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Overview of ramification theory: Riemann surfaces

@ Let f: Y — X be a 'Galois’ holomorphic map of comapct Riemann
surfaces let y € Y and f(y) = x.

@ Let t be a parameter at x. Then we may choose a parameter u at y
such that u® = t. We call e, the inertia degree of f at y.

@ The e, are the ‘error’ terms in the Riemann-Hurwitz formula:
X(Y)=x(X)+> e — L
o Let Deck, C Deck(Y /X) be the deck transformations fixing y. Then
Deck, — C*

g(u)

g —

is an injective character.

@ The key observation is that |Deck,| is invertible in the ring extension

Cl[#] = C[u]]-
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Overview of ramification theory: classical arithmetic

situation

o Now let F be Q, or Fq((t)) and let K/F be a finite separable Galois
extension (this arises by localizing extensions of number fields or
covers of curves over [Fy).

o If pt|I(K/F)|, things look like they did over C. We call this tame.

o Otherwise, things get wild. We want to measure how wild
g€ G(K/F)is.
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Overview of ramification theory: classical arithmetic

situation, an example

o Let u be a solution to XP — tP"~1X + t = 0 over Fy((¢)).
@ The conjugates of u are u+ it" where i=1,...,p—1.

o Large n means Fy((u)) is wilder over Fg((t)).
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Overview of ramification theory: classical arithmetic

situation

o Let u be a uniformizer of K. Write g(u) — u =Y a;u’. Let ay be the
first nonzero coefficient.

@ When tame, g(u) = (u for some root of unity ¢, and thus A = 1.
@ The bigger A is, the more wild the action of g is.
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Overview of ramification theory: the ramification filtration

We may define a decreasing filtration G(K/F)® on G(K/F).
If s > r, the elements of G(K/F)® are wilder than those of G(K/F)".
For s > 0, we have G(K/F)® = {0}.

This filtration is well behaved with quotients. Thus, we obtain a
ramification filtration on G(F*P/F).

Let s(K/F) be the smallest s such that G(K/F)st¢ = {0}.
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Overview of ramification theory: higher dimensions

@ Let F be a discrete valuation field in char p > 0 and let K/F be a
finite separable Galois extension.

@ Abbes and Saito defined a ramification filtration G(K/F)*.
@ The residual extension need not be separable.
@ Used to study ramification on higher dimensional varieties.
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Overview of ramification theory: higher dimensions

@ Let X be a variety over a perfect field k. Let E =) E; be a reduced
Cartier divisor and U = X — E.

@ Let V — U be an étale Galois cover. By localizing at each E; we
obtain extensions of discrete valuation fields K;/F;.

@ The conductor divisor of V — U is defined to be > s(K;/F;)[Ei].
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Overview of ramification theory: a higher dimensional

example

o Consider A2 = Spec(k[x, y]) and let E be the x-coordinate cut out by
the equaiton y = 0.

@ The discrete valued field is then F = k(x)((y)) with the y-adic
valuation. The residue field is k(x).

e Consider the cover V — Spec(k[x,y,y!]) given by ZP — Z = }%.
This gives rise to an extension K of F.

@ The residual extension of K/F is k(x%)/k(x), i.e. imperfect.
@ The conductor divisor is pn[E].
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p-adic representations and p-adic Lie filtrations

Let p: G(F**P/F) = GLa(Z,) be and let G = Im(p).

There is a decreasing p-adic Lie filtration:

G(n) = ker(p mod p").

This gives a p-adic Lie tower of field extensions F,,/F.

Similarly, if we have a p-adic representation of 7{(U), we obtain a
tower of étale covers U, — U.

Is there any relation between the p-adic Lie filtration on G and the
ramification filtration? Alternatively, how do the conductors s(F,/F) grow
along the tower?
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p-adic representations and p-adic Lie filtrations: Sen's
theorem

Theorem (Sen)

Let F be a finite extension of Q, with ramification degree e and let

p: G(F**P/F) — GLn(Zp) be a totally ramified continuous representation.
Then there exists ¢ > 0 such that G*"~¢ C G(n) C G®"*¢. In particular,
there exists cy > 0 such that

en—co < s(Fn/F) < en+ c.
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p-adic representations and p-adic Lie filtrations: Sen's

theorem

® GLp(Zp) is built up from “abelian pieces”.
@ Bound ramification of abelian pieces using class field theory.

@ Patch together the information using the Herbrandt function.
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p-adic representations and p-adic Lie filtrations: Sen's
theorem

Is there a similar result for F =TFq((t))?

@ Sen's method gives
s(Fn/F) > Pn(l_e)-

@ There is no upper bound. The s(F,/F) can grow arbitrarily fast.
e If pis a character, then s(F,/F) > ps(Fn—1/F).
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p-adic representations and p-adic Lie filtrations: A ray of
hope from Benedict Gross

Theorem (Gross)

Let F =TF4((t)) and assume that p : G(F*®/F) — Z,; comes from a

height h one dimensional formal group. Then there exists ¢ such that
s(Fn/F) = cp"n.

@ There are similar computations on the Igusa tower found
Katz-Mazur's book on moduli of elliptic curves.

@ We are unaware of other results.
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p-adic representations and p-adic Lie filtrations: A ray of
hope from Benedict Gross

Does an analogue of Sen’s theorem hold for “geometric” p-adic
representations?

What should geometric mean?
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Main results: local one dimensional

o Let F = k((t)) where k is perfect.
e Let V — Spec(F) be an ordinary smooth proper variety.
o Let p be the G(F*¢P/F)-representation associated to H..(X/F,Zp).

Theorem (K.)
One of the following holds:

@ p has finite monodromy (i.e. image of inertia is < c0).
@ There exists d > ¢ > 0 such that for all n > 1:

dp” > s(F,/F) > cp".
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Main results: higher dimensional varieties

@ Let X be a smooth variety over a perfect field k.
@ Let E be a reduced divisor of X and set U = X\E.

o Let f: Y — X be a smooth proper morphism such that Y is
ordinary for x € U (in the sense of Bloch-Kato).

o Let p be the 71(U)-representation be associated to R:,£.Q,.

Theorem (K.)

Let E; be an irreducible component of E and let F be the discrete
valuation field associated to E;. Consider the representation p|g(fse/F)-

©Q plg(Fsr/F) has finite monodromy.
@ Then there exists d > ¢ > 0 such that

dp" > s(F,/F) > cp".
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|dea of proof: local F-crystals over F = k((t))

@ We define a ring:

© We have a, € Z,, lim v,(a,) = o,
Og = Z apt” _p n——o0 p( ) s
and the v, (ap) is bounded below.

n=—0o0

o Let 0 : Og — Og be the map sending t to tP.
@ An F-crystal over F = k((t)) consists of:

@ A free module V over O¢.

@ An map ¢ :0*V — V that becomes an isomorphic after ®Q,.

© A connection V: V — V ® Qo, (with some compatibility between ¢
and V).
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|dea of proof: local overconvergent F-isocrystals over

F = k((t))

@ We define a subring of £ of overconvergent functions:
Ogi = {f(t) € (’)5’ f(t) converges on an annulus r < t < 1}.

@ An overconvergent F-crystal over F = k((t)) is a convergent F-crystal
whose structures descends to Ogt.

@ Let f : X — Spec(F) be smooth, proper and ordinary.

@ By a theorem of Kedlaya, Ré'n-sf;Zp/torsion can be realized as an
overconvergent F-crystal Mt over F.
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Idea of proof: the unit-root subspace

Let MU“~" be the largest subspace of M' ®0,; Og¢ such that ¢ is an
isomorphism.

e MU~ is called the unit-root sub-crystal of M' D0+ Oc¢.

By the Riemann-Hilbert correspondence, M“~" gives a p-adic
representation p of G(F*/F).

p corresponds to Ri,f.7Z,

20/27



Idea of proof: the unit-root subspace

MU=" sits inside of M, which is overconvergent. What does this say
about MY~"7?

How can we read the ramification of p from M"~"? \
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|dea of proof: F-isocrystals with log decay

o We define a ring Ogios between Ot and Og.
@ The tails of elements in Og: decay linearly, e.g. > p"t™".

@ The tails of elements in Ogis decay like log,

Z p"t "

@ For example,

Proposition (K.)

The F-crystal MY~", which is a priori defined over Og, descends to Ogiog .
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|dea of proof: The monodromy of F-isocrystals with log

decay

How can we read the ramification of p from M"Y~"? \

Theorem (K.)

Let N be a unit-root F-isocrystal over F (i.e. ¢ is an isomorphism). Let 1)
be the corresponding representation of G(F*P/F) and let F|/F be the
corresponding p-adic Lie tower. Then N descends to Ogie if and only if
there exists ¢ > 0 such that for all n:

cp” > s(F,/F).
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Idea of proof: Finish the local proof

p corresponds to RL.f.Zp.

p also corresponds to M“~".

o

o

@ By the Proposition M“~" descends to Ogiog .

@ By the Theorem, we get an upper bound on conductors.
o

For the lower bound: exterior power trick and abelian ramification
theory.
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|dea of proof: Higher dimensional case

@ Theorem of Hu bounds Abbes-Saito ramification by cutting along
curves.

@ This requires “uniform” bounds of ramification along curves.

@ Need higher dimensional notion of F-crystals with log-decay.
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Further questions

Definition
The fierce degree of K/F is the inseperable degree of the residue fields.

Question
If p is geometric, can the fierce degree of F,/F tend to infinity? Or is it
finite?

| A\

Question
What about the p-adic monodromy of non-ordinary fibrations? We have
partial results, but nothing as definitive.
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Thanks for listening!

27 /27



