G)<p, \) there are natural fiber sequences

iWi'F— F = jj*F
G F = F = i i*F

inducing a semi-orthogonal decomposition of Shv(B(G),A) in terms of
the categories Shv(B(G)p, \)

When b € B(G) is basic, B(G)p = B(G)<p.
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Sheaves on the Kottwitz Stack

Theorem (H.-Zhu)

© For every b € B(G) there is a canonical equivalence

Rep(Jp(F),N) ~ Shv(B(G)p, N)

@ The category Shv(B(G), ) is compactly generated. An object is
compact if and only if the restriction to each Newton stratum is
compact.
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© For every b € B(G) there is a canonical equivalence

Rep(Jp(F),N) ~ Shv(B(G)p, N)

@ The category Shv(B(G), ) is compactly generated. An object is
compact if and only if the restriction to each Newton stratum is
compact.

© There is a self-duality Shv(B(G), )
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Sheaves on the Kottwitz Stack

Theorem (H.-Zhu)

© For every b € B(G) there is a canonical equivalence

Rep(Jp(F),N) ~ Shv(B(G)p, N)

@ The category Shv(B(G), ) is compactly generated. An object is
compact if and only if the restriction to each Newton stratum is
compact.

© There is a self-duality Shv(B(G), )
DN Shv(B(G), A ~ (Shv(B(G),\)¥)°P

such that for every b € B(G)

DM i 2 i Do 5,7y m [ (20, v6)]
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The Stack of Langlands Parameters

Consider the C-group <G = G x (G x FE/F) as a group scheme over Z.

There is a stack Loceg F over Z classifying families of Langlands
parameters considered independently by Dat-Helm-Kurinczuk-Moss,
Scholze, and Zhu.

LochG’F(A) = {continuous p : Wr — “G(A)}, Loceg F = LochG,F/CAJ

Loceg F is representable, reduced, flat and locally of finite presentation
over Zy, and a local complete intersection.

We denote by Loceg F A the base change of Loceg F to A.
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The Stack of Langlands Parameters

Assume I;/F is tamely ramified. In this case there is an open and closed

substack LocE%‘?ﬁ C Loceg F classifying parameters whose kernel includes
the wild inertia subgroup.

Fix a topological generator 7 of tame inertia and fix a Frobenius o.

We have a presentation:

tame

Locdgr ~ {(g, hye Gt x GoCGx G| hgh™! = gq} /G
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The Stack of Langlands Parameters

The tangent complex at a point p of Loceg is quasi-isomorphic to the

continuous cohomology complex Cli (Wr, Ad,)[1].
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The Stack of Langlands Parameters

The tangent complex at a point p of Loceg is quasi-isomorphic to the
continuous cohomology complex Cli (Wr, Ad,)[1].

In particular,
Sing(Loceg ) = {(p,€) | p € Loceg F, € € Ho(WE, Ady)}

By Tate duality, Ha( W, Ad%) & (§*)Plr=1e(e)=a ",
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The Stack of Langlands Parameters

The tangent complex at a point p of Loceg is quasi-isomorphic to the
continuous cohomology complex Cli (Wr, Ad,)[1].

In particular,
Sing(Loceg ) = {(p,€) | p € Loceg F, € € Ho(WE, Ady)}

By Tate duality, Ha( W, Ad%) & (§*)Plr=1e(e)=a ",
Let N* C §* be the nilpotent cone. We can then define

Negr = {(p,f) € Sing(Loceg r) | p € Loceg r, € € ./\A/'*}
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Categorical Arithmetic Local Langlands Correspondence

Conjecture (Zhu)

Assume G is quasi-split and fix Whittaker data (U, ). There is a
canonical equivalence of co-categories

Lg: Ind(CohNCG FA(LoccG’F’,\)) ~ Shv(B(G), )

Which is compatible with parabolic induction, intertwines cohomological

duality and Serre duality (up to Cartan involution), and sends the object

OLOCCG,F to the object /e « (c—indgggd))

RAMpAGe Seminar 18 /36



Categorical Arithmetic Local Langlands Correspondence

Conjecture (Zhu)

Assume G is quasi-split and fix Whittaker data (U, ). There is a
canonical equivalence of co-categories

Lg: Ind(CohNCG FA(LoccG’F’,\)) ~ Shv(B(G), )

Which is compatible with parabolic induction, intertwines cohomological

duality and Serre duality (up to Cartan involution), and sends the object

OLOCCG,F to the object /e « (c—indgggd))

@ Analogous to the conjecture made by Fargues-Scholze
o If Ais of characteristic zero, /\A/'cG,,: = Sing(Loceg £ n)

o Follows from class field theory for unramified tori
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The Unipotent Langlands Category

Assume G is unramified, i.e. that the extension F/F is unramified.
We fix a pinning (G, B, T, e).
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The Unipotent Langlands Category

Assume G is unramified, i.e. that the extension F/F is unramified.
We fix a pinning (G, B, T, e).

Consider the full subcategory
Shv™™P(B(G), Q) € Shv(B(G), Qv)

consisting of objects F € Shv(B(G), Q) such that for all b € B(G), the
cohomologies of the complex

ib(F) € Rep(Js(F), Qo)
are unipotent in the sense of Lusztig.

By duality, this is equivalent to the same condition for i} (F).
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The Stack of Unipotent Langlands Parameters

On the other hand, consider the substack Loclclgilf,: C Loct™¢ classifying
representations which factor through the tame quotient of Wk and carry
unipotent monodromy,

Loclg’y ~ {(g.h) €U x 6o € °G x °G | hgh™ = g7} /G

Teti unip tame -
for A of characteristic zero, Loccg € Loccgg 5 is open and closed.
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The Stack of Unipotent Langlands Parameters

On the other hand, consider the substack Loclclgilf,: C Loct™¢ classifying
representations which factor through the tame quotient of Wk and carry
unipotent monodromy,

Loclg’y ~ {(g.h) €U x 6o € °G x °G | hgh™ = g7} /G

Teti unip tame -
for A of characteristic zero, Loccg € Loccgg 5 is open and closed.

: unip . unip unip H
Consider the map w"™P: LOCCB,F,/\ — LocCG’,_-J\. The object

CohS runip — 7_[_unip(/) .
Preg Fa = T Mrocty® |

is called the coherent Springer sheaf
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Unipotent Arithmetic Local Langlands Correspondence

Theorem (H.-Zhu)

There is a canonical equivalence of co-categories

L Ind(Coh(Locig ;. +)) = Shv"™™P(B(G), Q)

Such that for | C K C G(F) determined by the pinning:
Lg(CohSpregy) = ie s (CZ*(G(F)/1, Qp))
L (Orocr,) = ies(C(G(F)/K,Qe))
Lo(Oppqin) = ios (C(G(F)/1,Tr) @1, (C2(NG(F)/1%))
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Unipotent Arithmetic Local Langlands Correspondence

Theorem (H.-Zhu)

There is a canonical equivalence of co-categories

L¢: Ind(Coh Loc™P __)) ~ Shyv"™P(B(G ,Q
€G,F,Qy

Such that for | C K C G(F) determined by the pinning:
Le(CobSprigh) =~ ies(CZ(G(F)/1, Q)
L (Orocr,) = ies(C(G(F)/K,Qe))
Lo(Opamn) = ies (C(G(F)/1,T0) @1y (C2(NG(F)/14))

@ Related results of Ben-Zvi-Chen-Helm-Nadler by a different method

o Generalizes to [, once Bezrukavnikov's equivalence is available
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Unipotent Arithmetic Local Langlands Correspondence

There are canonical equivalences

Hj ~ End; _ unip (Cthprggif,’_-), Hk ~ End;  aip  (Opocunr )

— _ C
<G,F,Qy <G,F,Qg G.F
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Unipotent Arithmetic Local Langlands Correspondence

There are canonical equivalences

H[ = EndLOCunip (COhSpI‘Ez},I;_-), HK ~ EndLOCunip (OLOCE‘&‘:F)

€G,F,Qq €G,F,Qq

For every basic b € B(G) let I, C Jp(F) denote the corresponding Iwahori.
The theorem implies the existence of a coherent sheaf 2, such that

Le(Ap) = (ib)«(C2°(J6(F)/ I, Q)
and consequently,

Hlb ~ EndLOCunip (le)

€G,F,.Qq

The sheaves 2, can be explicitly described.
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The Stack of Local Shtukas

Recall the stack of local shtukas
Sht'°°(R) = {(£,¢) | £ is a G-torsors on Dg, ¢ : & -+ okE}

Studied by Genestier-Lafforgue, Hartl-Viehmann, Xiao-Zhu.
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Recall the stack of local shtukas

Sht'°°(R) = {(£,¢) | £ is a G-torsors on Dg, ¢ : & -+ okE}
Studied by Genestier-Lafforgue, Hartl-Viehmann, Xiao-Zhu.
There is an isomorphism

Sht'*° = (LG/Ad,LTG),,
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The Stack of Local Shtukas

Recall the stack of local shtukas
Sht'°°(R) = {(£,¢) | £ is a G-torsors on Dg, ¢ : & -+ okE}
Studied by Genestier-Lafforgue, Hartl-Viehmann, Xiao-Zhu.
There is an isomorphism
Sht'*° = (LG/Ad,LTG),,
Restriction of torsors from Dg to Dy gives the Newton map
Nt : Sht'*® — B(G)

Key fact: Nt is ind-proper, looks like a fibration with fiber Grg.

RAMpAGe Seminar 23 /36



Local Shtukas and the Kottwitz Stack

More generally, we have the n-th iterated local Hecke stack:

HiG(SH)(R) = {0 -0 0 £ -0 76

&; a G-torsor on DR.}
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Local Shtukas and the Kottwitz Stack

More generally, we have the n-th iterated local Hecke stack:

HiG(SH)(R) = {0 -0 0 £ -0 76

&; a G-torsor on DR.}

There is an equivalence Hk, = (LG™1/L+G™™),; with action

(kos k1, - - - kn) - (80, &1, -, &n) = (kogoky *, kigaky *, .. ., kngno (ko) ™),
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Local Shtukas and the Kottwitz Stack

More generally, we have the n-th iterated local Hecke stack:

HiG(SH)(R) = {0 -0 0 £ -0 76

&; a G-torsor on DR.}

There is an equivalence Hk, = (LG™1/L+G™™),; with action

(kos k1, - - - kn) - (80, &1, -, &n) = (kogoky *, kigaky *, .. ., kngno (ko) ™),

Consider the simplicial object Hk,(Sht!°%)

-+ =% Hky(Sht'**) —= Sht'*® — B(G)

_ (go""gi—lgiw'-»gn)’ i?'éO
di(go:---,8i-1,8is---8n) = _
(g17g2a"'agna(g0))a i=0
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Local Shtukas and the Kottwitz Stack

Hk, (Sht'°) is isomorphic to Cech nerve of the Newton map

Nt : Sht'*® — B(G)
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Local Shtukas and the Kottwitz Stack

Hk, (Sht'°) is isomorphic to Cech nerve of the Newton map
Nt : Sht'*® — B(G)

Ind-proper descent gives a colimit of presentable co-categories

.- Shv(Hk; (Sht'°%), A) == Shv(Sht'*,A) —"s Shv(B(G),A)

RAMpAGe Seminar 25 /36



Local Shtukas and the Kottwitz Stack

Hk, (Sht'°) is isomorphic to Cech nerve of the Newton map
Nt : Sht'*® — B(G)

Ind-proper descent gives a colimit of presentable co-categories

.- Shv(Hk; (Sht'°%), A) == Shv(Sht'*,A) —"s Shv(B(G),A)

There is a Verdier duality on the ind-stacks Hk,(Sht'?), subject to a
choice of dimension theory. Compatible choices of dimensions induce the

duality
D! : Shyv(B(G),A) = Shv(B(G),A)Y
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Local Shtukas and the Kottwitz Stack

Now fix the following situation:

@ G is the smooth model over Of corresponding to /.

@ Denote LTG by Z so that Z(kg) = 1.

@ We denote Grz by Fl, m: LG — F1 the projection

o W the Iwahori-Weyl group, W C W finite Weyl group.
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Local Shtukas and the Kottwitz Stack

Now fix the following situation:

@ G is the smooth model over Of corresponding to /.

@ Denote LTG by Z so that Z(kg) = 1.

@ We denote Grz by Fl, m: LG — F1 the projection

o W the Iwahori-Weyl group, W C W finite Weyl group.

Decomposition into affine Schubert cells

Fl= | J Fla, LG= |J LGy, Sht'* = | J Shtl

wew wew wew

with LG,, = 7~1(Fl,) and Sht\>® ~ (LG, /Ad, )&
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Local Shtukas and the Kottwitz Stack

Denote iy, : Sht},fjc — Sht'°°. For w = 1, by Lang’s theorem

Sht\ ~ (Z/Ad,T),, ~ (Z/Ad,T), = (Speck/l)

fpgc fpgc
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Local Shtukas and the Kottwitz Stack

Denote iy, : Sht},fjc — Sht'°°. For w = 1, by Lang’s theorem

Sht\ ~ (Z/Ad,T),, ~ (Z/Ad,T), = (Speck/l)

fpgc fpgc

Fits intro a commutative diagram

Rep(/,A) —=" 5 Shy(Sht'°c, A)

lc-ind,G(F) th!

Rep(G(F),A) —" Shv(B(G),A)

In particular
Nty (ig M) 2 i ec-ind *F(A)
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Local Shtukas and the Kottwitz Stack

Denote iy, : Sht},fjc — Sht'°°. For w = 1, by Lang’s theorem

Sh’511OC = (I/Ang) ét = (I/AdUI) foge = (Spec k/l)quc

Fits intro a commutative diagram

Rep(/,A) —=" 5 Shy(Sht'°c, A)

lc-ind,G(F) th!

Rep(G(F),A) —" Shv(B(G),A)

In particular
Nty (ig M) 2 i ec-ind *F(A)
This can be generalized to any b € B(G)
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Local Shtukas and the Kottwitz Stack

w € W is called o-straight if {(wo(w)---o""}(w)) = nl(w)., n > 0
A o-conjugacy class of W is straight if it contains a o-straight element.
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Local Shtukas and the Kottwitz Stack

w € W is called o-straight if {(wo(w)---o""}(w)) = nl(w)., n > 0
A o-conjugacy class of W is straight if it contains a o-straight element.

Theorem (X. He)

{straight o-conjugacy classes in W} +—— B(G).
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Local Shtukas and the Kottwitz Stack

w € W is called o-straight if {(wo(w)---o""}(w)) = nl(w)., n > 0
A o-conjugacy class of W is straight if it contains a o-straight element.

Theorem (X. He)

{straight o-conjugacy classes in W} +—— B(G).

If wp is o-straight corresponding to b then Sht},ﬁ: = (Spec k/lb) foqe

Rep(lp, A) —" Shy(Sht'°c, A)

lc—indljb(F ) th; ;
b

Rep(Js(F),A) —= Shv(B(G), A)
and similarly with iy instead of ip ,.
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Unipotent Arithmetic Local Langlands Correspondence

Theorem (Bezrukavnikov)

There is a canonical equivalence of monoidal categories

B: Ind(Coh(St§"P/G)) = Shv(T\LG/Z,Q,)

° ﬁ@ — G the (multiplicative) Springer resolution
° Stuflip = Z:L xL Zj{é is the unipotent Steinberg variety

° Intertwmes the pullback of Frobenius on Z\LG/Z with the pullback of
the map on St} P P induced by the map g+ c71(g9) on G.
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Unipotent Arithmetic Local Langlands Correspondence

Consider the stack I/JBE?EI,I,)_— classifying triples (g, h, B) consisting of a
unipotent parameter (g, h) and a Borel B'céG containing g.

e U.l’ll B ~

unip A A
LoccGF_LocCGJ_-xG/GL{G/G
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Unipotent Arithmetic Local Langlands Correspondence

Consider the stack I/JBEBEI,I,)_— classifying triples (g, h, B) consisting of a
unipotent parameter (g, h) and a Borel B'céG containing g.

e U.l’ll B ~

unip A A
LoccGF_LocCGJ_-xG/GL{G/G

There is a map
Locimh = St /6

Sending a triple (g, h, B') to the triple (g, B, hB')
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Unipotent Arithmetic Local Langlands Correspondence

Consider the stack i&:?é‘j’: classifying triples (g, h, B) consisting of a
unipotent parameter (g, h) and a Borel B'céG containing g.

——~—unip unip ~

LOCCGJ: ~ LOCCG,F Xé/@ UG/G

There is a map '
Loclt _, s
Sending a triple (g, h, B') to the triple (g, B, hB')
For w € W let StuliP C Stlénip be the corresponding irreducible
component. Denote
——unip ——unip

_ . unip / A
LOCCG7F7W = LOCCGJ:’W XStlénlp/é Stw /G

called the spectral Deligne-Lusztig stack of w.

RAMpAGe Seminar 30/36



Unipotent Arithmetic Local Langlands Correspondence

Denote:

——unip

TP Loceg F, — Loceg

<G,F

Then for a basic element b € B(G) we can write wp, = Apwp ¢ with Ay
anti-dominant and w, r € W.
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Unipotent Arithmetic Local Langlands Correspondence

Denote:

——unip ;
TP Loceg f.,, — Locig r

Then for a basic element b € B(G) we can write wp, = Apwp ¢ with Ay
anti-dominant and w, r € W.

Using Bezrukavnikov's equivalence we show:

Lo(mup? o(Omiv (M) = ibs(C(Ib(F)/ b, Qr))

€G,F, Wh, f
Where OTCump (A\p) is the line bundle corresponding to A, considered
€G,F, Wb f

as a character B — Gm
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The Categorical Trace Construction

Given a A-linear monoidal category A with a monoidal endomorphism
¢: A— A we can consider the Hochschild homology

Tr(p, A) == HH(A,° A) = A @ ggarev A
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The Categorical Trace Construction

Given a A-linear monoidal category A with a monoidal endomorphism
¢: A— A we can consider the Hochschild homology

Tr(p, A) == HH(A,° A) = A @ ggarev A

It can be computed by realization of the (twisted) cyclic bar resolution

A~ | AB(e+2)]
HH, (A, ¢ A) = A% @ 4o grov ©A =2 A®®

R ®aj_1a; Q- ap, I'750

di(ag®...,3_1Qa R - Qap) =
1(0 i—1 i n) {al®32®"'®an¢(30)7 i=0
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The Categorical Trace of Frobenius

Now consider the situation of convolution monoidal structures. In general,
these arise from:

e Amap f: (X,¢x) — (Y, py) of "geometric objects”
@ D(—) a "sheaf theory”
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The Categorical Trace of Frobenius

Now consider the situation of convolution monoidal structures. In general,
these arise from:

e Amap f: (X,¢x) — (Y, py) of "geometric objects”
@ D(—) a "sheaf theory”

Then D(X xy X) has a convolution monoidal structure

X xy X xy X —25 (X xy X) x (X xy X)

[m :

XXyX

FxG:=mA(FRG), F,GeDX xyX)
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The Categorical Trace of Frobenius
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The Categorical Trace of Frobenius

L¢(Y)4>Y £¢(Y)XyX4>XXyX
l Ay > l
y Jrxdvy Lo(Y)

Using the identification X xy L4(Y) ~ X Xyxy Y.

There is a natural commutative diagram:

D(X xy X)) 5 Tr(¢,, D(X xy X))

| l

DX xy L4(Y)) ———— D(Ly(Y))
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The Categorical Trace of Frobenius

L¢(Y)4>Y £¢(Y)XyX4>XXyX
l Ay > l
y Jrxdvy Lo(Y)

Using the identification X xy L4(Y) ~ X Xyxy Y.

There is a natural commutative diagram:

D(X xy X)) 5 Tr(¢,, D(X xy X))

| l

DX 5y Ly(Y)) —— D(L4(Y))
We can apply this paradigm to both sides of Bezrukavnikov's equivalence
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The Categorical Trace of Frobenius

Representation theory side: (BLTG,Fr) — (BLG, Fr)

Shv(Z\LG/Z,Q.)®(**+Y) — Tr(Fr,, Shv(Z\LG/Z,Qy))

| |

Shv(Hk, (Sht'*®), Q7)) ——— Shv(B(G),Qy)
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The Categorical Trace of Frobenius

Representation theory side: (BLTG,Fr) — (BLG, Fr)

Shv(Z\LG/Z,Q.)®(**+Y) — Tr(Fr,, Shv(Z\LG/Z,Qy))

| |

Shv(Hk, (Sht'), @) ——— Shv(B(G), Qy)
The spectral side: (ﬁ@/é,tb) —(6/6,9)

Coh(St™/G)2(+D) s Tr(¢,, Coh(St2™/G))

! J

Coh ((L[@/é) xgeletl) o 6/¢ Loc?IGﬁf,’_-) - Coh(Loc';”Gﬁf,’_-
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Thank you!
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