Perfectoid covers of abelian varieties and the weight-monodromy conjecture

Peter Wear

University of Utah

October 8, 2020

Peter Wear

Outline

- Background on the weight-monodromy conjecture
- Overview of Scholze's strategy, using perfectoid covers of toric varieties
- Moving this strategy to abelian varieties

Motivation: L-functions of varieties

For X/\mathbb{Q} a proper smooth variety of dimension d, to any integer $i \in [0, 2d]$ we associate an *L*-function

$$L_{X,i}(s) = \prod_{v} L_{X_{v},i}(s).$$

This is a product of local factors over places v of \mathbb{Q} . It is expected to satisfy a functional equation and analogue of the Riemann hypothesis. It should encode lots of global information about X.

Conjecture (Birch and Swinnerton-Dyer (1965))

The L-function associated to an elliptic curve has a zero at 1 precisely when the elliptic curve has infinitely many rational points.

Motivation: local factors at primes of bad reduction

When X has good reduction at a prime p, the local factor at p is relatively well-understood thanks to the Weil conjectures. The Riemann hypothesis implies that the poles of the *i*th local factor have real part i/2.

To get global information, we need to understand the bad reduction picture as well.

Weight-monodromy implies that at primes of bad reduction, the poles of the *i*th local factor have real part at most i/2.

The weight-monodromy conjecture: setup

 $p \neq \ell$ primes, X/\mathbb{Q}_p a proper, smooth variety

Finite-dimensional $\overline{\mathbb{Q}}_{\ell}$ -vector space $V := H^{i}_{\text{\acute{e}t}}(X_{\overline{\mathbb{Q}}_{p}}, \overline{\mathbb{Q}}_{\ell}).$

Galois representation $\rho : G_{\mathbb{Q}_p} \to GL(V)$.

$$1 \to I_{\mathbb{Q}_p} \to G_{\mathbb{Q}_p} \to G_{\mathbb{F}_p} \to 1.$$

Fix $\Phi \in G_{\mathbb{Q}_p}$ mapping to geometric Frobenius

Definition

The *i*th local factor of X at p is $det(1 - p^{-s}\Phi|V^{I_{\mathbb{Q}_p}})^{-1}$.

The weight-monodromy conjecture: weights

The weight filtration on V comes from the eigenspaces of Φ .

Rapoport-Zink, de Jong: we have

$$V = \oplus_{k=0}^{2i} W'_k$$

where the eigenvalues of Φ acting on W'_k are Weil numbers of weight k.

The weight-monodromy conjecture: weights

The weight filtration on V comes from the eigenspaces of Φ .

Rapoport-Zink, de Jong: we have

$$V = \oplus_{k=0}^{2i} W'_k$$

where the eigenvalues of Φ acting on W'_k are Weil numbers of weight k.

Different lifts Φ give different decompositions of V, but the same *weight filtration*

$$W_0 \subset W_1 \subset \cdots \subset W_{2i} = V$$

where $W_j := \oplus_{k=0}^j W'_k$.

The weight-monodromy conjecture: monodromy

$$1 o I_{\mathbb{Q}_p} o G_{\mathbb{Q}_p} o G_{\mathbb{F}_p} o 1$$

The monodromy filtration on V comes from the pro- ℓ part of the tame inertia.

Grothendieck: The action of the pro- ℓ part of $I_{\mathbb{Q}_p}$ on V leads to the monodromy operator $N: V \to V$. It is nilpotent, and gives rise to the monodromy filtration $\{V_j\}$ of V.

This filtration satisfies $N(V_j) \subset V_{j-2}$, and $N^j(gr_{i+j}^N V) \cong gr_{i-j}^N V$.

The weight-monodromy conjecture: monodromy

$$1 o I_{\mathbb{Q}_p} o G_{\mathbb{Q}_p} o G_{\mathbb{F}_p} o 1$$

The monodromy filtration on V comes from the pro- ℓ part of the tame inertia.

Grothendieck: The action of the pro- ℓ part of $I_{\mathbb{Q}_p}$ on V leads to the monodromy operator $N: V \to V$. It is nilpotent, and gives rise to the monodromy filtration $\{V_j\}$ of V.

This filtration satisfies $N(V_j) \subset V_{j-2}$, and $N^j(gr_{i+j}^N V) \cong gr_{i-j}^N V$.

For any lift Φ , $N\Phi = p\Phi N$, so $NW_j \subset W_{j-2}$.

The weight-monodromy conjecture

Conjecture (Deligne (1971))

For a proper, smooth variety over a local field, the weight filtration is the same as the monodromy filtration.

The weight-monodromy conjecture

Conjecture (Deligne (1971))

For a proper, smooth variety over a local field, the weight filtration is the same as the monodromy filtration.

In the good reduction case, this follows from the Weil conjectures

Deligne proved this over $\mathbb{F}_p((t))$ (1980)

In mixed characteristic, known for dimension at most 2 by Rapoport-Zink (1982) + de Jong's alterations. Various other special cases are known.

Scholze proved this for complete intersections in toric varieties (2012)

The weight-monodromy conjecture

Conjecture (Deligne (1971))

For a proper, smooth variety over a local field, the weight filtration is the same as the monodromy filtration.

In the good reduction case, this follows from the Weil conjectures

Deligne proved this over $\mathbb{F}_p((t))$ (1980)

In mixed characteristic, known for dimension at most 2 by Rapoport-Zink (1982) + de Jong's alterations. Various other special cases are known.

Scholze proved this for complete intersections in toric varieties (2012)

Theorem (W.)

The weight-monodromy conjecture holds for complete intersections in abelian varieties.

Scholze's approach: Perfectoid fields

$$\begin{split} & \mathcal{K} := \mathbb{Q}_p(p^{1/p^{\infty}})^{\wedge} = \big(\bigcup_{n \in \mathbb{N}} \mathbb{Q}_p(p^{1/n})\big)^{\wedge} \text{ is a perfectoid field.} \\ & \mathcal{K}^{\flat} := \varprojlim_{x \mapsto x^p} \mathcal{K} \cong \mathbb{F}_p((t^{1/p^{\infty}}))^{\wedge} \text{ is the tilt.} \end{split}$$

 $\sharp: \mathcal{K}^{\flat} \to \mathcal{K}$ projects onto the initial term

Theorem (Fontaine-Wintenberger (1979))

The absolute Galois groups G_K and $G_{K^{\flat}}$ are isomorphic.

Can we transfer Deligne's result from $G_{K^{\flat}}$ to G_{K} ?

Perfectoid spaces

 $\mathbb{P}^{n,\mathsf{perf}}_K$

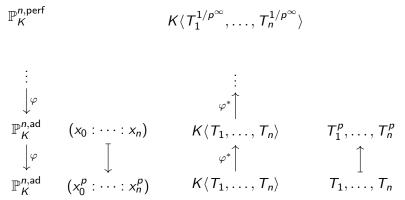
Perfectoid spaces geometrize this isomorphism.

 $\begin{array}{cccc}
\vdots \\
\downarrow \varphi \\
\mathbb{P}_{K}^{n,\mathrm{ad}} & (x_{0}:\cdots:x_{n}) \\
\downarrow \varphi & & \downarrow \\
\mathbb{P}_{K}^{n,\mathrm{ad}} & (x_{0}^{p}:\cdots:x_{n}^{p})
\end{array}$

Behaves like an inverse limit on topological spaces and étale topoi.

Perfectoid spaces

Perfectoid spaces geometrize this isomorphism.



Behaves like an inverse limit on topological spaces and étale topoi.

Tilting perfectoid spaces

$$R := K \langle T_1^{1/p^{\infty}}, \dots, T_n^{1/p^{\infty}} \rangle \text{ is a perfectoid } K\text{-algebra.}$$

$$R^{\flat} := \varprojlim_{x \mapsto x^{\rho}} R \cong K^{\flat} \langle T_1^{1/p^{\infty}}, \dots, T_n^{1/p^{\infty}} \rangle \text{ is the tilt.}$$

 $\sharp: R^{\flat}
ightarrow R$ projects onto the initial term

Perfectoid spaces are built from perfectoid rings.

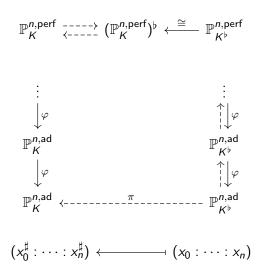
Theorem (Scholze (2012))

Tilting induces an equivalence of categories between perfectoid spaces over K and perfectoid spaces over K^{\flat} . Perfectoid spaces X and X^{\flat} have isomorphic topological spaces and étale topoi.

Tilting $\mathbb{P}_{K}^{n, \text{perf}}$

$$\mathbb{P}^{n,\mathsf{perf}}_{K} \xrightarrow{} (\mathbb{P}^{n,\mathsf{perf}}_{K})^{\flat} \xleftarrow{\cong} \mathbb{P}^{n,\mathsf{perf}}_{K^{\flat}}$$

Tilting $\mathbb{P}_{K}^{n,\text{perf}}$



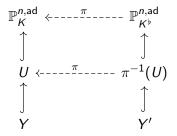
Can we pull back varieties from $\mathbb{P}_{K}^{n,ad}$ to $\mathbb{P}_{K^{\flat}}^{n,ad}$ and apply Deligne's result?

Peter Wear

Scholze's approach to weight-monodromy

Varieties don't pull back to varieties!

Approximation lemma: given a hypersurface $Y \subset \mathbb{P}_{K}^{n,\text{ad}}$, and a small open neighborhood $U \supset Y$, there is a hypersurface $Y' \subset \pi^{-1}(U)$.



Huber: For small enough U, the map on étale cohomology induced by $Y \hookrightarrow U$ is an isomorphism. Get $H^i(Y, \overline{\mathbb{Q}}_{\ell}) \cong H^i(U, \overline{\mathbb{Q}}_{\ell}) \hookrightarrow H^i(Y', \overline{\mathbb{Q}}_{\ell})$.

Generalizing to abelian varieties

Abelian variety A over \mathbb{Q}_p

- Construct perfectoid cover A_{∞} of A_{K} .
- Construct abelian variety A'/K^{\flat} with $A'_{\infty} \cong A^{\flat}_{\infty}$.
- Prove approximation lemma.

Perfectoid covers of abelian varieties

Theorem (Blakestad, Gvirtz, Heuer, Shchedrina, Shimizu, W., Yao) Let A be an abelian variety over a perfectoid field K of residue characteristic p with value group contained in \mathbb{Q} . There is a perfectoid group A_{∞} such that $A_{\infty} \sim \varprojlim_{[p]} A$.

Already known in the good reduction case

Perfectoid covers of abelian varieties

Theorem (Blakestad, Gvirtz, Heuer, Shchedrina, Shimizu, W., Yao) Let A be an abelian variety over a perfectoid field K of residue characteristic p with value group contained in \mathbb{Q} . There is a perfectoid group A_{∞} such that $A_{\infty} \sim \varprojlim_{[p]} A$.

The main idea is to construct an inverse system of formal schemes

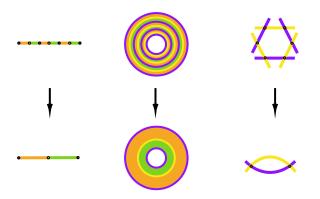
$$\cdots \xrightarrow{[\mathfrak{p}_2]} \mathfrak{A}_1 \xrightarrow{[\mathfrak{p}_1]} \mathfrak{A}_0$$

all flat over K° such that:

- The transition maps are all affine,
- The adic generic fiber of each 𝔅_i is A, and the adic generic fiber of each morphism is [p], and

$$A_{\infty} := (\varprojlim_{[\mathfrak{p}_i]} \mathfrak{A}_i)_{\eta}$$

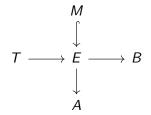
The tower over the Tate curve



Middle: a system of formal analytic coverings of a Tate curve $\mathbb{G}_m/q^{\mathbb{Z}}$. Right: the tower of special fibers. Left: the tropicalization, coming from the log map $\mathbb{G}_m(\mathcal{K}) \to \mathbb{R} : x \mapsto \log(|x|_{\mathcal{K}}).$

Formal models of abelian varieties: Raynaud uniformization

Let A be an abelian variety over a non-archimedean field K, considered as an adic space. Raynaud: after a finite extension of K, can uniformize A

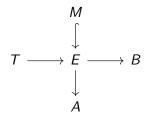


• $T = \mathbb{G}_m^r$ a split torus

- B an abelian variety with good reduction
- *E* a semi-abelian variety: a product of translation-invariant \mathbb{G}_m -torsors on *B*
- *M* a lattice in E(K): a discrete subgroup isomorphic to \mathbb{Z}^r
- $A \cong E/M$

Formal models of abelian varieties: Raynaud uniformization

Let A be an abelian variety over a non-archimedean field K, considered as an adic space. Raynaud: after a finite extension of K, can uniformize A



Construct a formal model of T, take the pushout to get a formal model of E.

Make sure this model retains M-action, and take the quotient to get a model of A.

Tilting perfectoid covers of abelian varieties

Theorem (Heuer, W.)

After a pro-p extension of K, there is an abelian variety A' over K^{\flat} such that $A^{\flat}_{\infty} \sim \varprojlim_{[p]} A'$.

Tilting perfectoid covers of abelian varieties

Theorem (Heuer, W.)

After a pro-p extension of K, there is an abelian variety A' over K^{\flat} such that $A^{\flat}_{\infty} \sim \varprojlim_{[p]} A'$.

Starting with an inverse system of formal models of A/K

$$\cdots \xrightarrow{[\mathfrak{p}_2]} \mathfrak{A}_1 \xrightarrow{[\mathfrak{p}_1]} \mathfrak{A}_0$$

Need to construct A'/K^{\flat} along with an inverse system of formal models

$$\cdots \xrightarrow{[\mathfrak{p}_2']} \mathfrak{A}_1' \xrightarrow{[\mathfrak{p}_1']} \mathfrak{A}_0'$$

Such that the mod ϖ and mod ϖ^{\flat} special fibers agree.

Tilting examples

Given B/K with good reduction, we can extend to an abelian scheme over K° with special fiber an abelian scheme \widetilde{B} over $K^{\circ}/\varpi \cong K^{\flat\circ}/\varpi^{\flat}$.

Deform \widetilde{B} to an abelian scheme over $K^{\flat\circ}$, take the generic fiber to get B'/K^{\flat} . This is not unique!

Tilting examples

Given B/K with good reduction, we can extend to an abelian scheme over K° with special fiber an abelian scheme \widetilde{B} over $K^{\circ}/\varpi \cong K^{\flat \circ}/\varpi^{\flat}$.

Deform \widetilde{B} to an abelian scheme over $K^{\flat\circ}$, take the generic fiber to get B'/K^{\flat} . This is not unique!

Given a Tate curve $\mathbb{G}_{m,K}/q^{\mathbb{Z}}$, there's a natural candidate for $q' \in \mathbb{G}_{m,K^{\flat}}.$

$$egin{aligned} & \sharp: (K^{lat})^{ imes} o K^{ imes} \ & q^{lat} \mapsto q \ & (K^{lat})^{ imes} / (q^{lat})^{\mathbb{Z}} \hookleftarrow K^{ imes} / q^{\mathbb{Z}} \end{aligned}$$

A pro-*p* extension of *K* is needed to ensure *q* is in the image of \sharp . Again non-unique.

Tilting in general

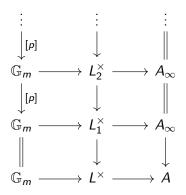
- Use deformation theory to construct a Raynaud extension $T' \rightarrow E' \rightarrow B'$ over K^{\flat} with the correct special fiber.
- Choose a compatible system of *p*th power roots of *M* (after a pro-*p* extension of *K*), giving a lattice *M* ≅ *M*_∞ ⊂ *E*_∞ ~ lim *E*.
- Tilt to get a lattice $M^{\flat}_{\infty} \subset E^{\flat}_{\infty}$ which projects to a lattice $M' \subset E'$.

This gives a candidate E'/M' for A' which will have the correct perfectoid cover. Need to check that this is an abelian variety: that it has an ample line bundle.

Tilting line bundles

Let L^{\times} be a \mathbb{G}_m -torsor on A. This pulls back to a \mathbb{G}_m -torsor L_1^{\times} on A_{∞} . If we can extend this to a $\mathbb{G}_{m,\infty}$ -torsor over A_{∞} , this will be perfectoid. This can be done if we can extract *p*th power roots of L_1^{\times} in $\operatorname{Pic}(A_{\infty})$.

 $\mathbb{G}_{m,\infty} \longrightarrow L_{\infty}^{\times} \longrightarrow A_{\infty}$



Tilting line bundles

Let L^{\times} be a \mathbb{G}_m -torsor on A. This pulls back to a \mathbb{G}_m -torsor L_1^{\times} on A_{∞} . If we can extend this to a $\mathbb{G}_{m,\infty}$ -torsor over A_{∞} , this will be perfectoid. This can be done if we can extract *p*th power roots of L_1^{\times} in $\operatorname{Pic}(A_{\infty})$.

$$\mathbb{G}_{m,\infty} \longrightarrow L_{\infty}^{\times} \longrightarrow A_{\infty}$$

Tilting this sequence of perfectoid groups gives a $\mathbb{G}_{m,\infty,K^{\flat}}$ -torsor over $A^{\flat}_{\infty} \cong A'_{\infty}$.

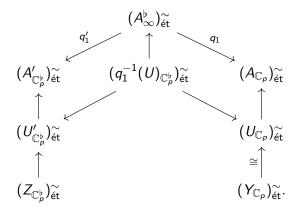
If we've made good choices, this will descend to a line bundle L' on A'.

Hypersurface approximation

- Given a hypersurface $Y \subset A$, there is a line bundle L on A and an element $f \in H^0(A, L)$ with zero locus Y.
- We can put $H^0(A, L) \hookrightarrow \Gamma(L_{\infty}^{\times})$, which is a perfectoid ring tilting to $\Gamma(L_{\infty}^{\times})$.
- We can approximate f by g^{\sharp} for some $g \in \Gamma(L_{\infty}^{\prime \times})$.
- Then approximate g by an element coming from finite level, which defines a hypersurface $Z \subset A'$.

Generalizing to abelian varieties

- Construct perfectoid cover A_{∞} of A_K .
- Construct abelian variety A'/K^{\flat} with $A'_{\infty} \cong A^{\flat}_{\infty}$.
- Prove approximation lemma.



Conclusion

Theorem (W.)

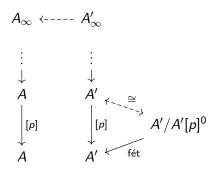
The weight-monodromy conjecture holds for complete intersections in abelian varieties.

$$\begin{array}{cccc} A_{\infty} & & & & & \\ \vdots & & \vdots \\ \downarrow & & \downarrow \\ A & & A' \\ \downarrow [p] & & \downarrow [p] \\ A & & A' \end{array}$$

Conclusion

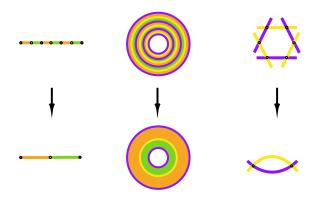
Theorem (W.)

The weight-monodromy conjecture holds for complete intersections in abelian varieties.



Use the trace map on the finite étale part.

Thank you!



https://escholarship.org/uc/item/1ww154gc