The ramification of *p*-adic representations coming from geometry

Joe Kramer-Miller

February 14, 2021

Overview of ramification theory: Riemann surfaces

- Let f : Y → X be a 'Galois' holomorphic map of comapct Riemann surfaces let y ∈ Y and f(y) = x.
- Let t be a parameter at x. Then we may choose a parameter u at y such that $u^{e_x} = t$. We call e_x the *inertia degree* of f at y.
- The e_x are the 'error' terms in the Riemann-Hurwitz formula: $\chi(Y) = \chi(X) + \sum e_x - 1.$
- Let $Deck_y \subset Deck(Y/X)$ be the deck transformations fixing y. Then

$$egin{aligned} \mathsf{Deck}_y & o \mathbb{C}^{ imes} \ g &\mapsto rac{\mathsf{g}(u)}{u} \end{aligned}$$

is an injective character.

• The key observation is that $|Deck_y|$ is invertible in the ring extension $\mathbb{C}[[t]] \to \mathbb{C}[[u]]$.

Overview of ramification theory: classical arithmetic situation

- Now let F be Q_p or F_q((t)) and let K/F be a finite separable Galois extension (this arises by localizing extensions of number fields or covers of curves over F_q).
- If $p \nmid |I(K/F)|$, things look like they did over \mathbb{C} . We call this *tame*.
- Otherwise, things get wild. We want to measure how wild g ∈ G(K/F) is.

Overview of ramification theory: classical arithmetic situation, an example

- Let u be a solution to $X^p t^{pn-1}X + t = 0$ over $\mathbb{F}_q((t))$.
- The conjugates of u are $u + it^n$ where i = 1, ..., p 1.
- Large *n* means $\mathbb{F}_q((u))$ is wilder over $\mathbb{F}_q((t))$.

Overview of ramification theory: classical arithmetic situation

- Let u be a uniformizer of K. Write $g(u) u = \sum a_i u^i$. Let a_{λ} be the first nonzero coefficient.
- When tame, $g(u) = \zeta u$ for some root of unity ζ , and thus $\lambda = 1$.
- The bigger λ is, the more wild the action of g is.

- We may define a decreasing filtration $G(K/F)^s$ on G(K/F).
- If s > r, the elements of $G(K/F)^s$ are wilder than those of $G(K/F)^r$.
- For $s \gg 0$, we have $G(K/F)^s = \{0\}$.
- This filtration is well behaved with quotients. Thus, we obtain a ramification filtration on $G(F^{sep}/F)$.
- Let s(K/F) be the smallest s such that $G(K/F)^{s+\epsilon} = \{0\}$.

- Let *F* be a discrete valuation field in char *p* > 0 and let *K*/*F* be a finite separable Galois extension.
- Abbes and Saito defined a ramification filtration $G(K/F)^s$.
- The residual extension need not be separable.
- Used to study ramification on higher dimensional varieties.

- Let X be a variety over a perfect field k. Let $E = \sum E_i$ be a reduced Cartier divisor and U = X E.
- Let V → U be an étale Galois cover. By localizing at each E_i we obtain extensions of discrete valuation fields K_i/F_i.
- The conductor divisor of $V \to U$ is defined to be $\sum s(K_i/F_i)[E_i]$.

Overview of ramification theory: a higher dimensional example

- Consider A² = Spec(k[x, y]) and let E be the x-coordinate cut out by the equaiton y = 0.
- The discrete valued field is then F = k(x)((y)) with the y-adic valuation. The residue field is k(x).
- Consider the cover $V \to \text{Spec}(k[x, y, y^{-1}])$ given by $Z^p Z = \frac{x}{y^{pn}}$. This gives rise to an extension K of F.
- The residual extension of K/F is $k(x^{\frac{1}{p}})/k(x)$, i.e. imperfect.
- The conductor divisor is *pn*[*E*].

p-adic representations and p-adic Lie filtrations

- Let $\rho: G(F^{sep}/F) \to GL_n(\mathbb{Z}_p)$ be and let $G = Im(\rho)$.
- There is a decreasing *p*-adic Lie filtration:

$$G(n) = \ker(\rho \mod p^n).$$

- This gives a *p*-adic Lie tower of field extensions F_n/F .
- Similarly, if we have a *p*-adic representation of $\pi_1^{et}(U)$, we obtain a tower of étale covers $U_n \to U$.

Question

Is there any relation between the p-adic Lie filtration on G and the ramification filtration? Alternatively, how do the conductors $s(F_n/F)$ grow along the tower?

p-adic representations and *p*-adic Lie filtrations: Sen's theorem

Theorem (Sen)

Let F be a finite extension of \mathbb{Q}_p with ramification degree e and let $\rho: G(F^{sep}/F) \to GL_n(\mathbb{Z}_p)$ be a totally ramified continuous representation. Then there exists c > 0 such that $G^{en-c} \subset G(n) \subset G^{en+c}$. In particular, there exists $c_0 > 0$ such that

$$en-c_0 \leq s(F_n/F) \leq en+c_0.$$

p-adic representations and *p*-adic Lie filtrations: Sen's theorem

- $GL_n(\mathbb{Z}_p)$ is built up from "abelian pieces".
- Bound ramification of abelian pieces using class field theory.
- Patch together the information using the Herbrandt function.

p-adic representations and *p*-adic Lie filtrations: Sen's theorem

Question

Is there a similar result for $F = \mathbb{F}_q((t))$?

Sen's method gives

$$s(F_n/F) \gg p^{n(1-\epsilon)}.$$

- There is no upper bound. The $s(F_n/F)$ can grow arbitrarily fast.
- If ρ is a character, then $s(F_n/F) \ge ps(F_{n-1}/F)$.

p-adic representations and *p*-adic Lie filtrations: A ray of hope from Benedict Gross

Theorem (Gross)

Let $F = \mathbb{F}_q((t))$ and assume that $\rho : G(F^{sep}/F) \to \mathbb{Z}_p^{\times}$ comes from a height h one dimensional formal group. Then there exists c such that $s(F_n/F) = cp^{hn}$.

- There are similar computations on the Igusa tower found Katz-Mazur's book on moduli of elliptic curves.
- We are unaware of other results.

p-adic representations and *p*-adic Lie filtrations: A ray of hope from Benedict Gross

Question

Does an analogue of Sen's theorem hold for "geometric" p-adic representations? What should geometric mean?

- Let F = k((t)) where k is perfect.
- Let $V \to \operatorname{Spec}(F)$ be an *ordinary* smooth proper variety.
- Let ρ be the $G(F^{sep}/F)$ -representation associated to $H^{i}_{et}(X/F,\mathbb{Z}_{p})$.

Theorem (K.)

One of the following holds:

- **9** ρ has finite monodromy (i.e. image of inertia is $< \infty$).
- 2 There exists d > c > 0 such that for all $n \ge 1$:

 $dp^n > s(F_n/F) > cp^n$.

Main results: higher dimensional varieties

- Let X be a smooth variety over a perfect field k.
- Let *E* be a reduced divisor of *X* and set $U = X \setminus E$.
- Let f : Y → X be a smooth proper morphism such that Y_x is ordinary for x ∈ U (in the sense of Bloch-Kato).
- Let ρ be the $\pi_1(U)$ -representation be associated to $R^i_{et}f_*\mathbb{Q}_p$.

Theorem (K.)

Let E_i be an irreducible component of E and let F be the discrete valuation field associated to E_i . Consider the representation $\rho|_{G(F^{sep}/F)}$.

- $\rho|_{G(F^{sep}/F)}$ has finite monodromy.
- 2 Then there exists d > c > 0 such that

 $dp^n \ge s(F_n/F) \ge cp^n$.

• We define a ring:

$$\mathcal{O}_{\mathcal{E}} := \left\{ \left. \sum_{n=-\infty}^{\infty} a_n t^n \right| egin{array}{c} \mbox{We have } a_n \in \mathbb{Z}_p, & \lim_{n \to -\infty} v_p(a_n) = \infty, \\ \mbox{ and the } v_p(a_n) \mbox{ is bounded below.} \end{array}
ight\},$$

- Let $\sigma: \mathcal{O}_{\mathcal{E}} \to \mathcal{O}_{\mathcal{E}}$ be the map sending t to t^p .
- An F-crystal over F = k((t)) consists of:
 - **1** A free module V over $\mathcal{O}_{\mathcal{E}}$.
 - **2** An map $\varphi : \sigma^* V \to V$ that becomes an isomorphic after $\otimes \mathbb{Q}_p$.
 - Solution ∇: V → V ⊗ Ω_{Oε} (with some compatibility between φ and ∇).

Idea of proof: local overconvergent F-isocrystals over F = k((t))

• We define a subring of $\mathcal E$ of overconvergent functions:

 $\mathcal{O}_{\mathcal{E}^{\dagger}} := ig\{ f(t) \in \mathcal{O}_{\mathcal{E}} \Big| \ f(t) ext{ converges on an annulus } r < t < 1 ig\}.$

- An overconvergent F-crystal over F = k((t)) is a convergent F-crystal whose structures descends to O_{E[†]}.
- Let $f : X \to \operatorname{Spec}(F)$ be smooth, proper and ordinary.
- By a theorem of Kedlaya, Rⁱ_{cris}f_{*}ℤ_p/torsion can be realized as an overconvergent F-crystal M[†] over F.

- Let M^{u-r} be the largest subspace of $M^{\dagger} \otimes_{\mathcal{O}_{\mathcal{E}^{\dagger}}} \mathcal{O}_{\mathcal{E}}$ such that φ is an isomorphism.
- M^{u-r} is called the *unit-root* sub-crystal of $M^{\dagger} \otimes_{\mathcal{O}_{\mathcal{E}^{\dagger}}} \mathcal{O}_{\mathcal{E}}$.
- By the Riemann-Hilbert correspondence, M^{u-r} gives a p-adic representation ρ of G(F^{sep}/F).
- ρ corresponds to $R_{et}^i f_* \mathbb{Z}_p$

Question

 M^{u-r} sits inside of M^{\dagger} , which is overconvergent. What does this say about \mathcal{M}^{u-r} ?

Question

How can we read the ramification of ρ from M^{u-r} ?

- We define a ring $\mathcal{O}_{\mathcal{E}^{log}}$ between $\mathcal{O}_{\mathcal{E}^{\dagger}}$ and $\mathcal{O}_{\mathcal{E}}$.
- The tails of elements in $\mathcal{O}_{\mathcal{E}^{\dagger}}$ decay linearly, e.g. $\sum p^{n}t^{-n}$.
- The tails of elements in $\mathcal{O}_{\mathcal{E}^{log}}$ decay like \log_p
- For example,

$$\sum p^n t^{-p^n}.$$

Proposition (K.)

The F-crystal M^{u-r} , which is a priori defined over $\mathcal{O}_{\mathcal{E}}$, descends to $\mathcal{O}_{\mathcal{E}^{log}}$.

Idea of proof: The monodromy of F-isocrystals with log decay

Question

How can we read the ramification of ρ from M^{u-r} ?

Theorem (K.)

Let N be a unit-root F-isocrystal over F (i.e. φ is an isomorphism). Let ψ be the corresponding representation of $G(F^{sep}/F)$ and let F'_n/F be the corresponding p-adic Lie tower. Then N descends to $\mathcal{O}_{\mathcal{E}^{log}}$ if and only if there exists c > 0 such that for all n:

$$cp^n > s(F'_n/F).$$

- ρ corresponds to $R_{et}^i f_* \mathbb{Z}_{\rho}$.
- ρ also corresponds to M^{u-r} .
- By the Proposition M^{u-r} descends to $\mathcal{O}_{\mathcal{E}^{log}}$.
- By the Theorem, we get an upper bound on conductors.
- For the lower bound: exterior power trick and abelian ramification theory.

- Theorem of Hu bounds Abbes-Saito ramification by cutting along curves.
- This requires "uniform" bounds of ramification along curves.
- Need higher dimensional notion of F-crystals with log-decay.

Definition

The fierce degree of K/F is the inseperable degree of the residue fields.

Question

If ρ is geometric, can the fierce degree of F_n/F tend to infinity? Or is it finite?

Question

What about the p-adic monodromy of non-ordinary fibrations? We have partial results, but nothing as definitive.

Thanks for listening!