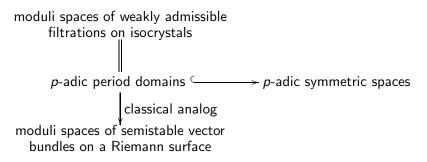
p-adic étale cohomology of period domains

joint with Pierre Colmez, Gabriel Dospinescu, Julien Hauseux

CNRS, Sorbonne University

July 30, 2020

Main interest: Cohomology of *p*-adic symmetric spaces



Foundations: van der Put-Voskuil, Rapoport-Zink, ..., Dat-Orlik-Rapoport

Example

- Ω^d_{Q_ρ} − Drinfeld space, ℙ_{Q̃_ρ}, A^{ad}_{Q_ρ}.
- the corresponding groups:

 $\mathbb{GL}_{d+1}(\mathbf{Q}_p), \quad D_{\check{\mathbf{Q}}_p}^{\times}$ - division algebra over $\check{\mathbf{Q}}_p, \quad \mathbf{Q}_p^* \times \mathbf{Q}_p^*.$

Example: Drinfeld symmetric spaces

Notation: K-cdvf,
$$(0, p)$$
, $K \supset \mathcal{O}_K \to k$, k perfect,
 $\mathscr{G}_K = \operatorname{Gal}(\overline{K}/K)$, $C = \widehat{\overline{K}}$. Fix ℓ -prime.

Definition Drinfeld symmetric space of dimension *d*:

- $\Omega^d_K = \mathbb{P}^d_K \setminus \bigcup_{H \in \mathscr{H}} H$, \mathscr{H} set of K-rational hyperplanes;
- have action of $G = \mathbb{GL}_{d+1}(K)$.

(A) Étale cohomology

Theorem (Schneider-Stuhler, Colmez-Dospinescu-N) There is a $G \times \mathscr{G}_K$ -equivariant isomorphism

$$H^i_{\mathrm{\acute{e}t}}(\Omega^d_C, \mathbf{Z}/\ell^n) \simeq \operatorname{Sp}_{\mathrm{i}}(\mathbf{Z}/\ell^n)^*(-i),$$

where $\operatorname{Sp}_i(\mathbf{Z}/\ell^n)$ is the generalized smooth Steinberg representation for parabolic with blocks $(d + 1 - i) \times i$.

Proof.

- cases $\ell \neq p$ (SS) and $\ell = p$ (CDN) have different proofs
- CDN:
 - use integral *p*-adic Hodge Theory of Bhatt-Morrow-Scholze, Česnavičius-Koshikawa
 - 2. étale \Rightarrow de Rham and crystalline computations: use the strong version of ordinarity of the standard formal semistable model of $\Omega^d_{\mathcal{K}}$.

Now we assume $K = \mathbf{Q}_p$ (by Weil descent $\Rightarrow K/\mathbf{Q}_p$ – finite).

(B) Étale cohomology with compact support

Theorem (Orlik, C-D-Hauseux-N) ℓ big enough. There is a $G \times \mathscr{G}_{K}$ -equivariant isomorphism

$$H^i_{ ext{\'et},c}(\Omega^d_C, \mathbf{Z}/\ell^n) \simeq \operatorname{Sp}_{2d-i}(\mathbf{Z}/\ell^n)(d-i)$$

Proof.

Part 1: geometric part, same for all ℓ .

Part 2: group theoretic part – very different for $\ell \neq p$ and $\ell = p$.

(C) What happens ℓ -adically ?

Theorem (Orlik, CDHN) Let $\ell \geq 5$.

• continuous cohomology:

$$H^i_{ ext{\'et},c}(\Omega^d_C, \mathbf{Z}_\ell) \simeq \operatorname{Sp}^{\operatorname{cont}}_{2d-i}(\mathbf{Z}_\ell)(d-i)$$

• Huber cohomology:

1.
$$\ell \neq p$$
:
 $H^{i}_{\text{ét},c,Hu}(\Omega^{d}_{C}, \mathbf{Z}_{\ell}) \simeq \operatorname{Sp}_{2d-i}(\mathbf{Z}_{\ell})(d-i)$
2. $\ell = p$: ????

Here, for X, adic space:

continuous cohomology:

$$\mathrm{R}\Gamma_{\mathrm{\acute{e}t},c}(X,\mathbf{Z}_{\ell}) := \mathrm{R} \varprojlim_{n} \mathrm{R}\Gamma_{\mathrm{\acute{e}t},c}(X,\mathbf{Z}/\ell^{n})$$

• Huber cohomology: X – partially proper:

$$\mathrm{R}\Gamma_{\mathrm{\acute{e}t},c,Hu}(X,\mathbf{Z}_{\ell}) := \mathrm{R}\Gamma_{\mathrm{\acute{e}t},c}(X,\mathrm{R}\Gamma\pi_{*}(\mathbf{Z}/\ell^{n})),$$

where $\pi : (\mathscr{F}_n) \mapsto \varprojlim_n \mathscr{F}_n$. For $\ell \neq p$ it was defined to pick up smooth representations but strange things happen for $\ell = p$:

$$\begin{array}{ll} (a) \quad \ell \neq p : & H^2_{\text{\'et},c,H_{\boldsymbol{U}}}(\mathbb{A}_C, \mathbf{Z}_\ell(1)) \simeq \mathbf{Z}_\ell, \\ (b) \quad \ell = p : & H^2_{\text{\'et},c,H_{\boldsymbol{U}}}(\mathbb{A}_C, \mathbf{Z}_p(1)) \simeq (\mathscr{O}_{\mathbb{P}^1_C,\infty}/C) \oplus \mathbf{Z}_p \end{array}$$

compatible with the action of $G = \mathbb{G}_m(\mathbf{Q}_p) \times \mathbb{G}_m(\mathbf{Q}_p)$, not smooth.

Remarks

(A) **Duality**: Have abstractly $(p \ge 5)$

$$H^i_{ ext{\'et},c}(\Omega^d_C, \mathbf{Z}/p^n) \simeq H^{2d-i}_{ ext{\'et}}(\Omega^d_C, \mathbf{Z}/p^n)^{ee}$$

Q: Do we have a duality for partially proper adic spaces ??

- (•) Proper case: \leftarrow Offer Gabber, Bogdan Zavyalov.
- (•) Almost proper case: rationally, \leftarrow Lan-Liu-Zhu.

(B) Where are the other Steinberg representations ??

- Only certain generalized Steinberg representations appear.
- For $\ell \neq p$, Dat showed that $\mathrm{R}\Gamma_c$ "knows" about all Steinberg representations.

Main theorem

Theorem (CDHN) Let $(\mathbb{G}, [b], \{\mu\})$ be a local Shtuka datum with \mathbb{G}/\mathbb{Q}_p quasi-split, $b \in \mathbb{G}(\check{\mathbb{Q}}_p)$ basic and s-decent. Let $p \ge 5$. There are isomorphisms of $\mathscr{G}_{E_s} \times J(\mathbb{Q}_p)$ -modules:

$$\begin{aligned} H^*_{\text{\'et},c}(\mathscr{F}_C^{wa},\mathbf{Z}/p^n) &\simeq \bigoplus_{[w]\in W^{\mu}/\mathscr{G}_{E_s}} v^J_{I_{[w],n}}\{-\ell_{[w]}\}[-n_{[w]}],\\ H^*_{\text{\'et},c}(\mathscr{F}_C^{wa},\mathbf{Z}_p) &\simeq \bigoplus_{[w]\in W^{\mu}/\mathscr{G}_{E_s}} v^{J,\text{cont}}_{I_{[w]}}\{-\ell_{[w]}\}[-n_{[w]}], \end{aligned}$$

where $\{a\} := (a)[2a], n_{[w]} = |\Delta \setminus I_{[w]}|.$

Notation

(1) $[b] \in B(G)$:

- σ conj. classes in $G(\mathbf{\check{Q}}_p)$ or, equivalently,
- isomorphism classes of G-isocrystals;
- $[b] \mapsto N_b$
- Example: $G = GL_n$: B(G) = isomorphism classes of *n*-dimensional isocrystals

(2) {μ}:

- conjugacy class of geometric cocharacters,
- specifies the type of filtration on N_b .
- $[b] \in A(G, \mu)$: "Hodge of $\mu \leq$ Newton of N_b "

(3) *F*:

- $\mathscr{F} = \mathscr{F}(\mathsf{G},\mu) = \mathsf{G}_{\mathsf{E}}/\mathsf{P}(\mu)$ flag variety/ E ,
- *E* the field of definition of μ ;
- moduli spaces of filtrations of type μ

(4) \mathscr{F}^{wa} – period domain:

- 𝔅^{wa} = 𝔅^{wa}(G, [b], {μ}) ⊂ 𝔅: locus, where the filtration is weakly admissible
- s-decent $\rightarrow \mathscr{F}^{wa}/E_s, E_s = E\mathbf{Q}_{p^s}$

(5) J_b :

- automorphism group of N_b : $J_b = Aut(N_b)$
- *b*-basic iff $J = J_b$ inner form of *G*
- ℱ^{wa} has action of J(Q_p)
- $J_b(\mathbf{Q}_p) = \{g \in G(\overline{\mathbf{Q}}_p) | gb\sigma(g^{-1}) = b\}.$
- Example: $\Omega^d_{\mathbf{Q}_p}, G = GL_{d+1}, [b] = [1], J = G, \{\mu\} = (d, -1, -1, \dots, -1)$

- S ⊂ J_{der} − max split torus,
- $P_0 \supset S$ minimal parabolic,
- $T \supset S$ max torus
- $\Delta = \{\alpha_1, \dots, \alpha_d\} \subset X^*(S)$ relative simple roots
- $\{\omega_{\alpha_i}\}$ dual basis of 1-PS
- W Weyl group of G wrt T (μ factors through T),
- W^{μ} Kostant representative of $W/Stab(\mu)$
- $v_{I_{[w]},n}^{J}$ generalized Steinberg (smooth), values in \mathbf{Z}/p^{n}

Proof of the main Theorem for \mathbf{Z}/p^n -coefficients

(1) the geometric part: $(\mathscr{F}^{wa}, \mathscr{F}, \partial \mathscr{F}^{wa}), \ \partial \mathscr{F}^{wa} : \mathscr{F} \setminus \mathscr{F}^{wa},$ proper pseudo-adic, \rightarrow

$$\mathrm{R}\Gamma_{\mathrm{\acute{e}t},c}(\mathscr{F}_{\mathcal{C}}^{wa}) \to \mathrm{R}\Gamma_{\mathrm{\acute{e}t}}(\mathscr{F}_{\mathcal{C}}) \to \mathrm{R}\Gamma_{\mathrm{\acute{e}t}}(\partial\mathscr{F}_{\mathcal{C}}^{wa})$$

Enough to show that (uses Bruhat cells $+ \mathbb{A}_{alg}$ has trivial $\mathrm{R}\Gamma_{\acute{e}t}$):

$$\begin{aligned} H^*_{\text{\acute{e}t}}(\partial \mathscr{F}^{wa}) \simeq \bigoplus_{|\Delta \setminus I_{[w]}|=1} \iota^J_{I_{[w],n}}\{-\ell_{[w]}\} \oplus \qquad (0.1) \\ \bigoplus_{|\Delta \setminus I_{[w]}|>1} (\iota^J_{\Delta,n}\{-\ell_{[w]}\} \oplus v^J_{I_{[w],n}}\{-\ell_{[w]}\}[-|\Delta \setminus I_{[w]}|+1]) \end{aligned}$$

Here, for $I \subset \Delta$ and $X_I = J(\mathbf{Q}_p)/P_I(\mathbf{Q}_p)$, we set

$$\iota_{I,n}^{J} := \iota_{P_{I},n}^{J} = \mathrm{LC}(X_{I}, \mathbf{Z}/p^{n}).$$

Stratification of $\partial \mathscr{F}^{wa}$ by Schubert varieties

Recall: Schubert varieties have easy cohomology

Step 1 Idea: Faltings and Totaro: weak admissibility=semistability condition *F^{wa}* – locus, where semistability fails Stratify:

$$\partial \mathscr{F}^{wa} = Z_1 \supset Z_2 \supset \ldots Z_{i-1} \supset Z_i \supset Z_{i+1} \supset$$

$$\begin{split} &Z_i - \text{locus where semistability fails to degree} \geq i. \\ &\textbf{Step 2: to make this precise:} \\ &\text{use Hilbert-Mumford criterium:} \\ & \mathcal{K}/E_s, \ x \in \mathscr{F}(\mathcal{K}) \text{ is semistable (i.e., } x \in \mathscr{F}^{wa}(\mathcal{K})) \text{ iff} \\ & \mu(x,\lambda) \geq 0, \text{ for all } \lambda \in X_*(\mathcal{J})^{\mathscr{G}_{\mathsf{Q}_p}}. \end{split}$$

Here $\mu(-,-)$ – the slope function associated to a linearization of the action of J (related to the metric on filtrations).

Remark Simplified HM criterion

- The slope function µ(x, -) is affine on each chamber of the spherical complex B(J_{der}) (not just convex)
- hence it is enough to test λ's associated to the relative simple roots and their conjugates.

Notation:

- $\lambda \in X_*(J)_{\mathbf{Q}}$, Y_{λ} locus in \mathscr{F} , where λ damages the ss condition ($\mu(-, \lambda) < 0$)
- $I \subset \Delta$, $Y_I := \cap_{\alpha \notin I} Y_{\omega_{\alpha}}$ fundamental Schubert variety
- $Z_i := \cup_{|\Delta \setminus I|=i} Z_I, Z_I := X_I Y_I$, closed pseudo-adic

Have

$$\partial \mathscr{F}^{wa} = Z_1 = \cup_{|\Delta \setminus I| = 1} Z_I$$

Fundamental complex

Closed Mayer-Vietoris on $\partial \mathscr{F}_{\mathcal{C}}^{\scriptscriptstyle Wa} \rightarrow \operatorname{complex}$

$$0 \to \mathbf{Z}/p^n \to \oplus_{|\Delta \setminus I|=1} (\mathbf{Z}/p^n)_I \to \oplus_{|\Delta \setminus I|=2} (\mathbf{Z}/p^n)_I \to \cdots$$

Here $(\mathbf{Z}/p^n)_I$ – "evaluation" of \mathbf{Z}/p^n on $Z_{I,C}$

Lemma This complex is acyclic.

Proof.

- Stalks are complexes of induced representations
- \rightarrow get a complex of locally constant functions on a contructible subcomplex of $\mathscr{B}(J_{der})$.

It follows that:

$$E_1^{i,j} = \bigoplus_{|\Delta \setminus I|=i+1} H^i_{\text{\'et}}(\partial \mathscr{F}_C^{\mathsf{wa}}, (\mathbf{Z}/p^n)_I) \Rightarrow H^{i+j}_{\text{\'et}}(\partial \mathscr{F}_C^{\mathsf{wa}})$$

Compute:

$$\begin{split} H^{i}_{\text{\acute{e}t}}(\partial \mathscr{F}^{wa}_{C},(\mathbf{Z}/p^{n})_{I}) &\simeq \mathrm{LC}(X_{I},H^{i}_{\text{\acute{e}t}}(Y_{I,C})) \\ &\simeq \iota^{J}_{P_{I}}\otimes H^{i}_{\text{\acute{e}t}}(Y_{I,C}) \\ &\simeq \iota^{J}_{P_{I}}\otimes (\bigoplus_{[w]\in\Omega_{I}\subset W^{\mu}/\mathscr{G}_{E_{s}}}\mathbf{Z}/p^{n}(-\ell_{[w]})[-2\ell_{[w]}]). \end{split}$$

Facts:

• This spectral sequence degenerates at *E*₂: use Galois weight argument

• The associated grading = RHS of the boundary formula Remains: splitting of the grading

Splitting of the grading

(2) **Group theoretic part**: Enough to prove: Theorem $p \ge 5$. Let $I, I' \subset \Delta$. Then $\operatorname{Ext}^1_J(v^J_{P_I}, v^J_{P_{I'}}) = 0$, for $|(I \cup I') \setminus (I \cap I')| > 1$.

Remark

- No idea how to compute higher Ext
- \rightarrow no *p*-adic analog of Dat's computation of $\mathrm{R}\Gamma_c$. Proof.

Difficulties (not present for $\ell \neq p$):

- Emerton's ordinary parts functor not exact
- restriction to K-invariants not exact

Idea:

- use ordinary parts functor + its derived functors to do devissage
- and reduce to the computation of $H^1(J(\mathbf{Q}_p), \operatorname{St}_J)$.

Thank you !