
Math 123, Practice Questions for Exam #3, December 4, 2000

1. Find the following:
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−x2, if x ≤ 0
2x if 0 < x < 3
−5 if x ≥ 3.

2. Michelle begins walking along a line at time t = 0. Her acceleration at time t ≥ 0 is a(t) = 6t−7.
Suppose that her initial velocity is 1 and her initial position is 3. If s(t) denotes her position at
time t and v(t) denotes her velocity at time t then anser the following:

(a) Find her velocity at t = 4.

(b) Find her position at t = 2.

(c) When does she return to her starting position?

3. A box with a square base and open top has a total surface area of 300 square centimeters. Find
the dimensions of the box which maximize its volume.

4. Consider the following Riemann sum:

I := lim
n→∞

n∑
i = 1
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)8 (
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)
.

(a) Write I as a definite integral.

(b) Calculate I (using any method you like).

5. Consider the graph below. Find the following:



(a)

∫ 0

−5

f(x) dx

(b) F ′(−3) where

F (x) :=
∫ x

−6

f(t) dt

(c)

∫ 1
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| f(x) | dx

(d)

∫ 4
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f ′(x) dx

(e)
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f ′(x2)x dx

(f)

∫ 7
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(9(f(x))2 − 8) dx


