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Overview of ramification theory: Riemann surfaces

Let f : Y → X be a ‘Galois’ holomorphic map of comapct Riemann
surfaces let y ∈ Y and f (y) = x .

Let t be a parameter at x . Then we may choose a parameter u at y
such that uex = t. We call ex the inertia degree of f at y .

The ex are the ‘error’ terms in the Riemann-Hurwitz formula:
χ(Y ) = χ(X ) +

∑
ex − 1.

Let Decky ⊂ Deck(Y /X ) be the deck transformations fixing y . Then

Decky → C×

g 7→ g(u)

u

is an injective character.

The key observation is that |Decky | is invertible in the ring extension
C[[t]]→ C[[u]].
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Overview of ramification theory: classical arithmetic
situation

Now let F be Qp or Fq((t)) and let K/F be a finite separable Galois
extension (this arises by localizing extensions of number fields or
covers of curves over Fq).

If p - |I (K/F )|, things look like they did over C. We call this tame.

Otherwise, things get wild. We want to measure how wild
g ∈ G (K/F ) is.
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Overview of ramification theory: classical arithmetic
situation, an example

Let u be a solution to X p − tpn−1X + t = 0 over Fq((t)).

The conjugates of u are u + itn where i = 1, . . . , p − 1.

Large n means Fq((u)) is wilder over Fq((t)).
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Overview of ramification theory: classical arithmetic
situation

Let u be a uniformizer of K . Write g(u)− u =
∑

aiu
i . Let aλ be the

first nonzero coefficient.

When tame, g(u) = ζu for some root of unity ζ, and thus λ = 1.

The bigger λ is, the more wild the action of g is.
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Overview of ramification theory: the ramification filtration

We may define a decreasing filtration G (K/F )s on G (K/F ).

If s > r , the elements of G (K/F )s are wilder than those of G (K/F )r .

For s � 0, we have G (K/F )s = {0}.
This filtration is well behaved with quotients. Thus, we obtain a
ramification filtration on G (F sep/F ).

Let s(K/F ) be the smallest s such that G (K/F )s+ε = {0}.
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Overview of ramification theory: higher dimensions

Let F be a discrete valuation field in char p > 0 and let K/F be a
finite separable Galois extension.

Abbes and Saito defined a ramification filtration G (K/F )s .

The residual extension need not be separable.

Used to study ramification on higher dimensional varieties.
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Overview of ramification theory: higher dimensions

Let X be a variety over a perfect field k . Let E =
∑

Ei be a reduced
Cartier divisor and U = X − E .

Let V → U be an étale Galois cover. By localizing at each Ei we
obtain extensions of discrete valuation fields Ki/Fi .

The conductor divisor of V → U is defined to be
∑

s(Ki/Fi )[Ei ].
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Overview of ramification theory: a higher dimensional
example

Consider A2 = Spec(k[x , y ]) and let E be the x-coordinate cut out by
the equaiton y = 0.

The discrete valued field is then F = k(x)((y)) with the y -adic
valuation. The residue field is k(x).

Consider the cover V → Spec(k[x , y , y−1]) given by Zp − Z = x
ypn .

This gives rise to an extension K of F .

The residual extension of K/F is k(x
1
p )/k(x), i.e. imperfect.

The conductor divisor is pn[E ].
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p-adic representations and p-adic Lie filtrations

Let ρ : G (F sep/F )→ GLn(Zp) be and let G = Im(ρ).

There is a decreasing p-adic Lie filtration:

G (n) = ker(ρ mod pn).

This gives a p-adic Lie tower of field extensions Fn/F .

Similarly, if we have a p-adic representation of πet1 (U), we obtain a
tower of étale covers Un → U.

Question

Is there any relation between the p-adic Lie filtration on G and the
ramification filtration? Alternatively, how do the conductors s(Fn/F ) grow
along the tower?
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p-adic representations and p-adic Lie filtrations: Sen’s
theorem

Theorem (Sen)

Let F be a finite extension of Qp with ramification degree e and let
ρ : G (F sep/F )→ GLn(Zp) be a totally ramified continuous representation.
Then there exists c > 0 such that G en−c ⊂ G (n) ⊂ G en+c . In particular,
there exists c0 > 0 such that

en − c0 ≤ s(Fn/F ) ≤ en + c0.
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p-adic representations and p-adic Lie filtrations: Sen’s
theorem

GLn(Zp) is built up from “abelian pieces”.

Bound ramification of abelian pieces using class field theory.

Patch together the information using the Herbrandt function.
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p-adic representations and p-adic Lie filtrations: Sen’s
theorem

Question

Is there a similar result for F = Fq((t))?

Sen’s method gives
s(Fn/F )� pn(1−ε).

There is no upper bound. The s(Fn/F ) can grow arbitrarily fast.

If ρ is a character, then s(Fn/F ) ≥ ps(Fn−1/F ).
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p-adic representations and p-adic Lie filtrations: A ray of
hope from Benedict Gross

Theorem (Gross)

Let F = Fq((t)) and assume that ρ : G (F sep/F )→ Z×p comes from a
height h one dimensional formal group. Then there exists c such that
s(Fn/F ) = cphn.

There are similar computations on the Igusa tower found
Katz-Mazur’s book on moduli of elliptic curves.

We are unaware of other results.
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p-adic representations and p-adic Lie filtrations: A ray of
hope from Benedict Gross

Question

Does an analogue of Sen’s theorem hold for “geometric” p-adic
representations?
What should geometric mean?
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Main results: local one dimensional

Let F = k((t)) where k is perfect.

Let V → Spec(F ) be an ordinary smooth proper variety.

Let ρ be the G (F sep/F )-representation associated to H i
et(X/F ,Zp).

Theorem (K.)

One of the following holds:

1 ρ has finite monodromy (i.e. image of inertia is <∞).

2 There exists d > c > 0 such that for all n ≥ 1:

dpn > s(Fn/F ) > cpn.
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Main results: higher dimensional varieties

Let X be a smooth variety over a perfect field k.

Let E be a reduced divisor of X and set U = X\E .

Let f : Y → X be a smooth proper morphism such that Yx is
ordinary for x ∈ U (in the sense of Bloch-Kato).

Let ρ be the π1(U)-representation be associated to R i
et f∗Qp.

Theorem (K.)

Let Ei be an irreducible component of E and let F be the discrete
valuation field associated to Ei . Consider the representation ρ|G(F sep/F ).

1 ρ|G(F sep/F ) has finite monodromy.

2 Then there exists d > c > 0 such that

dpn ≥ s(Fn/F ) ≥ cpn.
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Idea of proof: local F-crystals over F = k((t))

We define a ring:

OE :=

{ ∞∑
n=−∞

ant
n

∣∣∣∣∣ We have an ∈ Zp, lim
n→−∞

vp(an) =∞,
and the vp(an) is bounded below.

}
,

Let σ : OE → OE be the map sending t to tp.

An F-crystal over F = k((t)) consists of:
1 A free module V over OE .
2 An map ϕ : σ∗V → V that becomes an isomorphic after ⊗Qp.
3 A connection ∇ : V → V ⊗ ΩOE (with some compatibility between ϕ

and ∇).
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Idea of proof: local overconvergent F-isocrystals over
F = k((t))

We define a subring of E of overconvergent functions:

OE† :=
{
f (t) ∈ OE

∣∣∣ f (t) converges on an annulus r < t < 1
}
.

An overconvergent F-crystal over F = k((t)) is a convergent F-crystal
whose structures descends to OE† .

Let f : X → Spec(F ) be smooth, proper and ordinary.

By a theorem of Kedlaya, R i
cris f∗Zp/torsion can be realized as an

overconvergent F-crystal M† over F .
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Idea of proof: the unit-root subspace

Let Mu−r be the largest subspace of M† ⊗OE† OE such that ϕ is an
isomorphism.

Mu−r is called the unit-root sub-crystal of M† ⊗OE† OE .

By the Riemann-Hilbert correspondence, Mu−r gives a p-adic
representation ρ of G (F sep/F ).

ρ corresponds to R i
et f∗Zp
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Idea of proof: the unit-root subspace

Question

Mu−r sits inside of M†, which is overconvergent. What does this say
about Mu−r?

Question

How can we read the ramification of ρ from Mu−r?
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Idea of proof: F-isocrystals with log decay

We define a ring OE log between OE† and OE .

The tails of elements in OE† decay linearly, e.g.
∑

pnt−n.

The tails of elements in OE log decay like logp

For example, ∑
pnt−p

n
.

Proposition (K.)

The F-crystal Mu−r , which is a priori defined over OE , descends to OE log .
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Idea of proof: The monodromy of F-isocrystals with log
decay

Question

How can we read the ramification of ρ from Mu−r?

Theorem (K.)

Let N be a unit-root F-isocrystal over F (i.e. ϕ is an isomorphism). Let ψ
be the corresponding representation of G (F sep/F ) and let F ′n/F be the
corresponding p-adic Lie tower. Then N descends to OE log if and only if
there exists c > 0 such that for all n:

cpn > s(F ′n/F ).
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Idea of proof: Finish the local proof

ρ corresponds to R i
et f∗Zp.

ρ also corresponds to Mu−r .

By the Proposition Mu−r descends to OE log .

By the Theorem, we get an upper bound on conductors.

For the lower bound: exterior power trick and abelian ramification
theory.
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Idea of proof: Higher dimensional case

Theorem of Hu bounds Abbes-Saito ramification by cutting along
curves.

This requires “uniform” bounds of ramification along curves.

Need higher dimensional notion of F-crystals with log-decay.
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Further questions

Definition

The fierce degree of K/F is the inseperable degree of the residue fields.

Question

If ρ is geometric, can the fierce degree of Fn/F tend to infinity? Or is it
finite?

Question

What about the p-adic monodromy of non-ordinary fibrations? We have
partial results, but nothing as definitive.
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Thanks

Thanks for listening!
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