Math 721A1, Homework #3 Differential Topology I

Throughout, a tensor of type $\binom{k}{l}$ on a smooth manifold M is a section of the vector bundle $(T^*M)^{\otimes k} \otimes (TM)^{\otimes l} \to M$.

- 1. Let M be a manifold with a Riemannian metric g.
 - (a) Define the $\binom{1}{1}$ tensor g^{\flat} : $TM \to T^*M$ via

$$g^{\flat}(X)(Y) := g(X,Y)$$

for all X and Y in T_pM for all p in M. Prove that g^{\flat} restricted to each fiber is a linear isomorphism. What kind of map is g^{\flat} ?

- 2. Prove the following.
 - (a) If $\alpha : M \to N$ is smooth then $\alpha_* : TM \to TN$ is smooth.
 - (b) If $\alpha : M \to N$ is a diffeomorphism and X is a smooth vector field on M then $\alpha_*(X)$ is a smooth vector field on N.
 - (c) If $\alpha : \mathbb{R} \to \mathbb{R}$ is $\alpha(t) := t^3$ then there is a smooth vector field X on \mathbb{R} such that $\alpha_*(X)$ is not a smooth vector field.
- 3. On \mathbb{R}^3 , let X, Y, Z be vector fields

$$X = z\frac{\partial}{\partial y} - y\frac{\partial}{\partial z},$$

$$Y = -z\frac{\partial}{\partial x} + x\frac{\partial}{\partial z},$$

$$Z = y\frac{\partial}{\partial x} - x\frac{\partial}{\partial y}.$$

(a) Show that the map

$$aX + bY + cZ \mapsto (a, b, c) \in \mathbb{R}^3$$

is an isomorphism (from a certain set of vector fields to \mathbb{R}^3) and that $[U, V] \mapsto$ the cross product of the images of U and V.

- (b) Show that the flow of aX + bY + cZ is a rotation of \mathbb{R}^3 about some axis through 0.
- 4. If A is a tensor field of type $\binom{k}{l}$ on N and $\phi : M \to N$ is a diffeomorphism, we defined ϕ^*A on M as follows. If v_1, \ldots, v_k in T_pM and $\lambda_1, \ldots, \lambda_l$ in T_p^*M then define

$$(\phi^* A)(p)(v_1, \dots, v_k, \lambda_1, \dots, \lambda_l) := A(\phi(p))(\phi_* v_1, \dots, \phi_* v_k, (\phi^{-1})^* \lambda_1, \dots, (\phi^{-1})^* \lambda_l).$$

- (a) Check that under our identification of a vector field (or covector field) with a tensor field of type $\binom{0}{1}$ (or type $\binom{1}{0}$), this agrees with our old $\phi^* Y$ ($\phi^* \omega$).
- (b) If X is a vector field on M which generates $\{\phi_t\}$ and A is a tensor field of type $\binom{k}{l}$ on M, we define

$$(L_X A)(p) := \lim_{h \to 0} \frac{(\phi_h^* A)(p) - A(p)}{h}.$$

Show that

$$L_X(A + B) = L_X A + L_X B,$$
$$L_X(A \otimes B) = (L_X A) \otimes B + A \otimes (L_X B),$$

and

$$L_{X_1+X_2} A = L_{X_1} A + L_{X_2} A$$

(in particular, $L_X(fA) = X(f)A + fL_XA$ for all smooth functions f on M).

(c) If ω is a tensor field of type $\binom{1}{0}$ on M then show that

$$L_X(\omega(Y)) = (L_X\omega)(Y) + \omega(L_XY).$$

(d) Let g be a tensor field of type $\binom{2}{0}$ tensor on M, e.g. g could be a Riemannian metric on M. Show that

 $(L_X g)(X_1, X_2) = L_X (g(X_1, X_2)) - g(L_X X_1, X_2) + g(X_1 L_X, X_2).$