Math 123, Practice Exam Solutions for Exam #1, October 3, 1999

1. Calculate the following:

(a)

$$\lim_{x \to -1} \frac{x^2 - 4x - 5}{x + 1} = \lim_{x \to -1} \frac{(-5 + x)(1 + x)}{x + 1} = \lim_{x \to -1} (-5 + x) = -6$$

(b)

$$\lim_{x \to 3} \frac{5x^2}{2x - 1} = \frac{5(3)^2}{2(3) - 1} = 9$$

(c)

$$\lim_{x \to 2^+} \frac{4 - x^2}{|2 - x|} = \lim_{x \to 2^+} \frac{4 - x^2}{-(2 - x)} = \lim_{x \to 2^+} \frac{(2 - x)(x + 2)}{-(2 - x)} = \lim_{x \to 2^+} -(x + 2) = -4$$

(d)
$$\lim_{x \to 1} \sqrt{\frac{2x^3 - 3x + 5}{2 - x}} = \sqrt{\frac{2 \cdot 1^3 - 3 \cdot 1 + 5}{2 - 1}} = \sqrt{4} = 2$$

(e)

$$\lim_{x \to 3} f(x) \text{ where } f(x) = \begin{cases} x^2 & \text{if } x > 3\\ 8 & \text{if } x = 3\\ 12 - x & \text{if } x < 3 \end{cases}$$

Notice that $\lim_{x\to 3^-} f(x) = \lim_{x\to 3^-} (12-x) = 9$ and $\lim_{x\to 3^+} f(x) = \lim_{x\to 3^+} x^2 = 9$. Since both one-sided limits agree with the value 9, $\lim_{x\to 3} f(x) = 9$.

(f)

$$\lim_{x \to 3^{-}} \frac{x+3}{x^{2}-9} = \lim_{x \to 3^{-}} \frac{x+3}{(x-3)(x+3)} = \lim_{x \to 3^{-}} \frac{1}{x-3} = -\infty$$

2. Consider the function

$$f(x) = \begin{cases} x - c, & \text{if } x > 2; \\ 3x^2, & \text{if } x \le 2 \end{cases}$$

where c is a real number.

- (a) What value of c makes the function f continuous everywhere? The only place where the function f might not be continuous is at x=2 but we can avoid this if we choose c so that the graphs of y=x-c and $y=3x^2$ agree at x=2, i.e. so there is no jump across x=2. Solving $2-c=3\cdot 2^2$ means that c=-10.
- (b) If x > 2 then $f(x) = x c \Rightarrow f'(x) = 1 \Rightarrow f'(7) = 1$
- (c) If x < 2 then $f(x) = 3x^2 \Rightarrow f'(x) = 6x \Rightarrow f'(-1) = -6$
- (d) Call $f_1(x) = x c$ and $f_2(x) = 3x^2$. Notice that f'(2) does not exist (even when c = -10) since $f'_1(2) = 1$ which does not agree with $f'_2(2) = 6 \cdot 2 = 12$.
- 3. Compute the derivative of the following functions:

(a)
$$f(x) = \pi^4 \Rightarrow f'(x) = 0$$

(b)
$$f(x) = 3x^5 - x^2 + 9 \Rightarrow f'(x) = 15x^4 - 2x$$

(c)
$$f(x) = \frac{2}{x^2} - 3\sqrt{x} = 2x^{-2} - 3x^{\frac{1}{2}} \implies f'(x) = -4x^{-3} - \frac{3}{2}x^{-\frac{1}{2}}$$

(d)

$$f(x) = \frac{x^2}{2x - 3} \Rightarrow f'(x) = \frac{(2x - 3)\frac{d}{dx}(x^2) - x^2\frac{d}{dx}(2x - 3)}{(2x - 3)^2} = \frac{(2x - 3)(2x) - x^2(2)}{(2x - 3)^2} = \frac{2x^2 - 6x}{(2x - 3)^2}$$

(e)

$$f(x) = x^2 e^x \Rightarrow f'(x) = e^x \frac{d}{dx} (x^2) + x^2 \frac{d}{dx} (e^x) = 2xe^x + x^2 e^x$$

(f)

$$f(t) = t \sin t \Rightarrow f'(t) = t \frac{d}{dt}(\sin t) + \sin t \frac{d}{dt}(t) = t \cos t + \sin t$$

4. Find the equation for the tangent line to the curve y = f(x) where through the point (1, -3) where

$$f(x) = x^8 - 4x.$$

 $f'(x) = 8x^7 - 4$. The slope of the tangent line is f'(1) = 4. Therefore the equation for this tangent line is

$$\frac{y-(-3)}{x-1} = 4$$

or, solving for y, y = 4x - 7.

- 5. Suppose an object is moving along the real line with its position at time t given by the function $s(t) = \frac{1}{2}t^3 3t^2 7t + 10$.
 - (a) The object is at rest when the velocity v(t) = 0 but $v(t) = s'(t) = t^2 6t 7 = (t 7)(t + 1) = 0$. The solution is t = -1 or t = 7.
 - (b) The object is decelerating when the acceleration a(t) < 0 but a(t) = v'(t) = 2t 6 < 0 when t < 3.
 - (c) v(2) = -15.
- 6. Consider the function

$$f(x) = x^2 - \sin x.$$

Using your calculator, find the approximate value(s) of x (out to two decimal places) at which the tangent line to the graph y = f(x) is horizontal.

We are solving for the equation $0 = f'(x) = 2x - \cos x$. Using the calculator, we can see that an approximate solution is $x \approx .45$.

- 7. Consider the graph of y = f(x) on the next page (figure 1).
 - (a) Where is f undefined?

$$x = -1, 0, 3$$

(b) Where is f not continuous?

$$x = -5, -1, 0, 3$$

(c) Where is f not differentiable?

$$x = -5, -3, -2, -1, 0, 3, 5$$

(d) On what interval(s) is f' positive? Where does f' vanish? f' is positive on the intervals (-5, -4), (-2, -1), (2, 3), (3, 5). f' vanishes at x = -4, 2

(e) On what interval(s) is f concave down? $(-\infty, -5), (-5, -3), (-1, 0), (3, 5)$.

(f) What are

i.

$$f'(6) = \frac{0-3}{7.25-5} = -\frac{3}{2.25}$$

ii.

$$\lim_{x \to -5^+} f(x) = -2$$

iii.

$$\lim_{x \to -1} f(x) = -1$$

iv.

$$\lim_{x \to -\infty} f(x) = 0$$