Math 721A1, Homework #2 Differential Topology I

1. Let V be a vector space with a bilinear operation $V \times V \to V$ denoted by $(X,Y) \mapsto [X,Y]$ satisfying the conditions

$$[X,Y] = -[Y,X]$$

and

$$[[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0$$

for all X, Y, and Z in V. The pair $(V, [\cdot, \cdot])$ is called a *Lie algebra*.

Let X and Y be vector fields on a smooth manifold M. Define [X, Y] to be the map $C^{\infty}(M) \to C^{\infty}(M)$ defined via

$$[X, Y](f) := X(Y(f)) - Y(X(f))$$

for all f in $C^{\infty}(M)$. Prove that this makes the set of vector fields on M into a Lie algebra.

- 2. Let $\pi : E \to B$ be a smooth, rank k vector bundle and $\pi' : E' \to B$ be a smooth, rank k' vector bundle. Let $E'' := \{(e, e') \mid e \in E, e' \in E', \pi(e) = \pi'(e')\}$ and let $\pi'' : E'' \to B$ be defined by $\pi''((e, e')) := \pi(e)$.
 - (a) Show that $\pi'': E'' \to B$ is a smooth, rank (k + k') bundle whose fiber E''_b is isomorphic to the direct sum $E_b \oplus E'_b$ for all b in B. This bundle $\pi'': E'' \to B$ is often denoted by $\pi: E \oplus E' \to B$ and is called the direct (or Whitney) sum of the bundles $\pi: E \to B$ and $\pi': E' \to B$.
 - (b) If $\pi : E \to B$ is an orientable vector bundle and $\pi' : E' \to B$ is a nonorientable vector bundle then prove that $\pi'' : E \oplus E' \to B$ is a nonorientable vector bundle.
- 3. Let M and N be smooth manifolds. Prove that if M is orientable and N is orientable then $M \times N$ is orientable.
- 4. Let M be a smooth, m-dimensional manifold and N a smooth, n-dimensional manifold and $f: M \to N$ be a smooth map. Let (x, U) and (y, V) be charts around p and f(p), respectively.

(a) If $g: N \to \mathbf{R}$ then

$$\frac{\partial(g \circ f)}{\partial x^i}(p) = \sum_{j=1}^n \frac{\partial g}{\partial y^j}(f(p)) \frac{\partial y^j \circ f}{\partial x^i}(p).$$

(b) Show that

$$f_*\left(\frac{\partial}{\partial x^i}\Big|_p\right) = \sum_{j=1}^n \left.\frac{\partial(y^j \circ f)}{\partial x^i}(p)\frac{\partial}{\partial y^j}\Big|_{f(p)}$$

More generally, express

$$f_*\left(\sum_{k=1}^m a^k \left.\frac{\partial}{\partial x^k}\right|_p\right)$$

in terms of the

$$\frac{\partial}{\partial y^j}\Big|_{f(p)}.$$

(c) Show that

$$(f^*dy^j)(p) = \sum_{i=1}^m \frac{\partial y^j \circ f}{\partial x^i}(p) dx^i(p).$$

(d) Express

$$f^*\left(\sum_{j_1,\dots,j_k}a_{j_1,\dots,j_k}dy^{j_1}\otimes\dots\otimes dy^{j_k}
ight)$$

in terms of the dy^j .

5. Show that if $f: M \to \mathbf{R}$ is a smooth map then for all v in T_pM ,

$$f_*(v) = df(v)_{f(p)} \in T_{f(p)}\mathbf{R}.$$

6. Let f, g in $C^{\infty}(M)$. Show that

$$d(fg) = gdf + fdg.$$

7. Consider the Euclidean metric on \mathbf{R}^2 in Cartesian coordinates $x := (x^1, x^2)$ given by

$$g := \sum_{i=1}^{2} dx^{i} \otimes dx^{i}.$$

Let (r, θ) be polar coordinates where $x = r \cos \theta$ and $y = r \sin \theta$ and where $(r, \theta) \in (0, \infty) \times (0, 2\pi)$. Write g in these coordinates.