Math 721A1, Homework #1 Differential Topology I

- 1. Consider the map $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^3$. Show that f is not a diffeomorphism although it is a smooth, bijection.
- 2. Prove that a function $f : M \to N$ is C^{∞} if and only if $g \circ f$ is C^{∞} for every C^{∞} function $g : N \to \mathbb{R}$.
- 3. Let $\operatorname{RP}^2 = \{ [x, y, z] \mid (x, y, z) \in S^2 \}$ where we have the equivalence relation

$$[x, y, z] = [-x, -y, -z]$$

Let $g: \mathbb{RP}^2 \to \mathbb{R}^3$ be the map

$$g([x, y, z]) := (yz, xz, xy).$$

Show that g fails to be an immersion at 6 points.

- 4. Prove the following proposition: Let M and N be smooth m and n dimensional manifolds, resp. If $f : M \to N$ is a smooth, rank k map on a neighborhood of $f^{-1}(y)$ then $f^{-1}(y)$ is a closed submanifold of M of dimension m-k or is empty. In particular, if y is a regular value of f then $f^{-1}(y)$ is an (m-n)-dimensional submanifold of M (or is empty).
- 5. (a) The set of all non-singular $n \times n$ matrices with real entries is called $\operatorname{GL}(n, \mathbb{R})$, the general linear group. It is a smooth n^2 dimensional manifold as it is an open subset of \mathbb{R}^{n^2} . Prove that the matrix multiplication map

$$\operatorname{GL}(n,\mathbb{R}) \times \operatorname{GL}(n,\mathbb{R}) \to \operatorname{GL}(n,\mathbb{R})$$

taking $(A, B) \mapsto AB$ is a smooth map. A smooth manifold G which is also a group where the group multiplication $G \times G \to G$ is a smooth map is called a Lie group.

- (b) Let $SL(n, \mathbb{R})$, the special linear group, be the subset of $GL(n, \mathbb{R})$ consisting of those elements which have determinant 1. Prove that $SL(n, \mathbb{R})$ is a closed $(n^2 - 1)$ dimensional submanifold of $GL(n, \mathbb{R})$. Furthermore, prove that it is a Lie group. We say that $SL(n, \mathbb{R})$ is a (closed) Lie subgroup of $GL(n, \mathbb{R})$.
- 6. Show that a smooth map $f: M \to N$ is an immersion if and only if f_* is an injective map $T_pM \to T_{f(p)}N$ for all p in M.
- 7. Consider S^2 , the unit sphere about the origin in \mathbb{R}^3 . Consider the curve $c : \mathbb{R} \to S^2$ defined by

$$c(t) := (\frac{1}{\sqrt{2}}\cos t, \frac{1}{\sqrt{2}}\sin t, \frac{1}{\sqrt{2}}).$$

Let $x_{3,+}$ be a coordinate chart on S^2 defined (as in class) by

$$x_{3,+}(u,v,w) := (u,v).$$

and let $x_{1,+}$ be a coordinate chart on S^2 defined (as in class) by

$$x_{1,+}(u,v,w) := (v,w).$$

- (a) Write the tangent vector Y to the curve c(t) at t = 0 in $x_{3,+}$ coordinates. (b) Write Y in $x_{1,+}$ coordinates.
- 8. Show that a rank k vector bundle $\pi : E \to B$ is a trivial bundle if and only if it has k sections s_1, \ldots, s_k such that $\{s_1(p), \ldots, s_k(p)\}$ are linearly independent for all p in B.
- 9. Show that for any smooth manifold M, TM is an orientable smooth manifold.