Unipotent Categorical Local Langlands Correspondence

Tamir Hemo (Joint with X. Zhu)

Department of Mathematics California Institute of Technology

May 27, 2021

Introduction

2 A Categorical Local Langlands Conjecture

3 Unipotent Categorical Langlands Correspondence

The Stack of Local Shtukas

5 The Categorical Trace of Frobenius

∃ ► < ∃ ►

Notations:

- F a non-archimedean local field, e.g. \mathbb{Q}_p , $\mathbb{F}_q((t))$
- G/F connected reductive group
- $\ell \neq p$ a prime

Local Langlands correspondence: Classify irreducible smooth representations of G(F) in terms of Langlands parameters

$$\{\varphi\colon W_F\to {}^LG(\overline{\mathbb{Q}_\ell})\}/\hat{G}$$

Categorical local Langlands correspondence: Describe the derived category $\operatorname{Rep}(G(F), \overline{\mathbb{Q}_{\ell}})$ of smooth representations in terms of Galois data.

Hope: an object $V \in \text{Rep}(G(F), \overline{\mathbb{Q}_{\ell}})$ should correspond to a quasi-coherent sheaf over a stack classifying families of Langlands parameters.

- 4 同 ト 4 ヨ ト - 4 ヨ ト -

Categorical local Langlands correspondence: Describe the derived category $\operatorname{Rep}(G(F), \overline{\mathbb{Q}_{\ell}})$ of smooth representations in terms of Galois data.

Hope: an object $V \in \text{Rep}(G(F), \overline{\mathbb{Q}_{\ell}})$ should correspond to a quasi-coherent sheaf over a stack classifying families of Langlands parameters.

Related work:

- **(**) Emerton-Helm: local correspondence for GL_n in families.
- **2** Fargues-Scholze: bundles on the Fargues-Fontaine curve
- Hellmann
- 9 Ben-Zvi, Chen, Helm, Nadler: Coherent Springer theory

Introduction

The category $\operatorname{Rep}(G(F), \overline{\mathbb{Q}_\ell})$ needs to be modified

æ

イロト イヨト イヨト イヨト

Introduction

The category $\operatorname{Rep}(G(F), \overline{\mathbb{Q}_\ell})$ needs to be modified

This can be seen from several points of view:

∃ ► < ∃ ►

The category $\operatorname{Rep}(G(F), \overline{\mathbb{Q}_\ell})$ needs to be modified

This can be seen from several points of view:

Local Langlands correspondence (Vogan, Bernstein, Kaletha): Better to study representation theory of G(F) together with that of its extended pure inner forms.

The category $\operatorname{Rep}(G(F), \overline{\mathbb{Q}_\ell})$ needs to be modified

This can be seen from several points of view:

Local Langlands correspondence (Vogan, Bernstein, Kaletha): Better to study representation theory of G(F) together with that of its extended pure inner forms.

Geometric Langlands (Drinfeld, Gaitsgory): the "local Langlands category" should be the categorical Frobenius fixed points of the category of $\overline{\mathbb{Q}_{\ell}}$ -sheaves on the loop group of G.

The category $\operatorname{Rep}(G(F), \overline{\mathbb{Q}_\ell})$ needs to be modified

This can be seen from several points of view:

Local Langlands correspondence (Vogan, Bernstein, Kaletha): Better to study representation theory of G(F) together with that of its extended pure inner forms.

Geometric Langlands (Drinfeld, Gaitsgory): the "local Langlands category" should be the categorical Frobenius fixed points of the category of $\overline{\mathbb{Q}_{\ell}}$ -sheaves on the loop group of G.

Arithmetic geometry (Xiao-Zhu): the study of correspondences between mod *p* fibers of different Shimura varieties.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

The category $\operatorname{Rep}(\mathcal{G}(\mathcal{F}),\overline{\mathbb{Q}_\ell})$ needs to be modified

This can be seen from several points of view:

Local Langlands correspondence (Vogan, Bernstein, Kaletha): Better to study representation theory of G(F) together with that of its extended pure inner forms.

Geometric Langlands (Drinfeld, Gaitsgory): the "local Langlands category" should be the categorical Frobenius fixed points of the category of $\overline{\mathbb{Q}_{\ell}}$ -sheaves on the loop group of G.

Arithmetic geometry (Xiao-Zhu): the study of correspondences between mod *p* fibers of different Shimura varieties.

p-adic Hodge theory (Fargus-Scholze): moduli of *G*-bundles on the Fargues-Fontaine curve.

э

It turns out that the categories $\operatorname{Rep}(J_b(F), \overline{\mathbb{Q}_\ell})$ can be glued together via the category of sheaves on certain geometric objects.

It turns out that the categories $\operatorname{Rep}(J_b(F), \overline{\mathbb{Q}_\ell})$ can be glued together via the category of sheaves on certain geometric objects.

Fargues-Scholze: the categories can be glued via the moduli stack of bundles on the Fargues-Fontaine curve X_{FF} . The set of isomorphism classes of *G*-bundles on X_{FF} identifies with B(G) (Fargues-Fontaine, Fargues).

> < 문 > < 문 >

It turns out that the categories $\operatorname{Rep}(J_b(F), \overline{\mathbb{Q}_\ell})$ can be glued together via the category of sheaves on certain geometric objects.

Fargues-Scholze: the categories can be glued via the moduli stack of bundles on the Fargues-Fontaine curve $X_{\rm FF}$. The set of isomorphism classes of *G*-bundles on $X_{\rm FF}$ identifies with B(G) (Fargues-Fontaine, Fargues).

Today: a (simpler) alternative approach using sheaves on the *Kottwitz* stack, an algebro-geometric object arising naturally from categorical considerations and the study of mod p fibers of Shimura varieties.

Notations:

- \mathcal{O}_F ring of integers of F, $\varpi \in \mathcal{O}_F$ a uniformizer
- Residue field $k_F = \mathcal{O}_F / \varpi$ of characteristic p > 0 and $|k_F| = q$.
- \breve{F} the completion of the maximal unramified extension
- $\mathcal{O}_{\breve{F}}$ ring of integers, k residue field (note $k = \overline{k_F}$)

Notations:

- \mathcal{O}_F ring of integers of F, $\varpi \in \mathcal{O}_F$ a uniformizer
- Residue field $k_F = \mathcal{O}_F / \varpi$ of characteristic p > 0 and $|k_F| = q$.
- \breve{F} the completion of the maximal unramified extension
- $\mathcal{O}_{\breve{F}}$ ring of integers, k residue field (note $k = \overline{k_F}$)
- $\Lambda \in \{\mathbb{Q}_\ell, \mathbb{Z}_\ell, \mathbb{F}_q\}$ or any algebraic extension
- \mathcal{G} be a parahoric model for G over \mathcal{O}_F
- \hat{G} the Langlands dual of G, as a group over $\mathbb Z$
- \widetilde{F}/F extension splitting G, Galois group $\Gamma_{\widetilde{F}/F}$.

For a perfect k_F -algebra R, let

$$W_{\mathcal{O}}(R) = W(R) \otimes_{W(k_F)} \mathcal{O}_F, \quad W_{\mathcal{O},n}(R) = W_{\mathcal{O}}(R)/\varpi^n$$

denote $D_R = \operatorname{Spec} W_{\mathcal{O}}(R)$ and $D_R^* = \operatorname{Spec}(W_{\mathcal{O}}(R)[1/\varpi])$

э

・ 何 ト ・ ヨ ト ・ ヨ ト ・

For a perfect k_F -algebra R, let

$$W_{\mathcal{O}}(R) = W(R) \otimes_{W(k_F)} \mathcal{O}_F, \quad W_{\mathcal{O},n}(R) = W_{\mathcal{O}}(R)/\varpi^n$$

denote $D_R = \operatorname{Spec} W_{\mathcal{O}}(R)$ and $D_R^* = \operatorname{Spec}(W_{\mathcal{O}}(R)[1/\varpi])$

Recall positive loop group $L^+\mathcal{G}$ and loop group LG defined by

$$L^+\mathcal{G}(R) = \mathcal{G}(W_{\mathcal{O}}(R)), \quad LG(R) = G(W_{\mathcal{O}}(R)[1/\varpi])$$

the functor L^+G is represented by a perfect affine scheme.

Let $\operatorname{Gr}_{\mathcal{G}} = LG/L^+\mathcal{G}$ be the associated flag variety. The functor $\operatorname{Gr}_{\mathcal{G}}$ is represented by an ind-projective perfect ind-scheme.

イロト イヨト イヨト 一座

The Kottwitz stack is the prestack $\mathfrak{B}(G)$ assigning to a perfect k_F -algebra R the groupoid

$$\mathfrak{B}(G)(R) = \left\{ (\mathcal{E}, \varphi) \middle| \ \mathcal{E} \text{ is an \'etale } G ext{-torsor on } D^*_R, \ arphi : \mathcal{E} \simeq \sigma^*_R \mathcal{E}
ight\}$$

where \mathcal{E} is a *G*-torsor over D_R^* , which can be trivialized over $D_{R'}^*$ for some étale covering map $R \to R'$,

Equivalently,

$$\mathfrak{B}(G) = (LG/\mathrm{Ad}_{\sigma}LG)_{\acute{e}t},$$

i.e. the étale sheafification of the prestack quotient of LG by ${\rm Ad}_\sigma\text{-}{\rm conjugation}$ by LG.

For every separably closed field K over k_F set of isomorphism classes of the groupoid $\mathfrak{B}(G)(K)$ identifies with the Kottwitz set.

For every separably closed field K over k_F set of isomorphism classes of the groupoid $\mathfrak{B}(G)(K)$ identifies with the Kottwitz set.

 $\mathfrak{B}(G)$ is stratified by the poset B(G), for an element b define

$$\mathfrak{B}(G)_{\leq b}(R) = \{(\mathcal{E}, \varphi) \in \mathfrak{B}(G)(R) | b_x := (\mathcal{E}_x, \varphi_x) \leq b, \ x \in \operatorname{Spec} R, \}$$

Results of Rapoport-Richartz imply that the inclusion $\mathfrak{B}(G)_{\leq b} \subset \mathfrak{B}(G)$ is a finitely presented closed embedding.

For every separably closed field K over k_F set of isomorphism classes of the groupoid $\mathfrak{B}(G)(K)$ identifies with the Kottwitz set.

 $\mathfrak{B}(G)$ is stratified by the poset B(G), for an element b define

$$\mathfrak{B}(G)_{\leq b}(R) = \{(\mathcal{E}, \varphi) \in \mathfrak{B}(G)(R) | b_x := (\mathcal{E}_x, \varphi_x) \leq b, \ x \in \operatorname{Spec} R, \}$$

Results of Rapoport-Richartz imply that the inclusion $\mathfrak{B}(G)_{\leq b} \subset \mathfrak{B}(G)$ is a finitely presented closed embedding.

For $b \in B(G)$ set

$$\mathfrak{B}(G)_b = \mathfrak{B}(G)_b \setminus \cup_{b' < b} \mathfrak{B}(G)_{b'}$$

 $\mathfrak{B}(G)_b \subset \mathfrak{B}(G)_{\leq b}$ is a finitely presented affine open embedding (follows from results of Vasiu, Hartl-Viehmann)

イロト イポト イヨト イヨト 二日

We can make sense of the category of Λ -sheaves on objects like $\mathfrak{B}(G)$.

We can make sense of the category of Λ -sheaves on objects like $\mathfrak{B}(G)$.

For a perfect ring R with presentation $R = \operatorname{colim}_i R_i$ as a colimit of (perfectly) finite type k-algebras

$$\operatorname{Shv}(\operatorname{Spec} R, \Lambda) = \varinjlim_{i} \operatorname{Ind}(\operatorname{D}_{\operatorname{ctf}}(\operatorname{Spec} R_{i}, \Lambda))$$

transition maps are given by !-pullbacks.

We can make sense of the category of Λ -sheaves on objects like $\mathfrak{B}(G)$.

For a perfect ring R with presentation $R = \operatorname{colim}_i R_i$ as a colimit of (perfectly) finite type k-algebras

$$\operatorname{Shv}(\operatorname{Spec} R, \Lambda) = \varinjlim_{i} \operatorname{Ind}(\operatorname{D}_{\operatorname{ctf}}(\operatorname{Spec} R_{i}, \Lambda))$$

transition maps are given by !-pullbacks.For example,

$$\operatorname{Shv}(L^+\mathcal{G},\Lambda) = \varinjlim_n \operatorname{Shv}(L^n\mathcal{G},\Lambda),$$

where $L^{n}\mathcal{G}$ is the partial jet scheme $L^{n}\mathcal{G}(R) = \mathcal{G}(W_{\mathcal{O},n}(R))$.

For every functor $\mathcal{X} \colon \mathrm{Aff}_k^{\mathrm{pf}} \to \mathrm{Ani}$ (also called a prestack)

$$\operatorname{Shv}(\mathcal{X}, \Lambda) = \lim_{\operatorname{Spec} R \to \mathcal{X}} \operatorname{Shv}(\operatorname{Spec} R, \Lambda)$$

A natural transformation $f: \mathcal{X} \rightarrow \mathcal{Y}$ induces a functor

$$f^! \colon \operatorname{Shv}(\mathcal{Y}, \Lambda) \to \operatorname{Shv}(\mathcal{X}, \Lambda)$$

For specific types of prestacks \mathcal{X}, \mathcal{Y} and morphisms f, one can also define other functors like f_1, f^*, f_* satisfying expected properties.

In particular, we have categories $\operatorname{Shv}(\mathfrak{B}(G), \Lambda)$ and $\operatorname{Shv}(\mathfrak{B}(G)_b, \Lambda)$ for every $b \in B(G)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sheaves on the Kottwitz Stack

As in the case of schemes, there are adjunctions

$$\operatorname{Shv}(\mathfrak{B}(G)_b,\Lambda) \xrightarrow[j_*]{j_*} \overset{j_!}{\underset{j_*}{\overset{j_*}{\longrightarrow}}} \operatorname{Shv}(\mathfrak{B}(G)_{\leq b},\Lambda) \xrightarrow[i^*]{i^*} \overset{i^*}{\underset{i^*}{\overset{j_*}{\longrightarrow}}} \operatorname{Shv}(\mathfrak{B}(G)_{< b},\Lambda)$$

∃ ► < ∃ ►

As in the case of schemes, there are adjunctions

$$\operatorname{Shv}(\mathfrak{B}(G)_b,\Lambda) \xrightarrow[j_*]{j_*} \overset{j_!}{\underset{j_*}{\overset{j_*}{\longrightarrow}}} \operatorname{Shv}(\mathfrak{B}(G)_{\leq b},\Lambda) \xrightarrow[i^*]{i^*} \overset{i^*}{\underset{i^!}{\overset{j_*}{\longrightarrow}}} \operatorname{Shv}(\mathfrak{B}(G)_{< b},\Lambda)$$

For $\mathcal{F} \in \operatorname{Shv}(\mathfrak{B}(G)_{\leq b}, \Lambda)$ there are natural fiber sequences

$$i_*i^!\mathcal{F} o \mathcal{F} o j_*j^*\mathcal{F}$$

 $j_!j^*\mathcal{F} o \mathcal{F} o i_*i^*\mathcal{F}$

inducing a semi-orthogonal decomposition of $\operatorname{Shv}(\mathfrak{B}(G), \Lambda)$ in terms of the categories $\operatorname{Shv}(\mathfrak{B}(G)_b, \Lambda)$

When $b \in B(G)$ is basic, $\mathfrak{B}(G)_b = \mathfrak{B}(G)_{\leq b}$.

Theorem (H.-Zhu)

• For every $b \in B(G)$ there is a canonical equivalence

 $\operatorname{Rep}(J_b(F), \Lambda) \simeq \operatorname{Shv}(\mathfrak{B}(G)_b, \Lambda)$

The category Shv(𝔅(G), Λ) is compactly generated. An object is compact if and only if the restriction to each Newton stratum is compact.

Theorem (H.-Zhu)

• For every $b \in B(G)$ there is a canonical equivalence

 $\operatorname{Rep}(J_b(F), \Lambda) \simeq \operatorname{Shv}(\mathfrak{B}(G)_b, \Lambda)$

The category Shv(𝔅(G), Λ) is compactly generated. An object is compact if and only if the restriction to each Newton stratum is compact.

Solution There is a self-duality
$$\operatorname{Shv}(\mathfrak{B}(G), \Lambda)$$

 $\mathbb{D}^{\mathrm{coh}}\colon \mathrm{Shv}(\mathfrak{B}(G),\Lambda)^{\omega}\simeq (\mathrm{Shv}(\mathfrak{B}(G),\Lambda)^{\omega})^{op}$

Theorem (H.-Zhu)

• For every $b \in B(G)$ there is a canonical equivalence

 $\operatorname{Rep}(J_b(F), \Lambda) \simeq \operatorname{Shv}(\mathfrak{B}(G)_b, \Lambda)$

The category Shv(𝔅(G), Λ) is compactly generated. An object is compact if and only if the restriction to each Newton stratum is compact.

③ There is a self-duality
$$Shv(\mathfrak{B}(G), \Lambda)$$

 $\mathbb{D}^{\mathrm{coh}}\colon \mathrm{Shv}(\mathfrak{B}(\mathcal{G}),\Lambda)^{\omega}\simeq (\mathrm{Shv}(\mathfrak{B}(\mathcal{G}),\Lambda)^{\omega})^{op}$

such that for every $b \in B(G)$

$$\mathbb{D}^{\mathrm{coh}} i_{b,*} \simeq i_{b,!} \mathbb{D}^{\mathrm{coh}}_{\mathrm{Rep}(J_b(F),\Lambda)}[-\langle 2\rho, \nu_b \rangle]$$

Consider the C-group ${}^{c}G = \hat{G} \rtimes (\mathbb{G}_m \times \Gamma_{\widetilde{F}/F})$ as a group scheme over \mathbb{Z} .

There is a stack $\text{Loc}_{G,F}$ over \mathbb{Z}_{ℓ} classifying families of Langlands parameters considered independently by Dat-Helm-Kurinczuk-Moss, Scholze, and Zhu.

$$\operatorname{Loc}_{^{c}G,F}^{\Box}(A) = \{\operatorname{continuous} \rho: W_{F} \to {^{c}G(A)}\}, \ \operatorname{Loc}_{^{c}G,F} := \operatorname{Loc}_{^{c}G,F}^{\Box}/\hat{G}$$

 $\operatorname{Loc}_{^{c}G,F}$ is representable, reduced, flat and locally of finite presentation over \mathbb{Z}_{ℓ} , and a local complete intersection.

We denote by $\operatorname{Loc}_{^{c}G,F,\Lambda}$ the base change of $\operatorname{Loc}_{^{c}G,F}$ to Λ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Assume \widetilde{F}/F is tamely ramified. In this case there is an open and closed substack $\operatorname{Loc}_{cG,F}^{\operatorname{tame}} \subseteq \operatorname{Loc}_{cG,F}$ classifying parameters whose kernel includes the wild inertia subgroup.

Fix a topological generator τ of tame inertia and fix a Frobenius σ .

We have a presentation:

$$\operatorname{Loc}_{^{c}G,F}^{\operatorname{tame}} \simeq \left\{ (g,h) \in \hat{G}\tau \times \hat{G}\sigma \subset {^{c}G} \times {^{c}G} \mid hgh^{-1} = g^{q} \right\} / \hat{G}$$

The tangent complex at a point ρ of Loc_{c_G} is quasi-isomorphic to the continuous cohomology complex $C^*_{\operatorname{cts}}(W_F, \operatorname{Ad}_{\rho})[1]$.

The tangent complex at a point ρ of $\operatorname{Loc}_{^{c}G}$ is quasi-isomorphic to the continuous cohomology complex $C^*_{\operatorname{cts}}(W_F, \operatorname{Ad}_{\rho})[1]$.

In particular,

$$\begin{split} \operatorname{Sing}(\operatorname{Loc}_{{}^{c}G,F}) &= \left\{ (\rho,\xi) \mid \rho \in \operatorname{Loc}_{{}^{c}G,F}, \ \xi \in H_2(W_F,\operatorname{Ad}^*_\rho) \right\} \\ \end{split}$$
By Tate duality, $H_2(W_F,\operatorname{Ad}^*_\rho) \cong (\hat{\mathfrak{g}}^*)^{\rho|_{I_F}=1,\rho(\sigma)=q^{-1}}. \end{split}$
The tangent complex at a point ρ of $\operatorname{Loc}_{^{c}G}$ is quasi-isomorphic to the continuous cohomology complex $C^*_{\operatorname{cts}}(W_F, \operatorname{Ad}_{\rho})[1]$.

In particular,

$$\operatorname{Sing}(\operatorname{Loc}_{{}^{c}{}_{G},{}^{F}}) = \left\{ (\rho,\xi) \mid \rho \in \operatorname{Loc}_{{}^{c}{}_{G},{}^{F}}, \ \xi \in H_2(W_F,\operatorname{Ad}_\rho^*) \right\}$$

By Tate duality, $H_2(W_F, \operatorname{Ad}^*_{\rho}) \cong (\hat{\mathfrak{g}}^*)^{\rho|_{I_F}=1, \rho(\sigma)=q^{-1}}$. Let $\hat{\mathcal{N}}^* \subseteq \hat{\mathfrak{g}}^*$ be the nilpotent cone. We can then define

$$\hat{\mathcal{N}}_{{}^{c}\mathsf{G},\mathsf{F}}=\left\{(
ho,\xi)\in\mathrm{Sing}(\mathrm{Loc}_{{}^{c}\mathsf{G},\mathsf{F}})\;\big|\;
ho\in\mathrm{Loc}_{{}^{c}\mathsf{G},\mathsf{F}},\;\xi\in\hat{\mathcal{N}}^{*}
ight\}$$

Conjecture (Zhu)

Assume G is quasi-split and fix Whittaker data (U, ψ) . There is a canonical equivalence of ∞ -categories

$$\mathbb{L}_{\mathcal{G}} \colon \mathrm{Ind}\big(\mathrm{Coh}_{\hat{\mathcal{N}}_{^{\mathcal{G}}\mathcal{G},\mathcal{F},\Lambda}}(\mathrm{Loc}_{^{\mathcal{G}}\mathcal{G},\mathcal{F},\Lambda})\big) \simeq \mathrm{Shv}(\mathfrak{B}(\mathcal{G}),\Lambda)$$

Which is compatible with parabolic induction, intertwines cohomological duality and Serre duality (up to Cartan involution), and sends the object $\mathcal{O}_{\operatorname{Locc}_{G,F}}$ to the object $i_{e,*}(c\operatorname{-ind}_{U(F)}^{G(F)}\psi)$

Conjecture (Zhu)

Assume G is quasi-split and fix Whittaker data (U, ψ) . There is a canonical equivalence of ∞ -categories

$$\mathbb{L}_{\mathcal{G}} \colon \mathrm{Ind}\big(\mathrm{Coh}_{\hat{\mathcal{N}}_{^{\mathcal{G}}\mathcal{G},\mathcal{F},\Lambda}}(\mathrm{Loc}_{^{\mathcal{G}}\mathcal{G},\mathcal{F},\Lambda})\big) \simeq \mathrm{Shv}(\mathfrak{B}(\mathcal{G}),\Lambda)$$

Which is compatible with parabolic induction, intertwines cohomological duality and Serre duality (up to Cartan involution), and sends the object $\mathcal{O}_{\operatorname{Locc}_{G,F}}$ to the object $i_{e,*}(c\operatorname{-ind}_{U(F)}^{G(F)}\psi)$

- Analogous to the conjecture made by Fargues-Scholze
- If Λ is of characteristic zero, $\hat{\mathcal{N}}_{^cG,F} = \operatorname{Sing}(\operatorname{Loc}_{^cG,F,\Lambda})$
- Follows from class field theory for unramified tori

• • = • • = •

Assume G is unramified, i.e. that the extension \widetilde{F}/F is unramified. We fix a pinning (G, B, T, e). Assume G is unramified, i.e. that the extension \widetilde{F}/F is unramified. We fix a pinning (G, B, T, e).

Consider the full subcategory

 $\operatorname{Shv}^{\operatorname{unip}}(\mathfrak{B}({\mathcal{G}}),\overline{\mathbb{Q}_\ell})\subseteq\operatorname{Shv}(\mathfrak{B}({\mathcal{G}}),\overline{\mathbb{Q}_\ell})$

consisting of objects $\mathcal{F} \in \text{Shv}(\mathfrak{B}(G), \overline{\mathbb{Q}_{\ell}})$ such that for all $b \in B(G)$, the cohomologies of the complex

$$i_b^!(\mathcal{F}) \in \operatorname{Rep}(J_b(F), \overline{\mathbb{Q}_\ell})$$

are unipotent in the sense of Lusztig.

By duality, this is equivalent to the same condition for $i_b^*(\mathcal{F})$.

On the other hand, consider the substack $\operatorname{Loc}_{cG,F}^{\operatorname{unip}} \subseteq \operatorname{Loc}_{cG,F}^{\operatorname{tame}}$ classifying representations which factor through the tame quotient of W_F and carry unipotent monodromy,

$$\operatorname{Loc}_{^{c}G,F}^{\operatorname{unip}} \simeq \left\{ (g,h) \in \hat{\mathcal{U}} \times \hat{\mathcal{G}}\sigma \subset {}^{c}G \times {}^{c}G \mid hgh^{-1} = g^{q} \right\} / \hat{\mathcal{G}}$$

for Λ of characteristic zero, $\mathrm{Loc}_{^{c}G,F,\Lambda}^{\mathrm{unip}}\subseteq\mathrm{Loc}_{^{c}G,F,\Lambda}^{\mathrm{tame}}$ is open and closed.

On the other hand, consider the substack $\operatorname{Loc}_{cG,F}^{\operatorname{unip}} \subseteq \operatorname{Loc}_{cG,F}^{\operatorname{tame}}$ classifying representations which factor through the tame quotient of W_F and carry unipotent monodromy,

$$\operatorname{Loc}_{^{\operatorname{c}}G,F}^{\operatorname{unip}} \simeq \left\{ (g,h) \in \hat{\mathcal{U}} \times \hat{\mathcal{G}}\sigma \subset {}^{\operatorname{c}}G \times {}^{\operatorname{c}}G \mid hgh^{-1} = g^{q} \right\} / \hat{\mathcal{G}}$$

for Λ of characteristic zero, $\mathrm{Loc}_{^{c}G,F,\Lambda}^{\mathrm{unip}}\subseteq\mathrm{Loc}_{^{c}G,F,\Lambda}^{\mathrm{tame}}$ is open and closed.

Consider the map $\pi^{\text{unip}} \colon \operatorname{Loc}_{^{c}B,F,\Lambda}^{\operatorname{unip}} \to \operatorname{Loc}_{^{c}G,F,\Lambda}^{\operatorname{unip}}$. The object

$$\operatorname{CohSpr}_{^{c}G,F,\Lambda}^{\operatorname{unip}} = \pi_{*}^{\operatorname{unip}} \mathcal{O}_{\operatorname{Loc}_{^{c}B,F,\Lambda}^{\operatorname{unip}}}$$

is called the coherent Springer sheaf

Theorem (H.-Zhu)

There is a canonical equivalence of ∞ -categories

$$\mathbb{L}_{\mathcal{G}} \colon \mathrm{Ind}(\mathrm{Coh}(\mathrm{Loc}^{\mathrm{unip}}_{{}^{c}\mathcal{G},\mathcal{F},\overline{\mathbb{Q}_{\ell}}})) \simeq \mathrm{Shv}^{\mathrm{unip}}(\mathfrak{B}(\mathcal{G}),\overline{\mathbb{Q}_{\ell}})$$

Such that for $I \subset K \subset G(F)$ determined by the pinning:

$$\begin{split} \mathbb{L}_{G}(\mathrm{CohSpr}_{c_{G,F}}^{\mathrm{unip}}) &\simeq i_{e,*}(C_{c}^{\infty}(G(F)/I,\overline{\mathbb{Q}_{\ell}}))\\ \mathbb{L}_{G}(\mathcal{O}_{\mathrm{Loc}_{c_{G,F}}^{\mathrm{unip}}}) &= i_{e,*}(C_{c}^{\infty}(G(F)/K,\overline{\mathbb{Q}_{\ell}}))\\ \mathbb{L}_{G}(\mathcal{O}_{\mathrm{Loc}_{c_{G,F}}^{\mathrm{unip}}}) &\simeq i_{e,*}(C_{c}^{\infty}(G(F)/I,\overline{\mathbb{Q}_{\ell}}) \otimes_{H_{I}}(C_{c}^{\infty}(I \setminus G(F)/I^{u})) \end{split}$$

Theorem (H.-Zhu)

There is a canonical equivalence of ∞ -categories

$$\mathbb{L}_{\mathcal{G}} \colon \mathrm{Ind}(\mathrm{Coh}(\mathrm{Loc}^{\mathrm{unip}}_{{}^{c}\mathcal{G},\mathcal{F},\overline{\mathbb{Q}_{\ell}}})) \simeq \mathrm{Shv}^{\mathrm{unip}}(\mathfrak{B}(\mathcal{G}),\overline{\mathbb{Q}_{\ell}})$$

Such that for $I \subset K \subset G(F)$ determined by the pinning:

$$\begin{split} \mathbb{L}_{G}(\mathrm{CohSpr}_{c_{G,F}}^{\mathrm{unip}}) &\simeq i_{e,*}(C_{c}^{\infty}(G(F)/I,\overline{\mathbb{Q}_{\ell}}))\\ \mathbb{L}_{G}(\mathcal{O}_{\mathrm{Loc}_{c_{G,F}}^{\mathrm{unip}}}) &= i_{e,*}(C_{c}^{\infty}(G(F)/K,\overline{\mathbb{Q}_{\ell}}))\\ \mathbb{L}_{G}(\mathcal{O}_{\mathrm{Loc}_{c_{G,F}}^{\mathrm{unip}}}) &\simeq i_{e,*}(C_{c}^{\infty}(G(F)/I,\overline{\mathbb{Q}_{\ell}}) \otimes_{H_{I}}(C_{c}^{\infty}(I \setminus G(F)/I^{u})) \end{split}$$

- Related results of Ben-Zvi-Chen-Helm-Nadler by a different method
- \bullet Generalizes to $\overline{\mathbb{F}_\ell}$ once Bezrukavnikov's equivalence is available

Corollary

There are canonical equivalences

$$H_{I} \simeq \operatorname{End}_{\operatorname{Loc}_{c_{G,F},\overline{\mathbb{Q}_{\ell}}}}(\operatorname{CohSpr}_{c_{G,F}}^{\operatorname{unip}}), \quad H_{K} \simeq \operatorname{End}_{\operatorname{Loc}_{c_{G,F},\overline{\mathbb{Q}_{\ell}}}}(\mathcal{O}_{\operatorname{Loc}_{c_{G,F}}^{\operatorname{unip}}})$$

Corollary

There are canonical equivalences

$$H_{I} \simeq \operatorname{End}_{\operatorname{Loc}_{c_{G,F},\overline{\mathbb{Q}_{\ell}}}^{\operatorname{unip}}} (\operatorname{CohSpr}_{c_{G,F}}^{\operatorname{unip}}), \quad H_{K} \simeq \operatorname{End}_{\operatorname{Loc}_{c_{G,F},\overline{\mathbb{Q}_{\ell}}}^{\operatorname{unip}}} (\mathcal{O}_{\operatorname{Loc}_{c_{G,F}}^{\operatorname{unip}}})$$

For every basic $b \in B(G)$ let $I_b \subseteq J_b(F)$ denote the corresponding lwahori. The theorem implies the existence of a coherent sheaf \mathfrak{A}_b such that

$$\mathbb{L}_{G}(\mathfrak{A}_{b}) = (i_{b})_{*}(C^{\infty}_{c}(J_{b}(F)/I_{b},\overline{\mathbb{Q}_{\ell}}))$$

and consequently,

$$H_{I_b} \simeq \operatorname{End}_{\operatorname{Loc}_{c_{G,F},\overline{\mathbb{Q}_{\ell}}}}(\mathfrak{A}_b).$$

The sheaves \mathfrak{A}_b can be explicitly described.

Recall the stack of local shtukas

 $\operatorname{Sht}^{\operatorname{loc}}(R) = \{(\mathcal{E}, \varphi) \mid \mathcal{E} \text{ is a } \mathcal{G}\text{-torsors on } D_R, \ \varphi : \mathcal{E} \dashrightarrow \sigma_R^* \mathcal{E} \}$

Studied by Genestier-Lafforgue, Hartl-Viehmann, Xiao-Zhu.

Recall the stack of local shtukas

 $\operatorname{Sht}^{\operatorname{loc}}(R) = \{(\mathcal{E}, \varphi) \mid \mathcal{E} \text{ is a } \mathcal{G}\text{-torsors on } D_R, \ \varphi : \mathcal{E} \dashrightarrow \sigma_R^* \mathcal{E} \}$

Studied by Genestier-Lafforgue, Hartl-Viehmann, Xiao-Zhu.

There is an isomorphism

$$\operatorname{Sht}^{\operatorname{loc}} \cong \left(LG / \operatorname{Ad}_{\sigma} L^{+} \mathcal{G} \right)_{\acute{e}t}$$

Recall the stack of local shtukas

 $\operatorname{Sht}^{\operatorname{loc}}(R) = \{(\mathcal{E}, \varphi) \mid \mathcal{E} \text{ is a } \mathcal{G}\text{-torsors on } D_R, \ \varphi : \mathcal{E} \dashrightarrow \sigma_R^* \mathcal{E} \}$

Studied by Genestier-Lafforgue, Hartl-Viehmann, Xiao-Zhu.

There is an isomorphism

$$\operatorname{Sht}^{\operatorname{loc}} \cong \left(LG / \operatorname{Ad}_{\sigma} L^{+} \mathcal{G} \right)_{\acute{e}t}$$

Restriction of torsors from D_R to D_R^* gives the Newton map

$$\operatorname{Nt}:\operatorname{Sht}^{\operatorname{loc}}\to\mathfrak{B}(G)$$

Key fact: Nt is ind-proper, looks like a fibration with fiber $Gr_{\mathcal{G}}$.

イロト 不得 トイラト イラト 一日

More generally, we have the *n*-th iterated local Hecke stack:

$$\mathrm{Hk}_{n}(\mathrm{Sht}^{\mathrm{loc}})(R) = \left\{ \mathcal{E}_{0} \dashrightarrow \mathcal{E}_{n} \dashrightarrow \mathcal{E}_{n} \dashrightarrow \mathcal{E}_{0} \middle| \mathcal{E}_{i} \text{ a } \mathcal{G}\text{-torsor on } D_{R}. \right\}$$

More generally, we have the *n*-th iterated local Hecke stack:

$$\operatorname{Hk}_{n}(\operatorname{Sht}^{\operatorname{loc}})(R) = \left\{ \mathcal{E}_{0} \dashrightarrow \cdots \dashrightarrow \mathcal{E}_{n} \dashrightarrow {}^{\sigma} \mathcal{E}_{0} \middle| \mathcal{E}_{i} \text{ a } \mathcal{G} \text{-torsor on } D_{R}. \right\}$$

There is an equivalence $\operatorname{Hk}_n \cong (LG^{n+1}/L^+\mathcal{G}^{n+1})_{\acute{e}t}$ with action

$$(k_0, k_1, \ldots, k_n) \cdot (g_0, g_1, \ldots, g_n) = (k_0 g_0 k_1^{-1}, k_1 g_2 k_2^{-1}, \ldots, k_n g_n \sigma(k_0)^{-1})$$

More generally, we have the *n*-th iterated local Hecke stack:

$$\mathrm{Hk}_{n}(\mathrm{Sht}^{\mathrm{loc}})(R) = \left\{ \mathcal{E}_{0} \dashrightarrow \mathcal{E}_{n} \dashrightarrow \mathcal{E}_{n} \dashrightarrow \mathcal{E}_{0} \middle| \mathcal{E}_{i} \text{ a } \mathcal{G}\text{-torsor on } D_{R}. \right\}$$

There is an equivalence $\operatorname{Hk}_n \cong (LG^{n+1}/L^+\mathcal{G}^{n+1})_{\acute{e}t}$ with action

$$(k_0, k_1, \ldots, k_n) \cdot (g_0, g_1, \ldots, g_n) = (k_0 g_0 k_1^{-1}, k_1 g_2 k_2^{-1}, \ldots, k_n g_n \sigma(k_0)^{-1}),$$

Consider the simplicial object $Hk_{\bullet}(Sht^{loc})$

$$\cdots \xrightarrow{\longrightarrow} \operatorname{Hk}_{1}(\operatorname{Sht}^{\operatorname{loc}}) \xrightarrow{\longrightarrow} \operatorname{Sht}^{\operatorname{loc}} \xrightarrow{\operatorname{Nt}} \mathfrak{B}(G)$$

$$d_{i}(g_{0}, \dots, g_{i-1}, g_{i}, \dots, g_{n}) = \begin{cases} (g_{0}, \dots, g_{i-1}g_{i}, \dots, g_{n}), & i \neq 0 \\ (g_{1}, g_{2}, \dots, g_{n}\sigma(g_{0})), & i = 0 \end{cases}$$

 ${\rm Hk}_{\bullet}({\rm Sht}^{\rm loc})$ is isomorphic to Čech nerve of the Newton map ${\rm Nt}:{\rm Sht}^{\rm loc}\to\mathfrak{B}(G)$

A (10) × (10)

 ${\rm Hk}_{\bullet}({\rm Sht}^{\rm loc})$ is isomorphic to Čech nerve of the Newton map ${\rm Nt}:{\rm Sht}^{\rm loc}\to\mathfrak{B}({\cal G})$

Ind-proper descent gives a colimit of presentable ∞ -categories

 $\cdots \operatorname{Shv}(\operatorname{Hk}_1(\operatorname{Sht}^{\operatorname{loc}}), \Lambda) \Longrightarrow \operatorname{Shv}(\operatorname{Sht}^{\operatorname{loc}}, \Lambda) \xrightarrow{\operatorname{Nt}_1} \operatorname{Shv}(\mathfrak{B}(G), \Lambda)$

イロト イポト イヨト イヨト 二日

 $\mathrm{Hk}_{ullet}(\mathrm{Sht}^{\mathrm{loc}})$ is isomorphic to Čech nerve of the Newton map $\mathrm{Nt}:\mathrm{Sht}^{\mathrm{loc}} o\mathfrak{B}(\mathcal{G})$

Ind-proper descent gives a colimit of presentable $\infty\text{-categories}$

$$\cdots \operatorname{Shv}(\operatorname{Hk}_1(\operatorname{Sht}^{\operatorname{loc}}), \Lambda) \Longrightarrow \operatorname{Shv}(\operatorname{Sht}^{\operatorname{loc}}, \Lambda) \xrightarrow{\operatorname{Nt}_!} \operatorname{Shv}(\mathfrak{B}(G), \Lambda)$$

There is a Verdier duality on the ind-stacks $Hk_n(Sht^{loc})$, subject to a choice of dimension theory. Compatible choices of dimensions induce the duality

$$\mathbb{D}^{\mathrm{coh}}:\mathrm{Shv}(\mathfrak{B}(\mathcal{G}),\Lambda)\xrightarrow{\sim}\mathrm{Shv}(\mathfrak{B}(\mathcal{G}),\Lambda)^{ee}$$

Now fix the following situation:

- \mathcal{G} is the smooth model over \mathcal{O}_F corresponding to *I*.
- Denote $L^+\mathcal{G}$ by \mathcal{I} so that $\mathcal{I}(k_F) = I$.
- We denote $\operatorname{Gr}_{\mathcal{I}}$ by Fl , $\pi \colon \mathcal{L}\mathcal{G} \to \operatorname{Fl}$ the projection
- \widetilde{W} the Iwahori-Weyl group, $W \subseteq \widetilde{W}$ finite Weyl group.

Now fix the following situation:

- \mathcal{G} is the smooth model over \mathcal{O}_F corresponding to *I*.
- Denote $L^+\mathcal{G}$ by \mathcal{I} so that $\mathcal{I}(k_F) = I$.
- We denote $\operatorname{Gr}_{\mathcal{I}}$ by Fl , $\pi \colon \mathcal{L}\mathcal{G} \to \operatorname{Fl}$ the projection
- \widetilde{W} the Iwahori-Weyl group, $W \subseteq \widetilde{W}$ finite Weyl group.

Decomposition into affine Schubert cells

$$\mathrm{Fl} = \bigcup_{w \in \widetilde{W}} \mathrm{Fl}_w, \ \mathcal{L}\mathcal{G} = \bigcup_{w \in \widetilde{W}} \mathcal{L}\mathcal{G}_w, \ \mathrm{Sht}^{\mathrm{loc}} = \bigcup_{w \in \widetilde{W}} \mathrm{Sht}^{\mathrm{loc}}_w$$

with $LG_w = \pi^{-1}(\mathrm{Fl}_w)$ and $\mathrm{Sht}_w^{\mathrm{loc}} \simeq (LG_w/\mathrm{Ad}_\sigma \mathcal{I})_{\acute{e}t}$

Denote $i_w : \operatorname{Sht}_w^{\operatorname{loc}} \to \operatorname{Sht}^{\operatorname{loc}}$. For w = 1, by Lang's theorem

$$\mathrm{Sht}_1^{\mathrm{loc}} \simeq \left(\mathcal{I}/\mathrm{Ad}_\sigma \mathcal{I} \right)_{\acute{e}t} \simeq \left(\mathcal{I}/\mathrm{Ad}_\sigma \mathcal{I} \right)_{\mathit{fpqc}} \simeq \left(\operatorname{\mathsf{Spec}} k/I \right)_{\mathit{fpqc}}$$

Denote $i_w \colon \operatorname{Sht}_w^{\operatorname{loc}} \to \operatorname{Sht}^{\operatorname{loc}}$. For w = 1, by Lang's theorem

$$\mathrm{Sht}_1^{\mathrm{loc}} \simeq \left(\mathcal{I}/\mathrm{Ad}_\sigma \mathcal{I} \right)_{\acute{e}t} \simeq \left(\mathcal{I}/\mathrm{Ad}_\sigma \mathcal{I} \right)_{\mathit{fpqc}} \simeq \left(\operatorname{\mathsf{Spec}} k/I \right)_{\mathit{fpqc}}$$

Fits intro a commutative diagram

$$\begin{array}{ccc} \operatorname{Rep}(I,\Lambda) & \stackrel{{}^{l_{e,*}}}{\longrightarrow} & \operatorname{Shv}(\operatorname{Sht}^{\operatorname{loc}},\Lambda) \\ & & \downarrow_{c\operatorname{-ind}_{I}^{G(F)}} & \downarrow_{\operatorname{Nt}_{I}} \\ \operatorname{Rep}(G(F),\Lambda) & \stackrel{{}^{i_{e,*}}}{\longrightarrow} & \operatorname{Shv}(\mathfrak{B}(G),\Lambda) \end{array}$$

In particular

$$\operatorname{Nt}_{!}(i_{e,*}\Lambda) \simeq i_{e,*}c\operatorname{-ind}_{I}^{G(F)}(\Lambda)$$

(日)

Denote $i_w \colon \operatorname{Sht}_w^{\operatorname{loc}} \to \operatorname{Sht}^{\operatorname{loc}}$. For w = 1, by Lang's theorem

$$\mathrm{Sht}_1^\mathrm{loc} \simeq \left(\mathcal{I}/\mathrm{Ad}_\sigma \mathcal{I}
ight)_{\acute{e}t} \simeq \left(\mathcal{I}/\mathrm{Ad}_\sigma \mathcal{I}
ight)_{\mathit{fpqc}} \simeq \left(\operatorname{\mathsf{Spec}} k/I
ight)_{\mathit{fpqc}}$$

Fits intro a commutative diagram

$$\begin{array}{ccc} \operatorname{Rep}(I,\Lambda) & \stackrel{{}^{l_{e,*}}}{\longrightarrow} & \operatorname{Shv}(\operatorname{Sht}^{\operatorname{loc}},\Lambda) \\ & & \downarrow_{c\operatorname{-ind}_{I}^{G(F)}} & \downarrow_{\operatorname{Nt}_{!}} \\ \operatorname{Rep}(G(F),\Lambda) & \stackrel{{}^{i_{e,*}}}{\longrightarrow} & \operatorname{Shv}(\mathfrak{B}(G),\Lambda) \end{array}$$

In particular

$$\operatorname{Nt}_{!}(i_{e,*}\Lambda) \simeq i_{e,*}c\operatorname{-ind}_{I}^{G(F)}(\Lambda)$$

This can be generalized to any $b \in B(G)$

 $w \in \widetilde{W}$ is called σ -straight if $\ell(w\sigma(w)\cdots\sigma^{n-1}(w)) = n\ell(w)$., n > 0A σ -conjugacy class of \widetilde{W} is *straight* if it contains a σ -straight element.

 $w \in \widetilde{W}$ is called σ -straight if $\ell(w\sigma(w)\cdots\sigma^{n-1}(w)) = n\ell(w)$., n > 0A σ -conjugacy class of \widetilde{W} is *straight* if it contains a σ -straight element.

Theorem (X. He)

 $\{\text{straight } \sigma\text{-conjugacy classes in } \widetilde{W}\} \longleftrightarrow B(G).$

 $w \in \widetilde{W}$ is called σ -straight if $\ell(w\sigma(w)\cdots\sigma^{n-1}(w)) = n\ell(w)$., n > 0A σ -conjugacy class of \widetilde{W} is *straight* if it contains a σ -straight element.

Theorem (X. He)

 $\{\text{straight } \sigma\text{-conjugacy classes in } \widetilde{W}\} \longleftrightarrow B(G).$

If w_b is σ -straight corresponding to b then $\operatorname{Sht}_{w_b}^{\operatorname{loc}} \cong \left(\operatorname{Spec} k/I_b\right)_{fpqc}$

$$\operatorname{Rep}(I_b, \Lambda) \xrightarrow{i_{w,*}} \operatorname{Shv}(\operatorname{Sht}^{\operatorname{loc}}, \Lambda)$$

 $\downarrow_{c\operatorname{-ind}_{I_b}^{J_b(F)}} \qquad \qquad \qquad \downarrow_{\operatorname{Nt}_1},$
 $\operatorname{Rep}(J_b(F), \Lambda) \xrightarrow{i_{b,*}} \operatorname{Shv}(\mathfrak{B}(G), \Lambda)$

and similarly with $i_{b,!}$ instead of $i_{b,*}$.

Theorem (Bezrukavnikov)

There is a canonical equivalence of monoidal categories

$$\mathbb{B} \colon \mathrm{Ind}\big(\mathrm{Coh}(\mathrm{St}^{\mathrm{unip}}_{\hat{\mathcal{G}}}/\hat{\mathcal{G}})\big) \cong \mathrm{Shv}(\mathcal{I} \backslash \mathcal{LG}/\mathcal{I}, \overline{\mathbb{Q}}_{\ell})$$

- $\widetilde{\mathcal{U}}_{\hat{G}}
 ightarrow \hat{G}$ the (multiplicative) Springer resolution
- $\operatorname{St}_{\hat{G}}^{\operatorname{unip}} = \widetilde{\mathcal{U}}_{\hat{G}} \times_{\hat{G}}^{L} \widetilde{\mathcal{U}}_{\hat{G}}$ is the unipotent Steinberg variety
- Intertwines the pullback of Frobenius on $\mathcal{I} \setminus LG/\mathcal{I}$ with the pullback of the map on $\operatorname{St}_{\hat{G}}^{\operatorname{unip}}$ induced by the map $g \mapsto \sigma^{-1}(g^q)$ on \hat{G} .

Consider the stack $\widetilde{\operatorname{Loc}}_{c_{G,F}}^{\operatorname{unip}}$ classifying triples (g, h, \hat{B}') consisting of a unipotent parameter (g, h) and a Borel $\hat{B}' \subset \hat{G}$ containing g.

$$\widetilde{\mathrm{Loc}}_{^{c}\mathsf{G},\mathsf{F}}^{\mathrm{unip}} \simeq \mathrm{Loc}_{^{c}\mathsf{G},\mathsf{F}}^{\mathrm{unip}} \times_{\hat{\mathsf{G}}/\hat{\mathsf{G}}} \widetilde{\mathcal{U}}_{\hat{\mathsf{G}}}/\hat{\mathsf{G}}$$

Consider the stack $\widetilde{\operatorname{Loc}}_{c_{G,F}}^{\operatorname{unip}}$ classifying triples (g, h, \hat{B}') consisting of a unipotent parameter (g, h) and a Borel $\hat{B}' \subset \hat{G}$ containing g.

$$\widetilde{\mathrm{Loc}}_{^{c}\mathsf{G},\mathsf{F}}^{\mathrm{unip}} \simeq \mathrm{Loc}_{^{c}\mathsf{G},\mathsf{F}}^{\mathrm{unip}} \times_{\hat{\mathsf{G}}/\hat{\mathsf{G}}} \widetilde{\mathcal{U}}_{\hat{\mathsf{G}}}/\hat{\mathsf{G}}$$

There is a map

$$\widetilde{\operatorname{Loc}}_{{}^{c}{}_{\mathcal{G}},\mathcal{F}}^{\operatorname{unip}} o \operatorname{St}_{\hat{\mathcal{G}}}^{\operatorname{unip}}/\hat{\mathcal{G}}$$

Sending a triple (g, h, \hat{B}') to the triple $(g, \hat{B}', h\hat{B}')$

Consider the stack $\widetilde{\operatorname{Loc}}_{c_{G,F}}^{\operatorname{unip}}$ classifying triples (g, h, \hat{B}') consisting of a unipotent parameter (g, h) and a Borel $\hat{B}' \subset \hat{G}$ containing g.

$$\widetilde{\mathrm{Loc}}_{^{c}\mathsf{G},\mathsf{F}}^{\mathrm{unip}} \simeq \mathrm{Loc}_{^{c}\mathsf{G},\mathsf{F}}^{\mathrm{unip}} \times_{\hat{\mathsf{G}}/\hat{\mathsf{G}}} \widetilde{\mathcal{U}}_{\hat{\mathsf{G}}}/\hat{\mathsf{G}}$$

There is a map

$$\widetilde{\operatorname{Loc}}_{c_{\mathcal{G},\mathcal{F}}}^{\operatorname{unip}} \to \operatorname{St}_{\hat{\mathcal{G}}}^{\operatorname{unip}}/\hat{\mathcal{G}}$$

Sending a triple (g, h, \hat{B}') to the triple $(g, \hat{B}', h\hat{B}')$

For $w \in W$ let $\operatorname{St}_w^{\operatorname{unip}} \subseteq \operatorname{St}_{\hat{G}}^{\operatorname{unip}}$ be the corresponding irreducible component. Denote

$$\widetilde{\mathrm{Loc}}_{^{c}G,F,w}^{\mathrm{unip}} = \widetilde{\mathrm{Loc}}_{^{c}G,F,w}^{\mathrm{unip}} \times_{\mathrm{St}_{\hat{G}}^{\mathrm{unip}}/\hat{G}} \mathrm{St}_{w}^{\mathrm{unip}}/\hat{G}$$

called the spectral Deligne-Lusztig stack of w.

Denote:

$$\pi_{w}^{\mathrm{unip}} \colon \widetilde{\mathrm{Loc}}_{c \mathsf{G},\mathsf{F},w}^{\mathrm{unip}} \to \mathrm{Loc}_{c \mathsf{G},\mathsf{F}}^{\mathrm{unip}}$$

Then for a basic element $b \in B(G)$ we can write $w_b = \lambda_b w_{b,f}$ with λ_b anti-dominant and $w_{b,f} \in W$.

Denote:

$$\pi_{w}^{\mathrm{unip}} \colon \widetilde{\mathrm{Loc}}_{c \mathsf{G},\mathsf{F},w}^{\mathrm{unip}} \to \mathrm{Loc}_{c \mathsf{G},\mathsf{F}}^{\mathrm{unip}}$$

Then for a basic element $b \in B(G)$ we can write $w_b = \lambda_b w_{b,f}$ with λ_b anti-dominant and $w_{b,f} \in W$.

Using Bezrukavnikov's equivalence we show:

$$\mathbb{L}_{G}(\pi_{w_{b,f},*}^{\mathrm{unip}}(\mathcal{O}_{\widetilde{\mathrm{Loc}}_{c,F,w_{b,f}}}(\lambda_{b})) = i_{b,*}(C_{c}^{\infty}(J_{b}(F)/I_{b},\overline{\mathbb{Q}_{\ell}}))$$

Where $\mathcal{O}_{\widetilde{\mathrm{Loc}}_{c_{G,F,w_{b,f}}}}(\lambda_{b})$ is the line bundle corresponding to λ_{b} considered as a character $\hat{B} \to \mathbb{G}_{m}$.

Given a A-linear monoidal category \mathcal{A} with a monoidal endomorphism $\phi \colon \mathcal{A} \to \mathcal{A}$ we can consider the Hochschild homology

$$\operatorname{Tr}(\phi, \mathcal{A}) := \operatorname{HH}(\mathcal{A}, {}^{\phi}\mathcal{A}) = \mathcal{A} \otimes_{\mathcal{A} \otimes \mathcal{A}^{\operatorname{rev}}} {}^{\phi}\mathcal{A}$$

Given a A-linear monoidal category \mathcal{A} with a monoidal endomorphism $\phi \colon \mathcal{A} \to \mathcal{A}$ we can consider the Hochschild homology

$$\operatorname{Tr}(\phi, \mathcal{A}) := \operatorname{HH}(\mathcal{A}, {}^{\phi}\mathcal{A}) = \mathcal{A} \otimes_{\mathcal{A} \otimes \mathcal{A}^{\operatorname{rev}}} {}^{\phi}\mathcal{A}$$

It can be computed by realization of the (twisted) cyclic bar resolution $\mathcal{A}\simeq |\mathcal{A}^{\otimes (\bullet+2)}|$

$$\mathrm{HH}_{\bullet}(\mathcal{A},{}^{\phi}\mathcal{A})=\mathcal{A}^{\otimes(\bullet+2)}\otimes_{\mathcal{A}\otimes\mathcal{A}^{\mathrm{rev}}}{}^{\phi}\mathcal{A}\simeq\mathcal{A}^{\otimes\bullet}$$

$$d_i(a_0 \otimes \ldots, a_{i-1} \otimes a_i \otimes \cdots \otimes a_n) = \begin{cases} a_0 \otimes \cdots \otimes a_{i-1} a_i \otimes \cdots \otimes a_n, & i \neq 0 \\ a_1 \otimes a_2 \otimes \cdots \otimes a_n \phi(a_0), & i = 0 \end{cases}$$

- 4 同 ト 4 三 ト - 4 三 ト -
Now consider the situation of convolution monoidal structures. In general, these arise from:

- A map $f: (X, \phi_X) \rightarrow (Y, \phi_Y)$ of "geometric objects"
- $\mathcal{D}(-)$ a "sheaf theory"

Now consider the situation of convolution monoidal structures. In general, these arise from:

Then $\mathcal{D}(X \times_Y X)$ has a convolution monoidal structure

$$\begin{array}{c} X \times_Y X \times_Y X \xrightarrow{\Delta} (X \times_Y X) \times (X \times_Y X) \\ \downarrow^m \\ X \times_Y X \end{array},$$

$$\mathcal{F}\star\mathcal{G}:=m_*\Delta^!(\mathcal{F}\boxtimes\mathcal{G}),\quad \mathcal{F},\mathcal{G}\in\mathcal{D}(X\times_YX)$$

æ

(日) (四) (日) (日) (日)

Using the identification $X \times_Y \mathcal{L}_{\phi}(Y) \simeq X \times_{Y \times Y} Y$.

There is a natural commutative diagram:

Using the identification $X \times_Y \mathcal{L}_{\phi}(Y) \simeq X \times_{Y \times Y} Y$.

There is a natural commutative diagram:

We can apply this paradigm to both sides of Bezrukavnikov's equivalence

Representation theory side: $(\mathbb{B}L^+\mathcal{G}, \operatorname{Fr}) \to (\mathbb{B}LG, \operatorname{Fr})$

$$\begin{array}{ccc} \operatorname{Shv}(\mathcal{I} \backslash \mathcal{L}\mathcal{G}/\mathcal{I}, \overline{\mathbb{Q}_{\ell}})^{\otimes (\bullet+1)} & \longrightarrow \operatorname{Tr}(\operatorname{Fr}_{*}, \operatorname{Shv}(\mathcal{I} \backslash \mathcal{L}\mathcal{G}/\mathcal{I}, \overline{\mathbb{Q}_{\ell}})) \\ & & \downarrow \\ & & \downarrow \\ \operatorname{Shv}(\operatorname{Hk}_{\bullet}(\operatorname{Sht}^{\operatorname{loc}}), \overline{\mathbb{Q}_{\ell}}) & \longrightarrow \operatorname{Shv}(\mathfrak{B}(\mathcal{G}), \overline{\mathbb{Q}_{\ell}}) \end{array}$$

(日) (四) (日) (日) (日)

Representation theory side: $(\mathbb{B}L^+\mathcal{G}, \operatorname{Fr}) \to (\mathbb{B}LG, \operatorname{Fr})$

$$\begin{array}{ccc} \operatorname{Shv}(\mathcal{I} \setminus \mathcal{L}\mathcal{G}/\mathcal{I}, \overline{\mathbb{Q}_{\ell}})^{\otimes (\bullet+1)} & \longrightarrow \operatorname{Tr}(\operatorname{Fr}_{*}, \operatorname{Shv}(\mathcal{I} \setminus \mathcal{L}\mathcal{G}/\mathcal{I}, \overline{\mathbb{Q}_{\ell}})) \\ & & \downarrow \\ & & \downarrow \\ \operatorname{Shv}(\operatorname{Hk}_{\bullet}(\operatorname{Sht}^{\operatorname{loc}}), \overline{\mathbb{Q}_{\ell}}) & \longrightarrow \operatorname{Shv}(\mathfrak{B}(\mathcal{G}), \overline{\mathbb{Q}_{\ell}}) \end{array}$$

The spectral side: $(\widetilde{\mathcal{U}}_{\hat{G}}/\hat{G},\phi) o (\hat{G}/\hat{G},\phi)$

Thank you!

æ

イロト イヨト イヨト イヨト