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Abstract. We define and study r-spin Gromov-Witten invariants and r-spin
quantum cohomology of a projective variety V , where r ≥ 2 is an integer.

The main element of the construction is the space M
1/r
g,n(V ) of r-spin maps,

the stable maps into a variety V from n-pointed algebraic curves of genus g
with the additional data of an r-spin structure on the curve. We prove that

M
1/r
g,n(V ) is a Deligne-Mumford stack and use it to define the r-spin Gromov-

Witten classes of V . We show that these classes yield a cohomological field
theory (CohFT) which is isomorphic to the tensor product of the CohFT as-
sociated to the usual Gromov-Witten invariants of V and the r-spin CohFT.
Restricting to genus zero, we obtain the notion of an r-spin quantum cohomol-
ogy of V , whose Frobenius structure is isomorphic to the tensor product of the
Frobenius manifolds corresponding to the quantum cohomology of V and the

r-th Gelfand-Dickey hierarchy (or, equivalently, the Ar−1 singularity). We also
prove a generalization of the descent property which, in particular, explains
the appearance of the ψ classes in the definition of gravitational descendants.

0. Introduction

In this paper, we present a generalization of the theory of quantum cohomol-
ogy and Gromov-Witten invariants arising from algebraic curves with higher spin
structures. Recall that the construction of the ordinary Gromov-Witten invariants
of a projective variety V is based on the moduli spaces Mg,n(V ) of stable maps

to V . The space Mg,n(V ) is a Deligne-Mumford stack compactifying the space of
holomorphic maps to V from Riemann surfaces of genus g with n marked points.
In particular, the moduli space of stable maps to a point coincides with the moduli
of stable curves Mg,n.

Although the space Mg,n(V ) is not smooth in general, it has a virtual funda-

mental class [Mg,n(V )]virt which plays the role of the usual fundamental class in
intersection theory. It gives rise to the collection of Gromov-Witten classes

ΛV
g,n ∈ H•(Mg,n) ⊗

(
H•(V )⊗n

)∗
,

defined as

ΛV
g,n(γ1, . . . , γn) := st∗

(
ev∗1γ1 . . . ev

∗
nγn ∩ [Mg,n(V )]virt

)
,

where γj ∈ H•(V ), st : Mg,n(V ) → Mg,n is the stabilization (forgetting the

target) map, and evj : Mg,n(V ) → V is the evaluation of the stable map at the
j-th marked point. These classes behave nicely when restricted to the boundary
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strata of Mg,n. This allows one to define a collection of multilinear operations on

the space H•(V ), parametrized by elements of H•(Mg,n). These operations satisfy
the axioms of a cohomological field theory (CohFT) in the sense of Kontsevich-
Manin [19]. In particular, their restriction to stable maps of genus zero endows
H•(V ) with the structure of a (formal) Frobenius manifold [7, 10, 22], called the
quantum cohomology of V , whose multiplication is a deformation of the usual cup
product in H•(V ).

The diagonal map Mg,n → Mg,n × Mg,n induces an operation of a tensor
product in the category of CohFTs. Behrend [4] proved that despite the fact that
the space Mg,n(V ×V ′) is not isomorphic to the product Mg,n(V )×Mg,n

Mg,n(V ′),

the tensor product of the CohFTs associated to Mg,n(V ) and Mg,n(V ′) is the

CohFT associated to Mg,n(V ×V ′). Restricting to genus zero, this gives a Künneth
formula for quantum cohomology.

In [16], we introduced a new class of CohFTs, one for each integer r ≥ 2, based on

the moduli space M
1/r

g,n =
∐

m

M
1/r,m

g,n of higher spin curves, constructed in [11].

Recall that for m = (m1, . . . ,mn), with mi ∈ Z, the moduli space M
1/r,m

g,n is a
compactification of the space of Riemann surfaces of genus g with n marked points
p1, . . . , pn and an r-th root of the twisted canonical line bundle ω⊗O(−

∑
imipi).

This CohFT has rank r− 1 and is called an r-spin CohFT. The construction of an
r-spin CohFT in [16] is based on a choice of a special cohomology class c1/r (called a

spin virtual class) inH•(M
1/r

g,n), satisfying certain axioms. These axioms are similar
to the Behrend-Manin axioms [5] for the virtual fundamental class. As in the case of
the CohFT based on ordinary stable maps, the r-spin CohFT a priori may depend
on a choice of the spin virtual class c1/r. Currently, two different constructions of

a spin virtual class on M
1/r

g,n are known: an algebro-geometric construction of [27],
resembling the algebraic construction of the virtual fundamental class, and the
analytic construction of [24] based on Witten’s original idea [29]. While it is not
known yet whether these constructions give the same class for all g and r, they
agree when g = 0 (and any r) or r = 2 (and any g).

This r-spin CohFT is related to the work of Witten [29], who conjectured that

a generating function of certain intersection numbers on M
1/r,m

g,n is a τ function of
the r-th Gelfand-Dickey (or KdVr) hierarchy. When r = 2, this conjecture reduces
to an earlier conjecture of Witten’s on the intersection numbers of Mg,n, which
was proved by Kontsevich [18]. In [16], following Witten’s ideas, we constructed
the spin virtual class and proved the conjecture in the cases g = 0 (for all r) and
r = 2 (for all g).

In [17], it was proven that the tensor product of the CohFTs associated to M
1/r

g,n

and M
1/r′

g,n is realized by the moduli stack of curves endowed with both an r and
an r′ spin structure. More generally, moduli stacks of stable curves endowed with
multiple spin structures provide an intersection-theoretic realization of the tensor
products of spin CohFTs.

The goal of this paper is to complete this picture by introducing and studying
moduli spaces that give an intersection-theoretic realization of the tensor product
of the Gromov-Witten CohFT and the r-spin CohFT.
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We construct M
1/r

g,n(V ), the stack of stable r-spin maps into a projective variety
V—objects which combine both the data of a stable map and an r-spin struc-

ture. We prove that M
1/r

g,n(V ) is a Deligne-Mumford stack and a ramified cover

of Mg,n(V ). Similar to the case of ordinary stable maps, stable r-spin maps to a
point are just stable r-spin curves.

We introduce the spin virtual class c̃1/r ∈ H•(M
1/r

g,n(V )), which is an analog of

a class c1/r on M
1/r

g,n . Using the class c̃1/r and the virtual fundamental class of

Mg,n(V ), we define the r-spin Gromov-Witten classes

Λ(V,r)
g,n ∈ H•(M

1/r

g,n(V )) ⊗
(
H(V,r)⊗n

)∗
,

where H(V,r) = H•(V ) ⊗ H(r), and H(r) is the state space of the r-spin CohFT.
We prove that these spin Gromov-Witten classes give rise to a CohFT with the
state space H(V,r), which is isomorphic to the tensor product of the Gromov-
Witten CohFT and the r-spin CohFT. As with Behrend’s theorem, this result

is not trivial because the space M
1/r

g,n(V ) is not isomorphic to the fiber product

Mg,n(V ) ×Mg,n
M

1/r

g,n . Restricting to genus zero, we obtain that the r-spin quan-

tum cohomology of V is the tensor product of its ordinary quantum cohomology
with the Frobenius manifold associated to KdVr (or equivalently, to the Ar−1 sin-
gularity).

It is worth observing that our spin Gromov-Witten invariants have a physical
interpretation. They may be regarded as the correlators in a theory of topological
gravity coupled to topological matter, where the matter sector of the theory is the
topological sigma model with target space V coupled with a certain type of gauged
SU(2)r−2/U(1) Wess-Zumino-Witten model. It would be very interesting to find
an enumerative interpretation of the these invariants similar to the interpretation
of the ordinary Gromov-Witten invariants.

Structure of the paper. We will now give a more detailed description of the
structure of the paper and of our results.

After a brief review in the first section of the ideas of r-spin structures (in order
to set notation that will be necessary thereafter), we begin in the second section by
setting up the geometric framework for the rest of the paper. We introduce stable

spin maps and the stack M
1/r

g,n(V ) of such maps. We prove that it is a Deligne-
Mumford stack, and we establish important properties of its associated morphisms.
The proof of Theorem 2.2.1, that the stabilization map is truly a morphism of
stacks, is rather involved and concludes the second section.

In the third section, we introduce cohomology classes on M
1/r

g,n(V ), especially

the spin virtual class c̃1/r on M
1/r

g,n(V ). The class c̃1/r is defined by pulling back

c1/r from M
1/r

g,n when 2g − 2 + n > 0, and it is defined by a direct construction
for other values of g and n. We establish some properties of the spin virtual class
and relate it, in genus zero, to the top Chern class of the top cohomology R1π∗Er

of the r-spin structure bundle. At the end of this section we prove a key theorem

(Theorem 3.3.1) on the decomposition of classes pushed down from M
1/r,m

g,n (V, β)

to Mg,n. This theorem is the main ingredient in proving Theorem 4.3.2, that the
CohFT arising from r-spin maps is a tensor product.
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In the fourth section, using the class c̃1/r and the virtual fundamental class of

Mg,n(V ), we define the r-spin Gromov-Witten classes Λ
(V,r)
g,n . We show that these

classes give rise to a CohFT which has state space H(V,r), and which is isomorphic
(in the stable range) to the tensor product of the Gromov-Witten CohFT and the
r-spin CohFT. We prove that these classes satisfy properties analogous to Gromov-
Witten classes, and we show that even in the unstable range, at least for the small
phase space, all the correlators of the stable-spin-maps CohFT are determined by
the usual r-spin CohFT and the Gromov-Witten invariants. Finally, we verify that
the descent axiom of [15] holds for these correlators in the genus zero case. This
gives a new and interesting geometric description of gravitational descendants not
only in the r-spin theory, but also in the case of usual Gromov-Witten invariants,
since these correspond to the special case of r = 2, as described in Section 5.

In the fifth and last section, we discuss a number of special cases. We first prove
that when r = 2, the stable spin maps CohFT reduces to the usual Gromov-Witten
invariants of V . We then examine the case of genus zero and degree zero, and
conclude with the calculation of the small phase space potential function associated

to M
1/3

0,n (P1).

Acknowledgments. Parts of the paper were written while T.K. was visiting the
Université de Bourgogne and A.V. was visiting Institut des Hautes Études Scien-
tifiques. We would like to thank these institutions for their hospitality and support.

1. Review of spin structures

For the remainder of the paper we fix an integer r ≥ 2. For the reader’s con-
venience and to establish notation, we briefly review the definitions of an r-spin
structure given in [11]. Our notation here is somewhat improved over that of [11].

1.1. Overview.

Although the concept of an r-spin structure is intuitively simple, its formal
definition is somewhat technical. For that reason we first give a brief overview of
the ideas involved.

Intuitively, an r-spin structure on a smooth, n-pointed curve (X, p1, . . . , pn) is
just a choice of a line bundle L on X , together with an isomorphism

b : L⊗r - ωX(−
∑

mipi)

to the canonical dualizing sheaf of X with zeros of order m = (m1, . . . ,mn), for
some n-tuple of non-negative integers m.

For degree reasons, an r-spin structure of type m exists on a genus g curve X
only if 2g − 2 −

∑
mi is divisible by r.

If we want to compactify the spaces involved by considering stable maps and
prestable curves, the preceding, intuitive definition of an r-spin structure is insuffi-
cient. In particular, we must replace line bundles by rank-one torsion-free sheaves
and allow the homomorphism b : L⊗r → ωX(−

∑
mipi) to have non-trivial cokernel

at the nodes of the curve.
Alternatively, one may continue to use invertible sheaves, but allow the source

curves to be stacks (“twisted” nodal curves, or orbicurves) as in [1]. The two
approaches are completely equivalent and give isomorphic compactifications. Al-
though the orbicurves approach is more attractive notationally, the approach based
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on torsion-free sheaves is more explicit and is closer to the original physically moti-
vated constructions of [29]. Also, it is better suited to the treatment of the descent
axiom, a generalization of which we prove in Subsection 4.6. This generalized de-
scent property gives a nice geometric explanation for the appearance of ψ classes in
the usual (non-spin) Gromov-Witten theory. Therefore, we feel that the approach
based on torsion-free sheaves is more suitable for the purposes of this paper.

There are two very different types of behavior of the torsion-free sheaf L near a
node q ∈ X . When it is still locally free, the sheaf L is said to be Ramond at the
node q. If the sheaf L is not locally free at q, it is called Neveu-Schwarz. (In the
twisted curve formulation, the Ramond case corresponds to a trivial stack structure
at the point in question, while the Neveu-Schwarz case corresponds to a non-trivial
stack structure at that point.)

Although in the Ramond case, the homomorphism b remains an isomorphism
near the node q, in the Neveu-Schwarz case it cannot be an isomorphism. The local
structure of the sheaf L near a Neveu-Schwarz node can be described as follows.

Near the node q, the structure sheaf OX is generated by two functions x and y,
such that xy = 0. The sheaf ωX(−

∑
mipi) is locally generated by dx

x = −dy
y . Near

q the sheaf L is generated by two elements `+ and `−, supported on the x and y
branches respectively (that is, x`− = y`+ = 0). The two generators may be chosen
so that the homomorphism b : L⊗r → ωX(−

∑
mipi) takes `⊗r

+ to xm++1(dx
x ) =

xm+dx and `⊗r
− to ym−+1(dy

y ) = ym−dy, where (m+ + 1) + (m− + 1) = r.

Definition 1.1.1. We call m+ (respectively m−) the order of the spin structure
along the x-branch (respectively y-branch).

1.2. Formal definitions.

Definition 1.2.1. For any integer r > 1 and for any n-tuple of integers m =
(m1, . . . ,mn) such that r divides 2g − 2 −

∑
mi, an r-spin structure of type m on

a family X/T of n-pointed prestable curves is a coherent net of r-th roots of ωX/T

of type m.

Recall that, by Definition 2.3.4 of [11], a coherent net of r-th roots of ωX/T of
type m is a set of rank-one, torsion-free OX -modules {Ed} for every positive d|r,

and a collection of OX -module homomorphisms {cd,d′ : E
⊗d/d′

d → Ed′}, defined for
every positive d′|d|r, such that for each geometric fiber Xt of X/T , the sheaves {Ed}
and homomorphisms {cd,d′} induce a coherent net of r-th roots of ωXt of type m,
and each homomorphism cd,d′ is an isomorphism on the locus in X/T where Ed is
locally free. That is,

• E1 = ωXt , and cd,d = 1d is the identity map, for every positive d dividing
r.

• For each divisor d of r and each divisor d′ of d, we require:
– For every point p ∈ Xt where Ed is not free, the length of the cokernel

of cd,d′ at p is (d/d′) − 1.
– d·deg Ed = d′ ·(deg Ed′−

∑
m′

i), where m′ = (m′
1, . . . ,m

′
n) is the reduc-

tion of m modulo d/d′ (i.e. 0 ≤ m′
i < d/d′ and mi ≡ m′

i (mod d/d′)).
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• The homomorphisms {cd,d′} are compatible. That is, the diagram

(E
⊗d/d′

d )⊗d′/d′′ (cd,d′)⊗d′/d′′

- E
⊗d′/d′′

d′

Ed′′

?

cd′,d′′

cd,d ′′

-

commutes for every d′′|d′|d|r.

Finally, recall that these sheaves and homomorphisms must have a special type
of local structure. The details of these conditions, while rather technical, are impor-
tant for the proof of Theorem 2.2.1. We review them briefly here, for the reader’s
convenience and for purposes of fixing notation.

For a node q ∈ Xt in a fiber of X/T over a geometric point t ∈ T , we denote by
md,+ and md,− the orders of the d-th root map

cd,1 : E⊗d
d → ω(−

∑
mipi)

on the branches of the normalization of Xt at q. We define

ud := (md,+ + 1)/`d and vd := (md,− + 1)/`d,

where

`d := gcd(md,+ + 1,md,− + 1).

If cd,1 is an isomorphism at q, we set ud = vd = 0.
The first requirement on the local structure of a net of coherent roots on a family

X/T is the existence of a special local coordinate system near any node q where
cr,1 is not an isomorphism (i.e., Er is Neveu-Schwarz at q). This local coordinate
system consists of an étale neighborhood T ′ of t with an element τ ∈ OT ′,t, and
an étale neighborhood U of q in X ×T T ′ with sections x, y ∈ OU , such that for
s := ur + vr we have

• xy = τs.
• The ideal generated by x and y has the singular locus of X/T as its asso-

ciated closed subscheme.
• The homomorphism

(
OT ′,t[x, y]/(xy−τ

s)
)
→ OU,q induces an isomorphism

of the completions
(
ÔT ′,t[[x, y]]/(xy − τ s)

)
∼
- ÔU,q.

The second requirement on the local structure is that the sheaves Ed must have
a special presentation in terms of this special coordinate system. In particular, any
rank-one, torsion-free sheaf F always has a presentation of the form

F ∼= 〈ζ1, ζ2|eζ1 = xζ2, yζ1 = hζ2〉

for some e and h in OT ′,t, such that eh = τ s; but for sheaves in the net we require
that if Ed is not locally free at the node q, then Ed must have such a presentation
with e = τ (r/d)(vd`d) and h = τ (r/d)(ud`d). In other words, Ed is isomorphic near the
node q to the sheaf

Ed := 〈ζ1, ζ2|τ
(r/d)(vd`d)ζ1 = xζ2, yζ1 = τ (r/d)(ud`d)ζ2〉.
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If Ed is locally free at q, then for uniformity of notation we will use the unusual
presentation Ed

∼= Ed := 〈ζ1, ζ2|ζ1 = ζ2〉.
Finally, each homomorphism

cdj,j : E⊗d
dj

- Ej

in the net must be a so-called power map, in the sense of Definition 2.3.1 of [11].
This means that, if we use the local presentations

Edj = 〈ξ1, ξ2|τ
(r/(dj))(vdj`dj)ξ1 = xξ2, yξ1 = τ (r/(dj))(udj`dj)ξ2〉,

and
Ej = 〈ζ1, ζ2|τ

(r/j)(vj`j)ζ1 = xζ2, yζ1 = τ (r/j)(uj`j)ζ2〉,

of the sheaves Edj and Ej , then the map

(1) Symd(Edj) → Ej ,

induced by the homomorphism cdj,j , acts on the generators ξd−i
1 ξi

2 of Symd(Edj)
as

(2) ξd−i
1 ξi

2 7→

{
xu′′−iτ ivζ1 if 0 ≤ i ≤ u′′

yv′′−d+iτ (d−i)vζ2 if u′′ < i ≤ d.

Here we require that uj ≡ udjd (mod s) and vj ≡ vdjd (mod s), and we define
u′′ := (udjd− uj)/s and v′′ := (vdjd− vj)/s.

If Edj is locally free at q, then the existence of a good presentation is automatically
satisfied, and we have no additional power map requirement except that the map (1)
be an isomorphism.

2. Stable spin maps

In this section we introduce stable r-spin maps and begin to study their moduli
stack.

2.1. Definitions.

Definition 2.1.1. Let r ≥ 2 be an integer, and let n and g be non-negative
integers. Let V be an algebraic variety, and let β be a class in H2(V,Z). Finally, let
m = (m1,m2, . . . ,mn) be an n-tuple of integers such that r divides 2g− 2−

∑
mi.

A family of stable, n-pointed, r-spin maps into V of genus g, type m, and class β
is a pair (f, ({Ed}, {cd,d′})), consisting of a family of stable n-pointed genus g maps
f : X/T → V of class β, and an r-spin structure ({Ed}, {cd,d′}) of type m on X/T .

Example 2.1.2. If V is a point, then any stable, n-pointed, r-spin map into V is
just a stable r-spin curve.

Definition 2.1.3. An isomorphism from an r-spin map (X
f
- V, p1, . . . , pn,

({Ed}, {cd,d′})) to another (X ′ f ′

- V, p′1, . . . , p
′
n, ({E

′
d}, {c

′
d,d′})) of the same type

m consists of an isomorphism τ of n-pointed, stable maps

X
τ

- X ′

V

f

?

========= V

f ′

?
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and a set of OX -module isomorphisms {θd : τ∗E ′
d

∼
- Ed}, with θ1 being the

canonical isomorphism τ∗ωX′(−
∑

imip
′
i)

∼
- ωX(−

∑
mipi), and such that the

homomorphisms θd are compatible with all the maps cd,d′ and τ∗c′d,d′ .

Definition 2.1.4. Let V be an algebraic variety over C, and β an element of
H2(V,Z). The stack of stable r-spin maps to V (n-pointed, of genus g, and class
β) is the disjoint union

M
1/r

g,n(V, β) :=
∐

m

0≤mi<r

M
1/r,m

g,n (V, β)

of stacks M
1/r,m

g,n (V, β) of (families of) stable n-pointed r-spin maps to V of genus
g, type m = (m1, . . . ,mn), and class β.

We will see in Section 2.3 that M
1/r,m

g,n (V, β) (and, therefore, M
1/r

g,n(V, β)) is a

Deligne-Mumford stack whenever Mg,n(V, β) is. As in the special case of V = pt,
no information is lost by restricting m to the range 0 ≤ mi ≤ r − 1.

Proposition 2.1.5. If m ≡ m′ (mod r), then M
1/r,m

g,n (V, β) is canonically iso-

morphic to M
1/r,m′

g,n (V, β).

Proof. When m ≡ m′ (mod r), every r-spin structure of type m naturally gives
an r-spin structure of type m′ simply by

Er 7→ Er ⊗O

(∑ mi −m′
i

r
pi

)

�

2.2. Fundamental morphisms of stacks of stable spin maps.

The stack M
1/r,m

g,n (V, β) has a natural projection

(3) p̃ : M
1/r,m

g,n (V, β) - Mg,n(V, β)

which forgets the spin structure. The usual evaluation maps

evi : Mg,n(V, β) → V,

which send a point [X
f
- V, p1 . . . pn] ∈ Mg,n(V, β) to f(pi) ∈ V , induce evalu-

ation maps

ẽvi = evi ◦ p̃ : M
1/r,m

g,n (V, β) - V.

Less obvious is the fact that for any morphism s : V → V ′ taking β to β′, we
have a stabilization morphism

(4) s̃t : M
1/r,m

g,n (V, β) - M
1/r,m

g,n (V ′, β′)

which takes f to f ′ := s ◦ f and contracts components of the source curve that are
unstable with respect to f ′.

Theorem 2.2.1. For any morphism V → V ′, taking β to β′, the stabilization
map (4) is a morphism of stacks.
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The proof of Theorem 2.2.1, which is rather intricate, will be given in Subsec-
tion 2.4.

The various canonical maps introduced above are shown in the following com-
mutative diagram.

(5)

M
1/r,m

g,n (V, β)

M
1/r,m

g,n×Mg,n
Mg,n(V, β)

q1

?

M
1/r,m

g,n

�

s̃t

�

pr1

Mg,n(V, β)
evi

-

p̃

-

pr2

-

V

ẽv
i

-

Mg,n

q2

? �

stp
-

We will use the notation of this diagram throughout the remainder of the paper,
and we will denote the composition q2 ◦ q1 by q.

The universal curves Cg,n → Mg,n and C
1/r,m
g,n → M

1/r,m

g,n (V, β) will be denoted
by π.

Remark 2.2.2. The stack M
1/r,m

g,n (V, β) is not isomorphic to the fibered product

M
1/r,m

g,n ×Mg,n
Mg,n(V, β), although on the smooth locus the map

q1 : M1/r,m
g,n (V, β) - M1/r,m

g,n ×Mg,n Mg,n(V, β)

is an isomorphism when g and n are in the stable range (2g − 2 + n > 0).
The isomorphism for the smooth locus is straightforward: If X/T is a smooth

family of curves, then a stable map f : X → V and an r-spin structure ({Ed}, {cd,d′})
are precisely the data necessary to construct an r-spin map, i.e., there is a canonical
morphism

j : M1/r,m
g,n ×Mg,n Mg,n(V, β) → M1/r,m

g,n (V, β)

which is clearly the inverse of the morphism q1.
But when the curve X is not stable, this morphism j no longer exists. For

example, let X be a prestable curve that has two irreducible components C and E,
where C is a smooth curve of genus g, and E is a smooth, rational curve, without
marked points, joined to C at a single node q. Let f : X → V be an embedding of
X in V .

An r-spin structure ({Ed}, {cd,d′}) onX is equivalent to a pair of r-spin structures
({E ′

d}, {c
′
d,d′}) on C and ({E ′′

d }, {c
′′
d,d′}) on E of orders 0 and r − 2, respectively,

at q. Thus the automorphism group of the r-spin map (f, ({Ed}, {cd,d′})) is µr ×
µr, corresponding to multiplication of E ′

r and E ′′
r by r-th roots of unity. But the

stabilization map s̃t takes (f, ({Ed}, {cd,d′})) to the spin map (f |C , {E
′
d}, {c

′
d,d′}) on
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C, and the automorphism group of

p̃(f, ({Ed}, {cd,d′})) × s̃t(f, ({Ed}, {cd,d′})) = (f |C , ({E
′
d}), {c

′
d,d′})

is simply µr, since C is irreducible and E ′
r is invertible on C. Thus the morphism

q1 is not an isomorphism.

Proposition 2.2.3. The morphism q1 is flat and proper.

Proof. Flatness follows from the valuative criterion of flatness [8, 11.8.1], which
states that it is enough to check flatness of q1 over each R-valued point

SpecR→ M
1/r,m

g,n ×Mg,n
Mg,n(V, β),

where R is a discrete valuation ring. Since the completion R̂ of R is faithfully
flat over R, it suffices to check this for each complete discrete valuation ring. But
in this case, the results of [11] show that the universal deformation (relative to
the universal stable map f : C → V ) of a spin structure over the central fiber of
SpecR corresponds to the ring homomorphism R→ R[t]/(td−s), for some positive
d dividing r, and where s ∈ R is a uniformizing parameter for R. In particular,
R[t]/(td − s) is a free R-module, and thus is flat over R. Since the universal

deformation is faithfully flat (actually, étale) over M
1/r,m

g,n (V, β), this shows that q1
is also flat.

Properness also follows by the valuative criterion in exactly the same manner
as was proved in [12] for spin structures on stable curves. Nothing in that proof
required the underlying curves to be stable—only prestable. �

2.3. The algebraic nature of the stack of stable spin maps.

A useful notion in dealing with stacks is the idea of a Deligne-Mumford mor-
phism, or morphism of Deligne-Mumford type. This is analogous to the concept of
a representable morphism.

Definition 2.3.1. A morphism of stacks f : S → T is called Deligne-Mumford (or
of Deligne-Mumford type) if for every representable U and every U -valued point
U → T , the fibered product S ×T U is a Deligne-Mumford stack.

The most useful fact about these morphisms is that if S → T is a Deligne-
Mumford morphism, and if T is a Deligne-Mumford stack, then S is a Deligne-
Mumford stack (see [14, Prop. 3.1.3]).

Theorem 2.3.2. For all V and β, the forgetful morphism (equation (3)) is a
finite (meaning proper and quasi-finite, but not necessarily representable) Deligne-

Mumford morphism of stacks. In particular, M
1/r,m

g,n (V, β) is a Deligne-Mumford

stack whenever Mg,n(V, β) is.

Proof. Given a T -valued point T → Mg,n(V, β) for a representable T , we must
show that the stack

R(X/T ) := M
1/r,m

g,n (V, β) ×Mg,n(V,β) T

of coherent nets of r-th roots of ωX(−
∑
mipi) on the associated family X/T of

prestable curves is a Deligne-Mumford stack, finite over T . In particular, we need
to construct a smooth cover of R(X/T ) and show that the diagonal

∆ : R(X/T )×T R(X/T ) - R(X/T )



SPIN GROMOV-WITTEN INVARIANTS 11

is representable, unramified, and proper.
These facts are all straightforward generalizations of their counterparts over the

stack Mg,n of stable curves as described in [11]. The only real difference is that we
are now working with a specific family of prestable curves over T , as opposed to
working with the universal family of stable curves (over Mg,n), but that changes
nothing of substance in the proof.

The proof of properness of R(X/T ) - T is also an easy generalization of the
case of stable r-spin curves, and the morphism is obviously quasi-finite. �

2.4. Proof that stabilization is a morphism.

We now turn to the proof of Theorem 2.2.1, that for any morphism s : V → V ′,
taking β ∈ H2(V,Z) to β′ ∈ H2(V

′,Z), the stabilization map s̃t (4) is a morphism
of stacks.

It is straightforward to check that the stabilization of the underlying curves
preserves r-spin structures on each individual fiber, but we must also show that the
stabilization morphism on the underlying curves preserves the r-spin structure in
families.

Theorem 2.2.1 obviously follows from the following lemma.

Lemma 2.4.1. Let st : X̃/T → X/T be a morphism taking a family of n-

pointed prestable curves X̃/T to an n-pointed partial stabilization X of X̃, and

let ({Ẽd}, {c̃d,d′}) be an r-spin structure of type m = (m1, . . . ,mn) on X̃, with

0 ≤ mi ≤ r − 1 for every i. In this case, the sheaf R1st∗Ẽd is zero for every d|r,

and the push-forward ({st∗Ẽd}, {st∗c̃d,d′}) is an r-spin structure of type m on X.

Proof. As mentioned above, it is straightforward to check that the maps st∗c̃d,d′ and

the sheaves st∗Ẽd are T -flat and produce an r-spin structure of type m on each fiber
of X/T (this will also follow from the computations below). Thus we only need

to verify that R1st∗Ẽ = 0 (which implies that this construction commutes with
base change), and that the maps and sheaves meet the local conditions outlined in
Subsection 1.2 for being a coherent net on the family of curves X/T , provided the

original sheaves {Ẽd} and maps {c̃d,d′} form a coherent net on the family X̃/T .
Let us fix a point p of a geometric fiber Xt of X/T . There are three cases

to consider. First is the case when the point p is not the image of a contracted
component (i.e., st−1(p) is a single point). Second is the case when p is a smooth
point of the fiber Xt, but p is the image of a whole irreducible component of the
fiber X̃t of X̃/T ; that is, st contracts a −1-curve to the point p. Third is the case
that p is a node of the fiber Xt containing it, and it is the image of a contracted
component of X̃t; that is, p is the image of a −2-curve Ẽ.

Case 1: The first case is easy, since when st−1(p) is a single point, then st is
an isomorphism in a neighborhood of p (or of st−1(p)). In particular, st∗ is an

isomorphism, R1st∗Ẽd = 0, and cd,d′ = st∗(c̃d,d′) is a d/d′-th power map near p.

The second and third cases are more involved. Before we attack them, we note
that the conditions we must verify are local (and analytic) on the base T , so it
suffices to check the result when T is affine and is the spectrum of a complete local
ring R. Moreover, the conditions are analytic on X ; that is, the conditions are all
determined by restricting to the completion of the local ring of X near the point p.
To simplify, we will make the calculations in the case of d = r, but all other values
of d (dividing r) are similar.
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p’ ~= C
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Figure 1. A depiction of Case 2 of Lemma 2.4.1: fibers X̃t and
Xt, the stabilization map st : X̃t → Xt, and the normalization of
X̃t. The morphism st contracts the unstable component C to the
point p and induces an isomorphism from the rest of the curve Ỹ
to Xt.

Case 2: In the second case (st contracts a −1-curve of X̃ to the point p)

we will show that the induced sheaves st∗Ẽd are locally free at p, and the maps
cd,d′ are all isomorphisms; thus the local coordinate and power map conditions are
automatically fulfilled.

The fiber X̃t over Xt has one irreducible component C lying over p, and C
contains at most one marked point p′, labeled with an integer m, where 0 ≤ m ≤
r−1. This is indicated in Figure 1. On C, the sheaf (Ẽr/torsion)⊗r is isomorphic to
ωC(−m+q+ −mp), where q+ is the point of C which maps to the node q attaching

C to the rest of X̃t.
Moreover, r must divide 2gC − 2 −m+ −m, so either m = r − 1, which implies

that Ẽr is locally free (Ramond) near q, or r − 2 = m+ +m, which implies that Ẽr

is not locally free (it is Neveu-Schwarz) at q. In either case, Ẽr|C has degree −1

and thus has no global sections. Also R1st∗Ẽr = 0, since this is true on each fiber.
Now, in the Neveu-Schwarz case, the sheaf st∗Ẽr|Xt is simply the sheaf Ẽr re-

stricted (modulo torsion) to the rest of the prestable fiber Ỹ = (X̃t − C). But

Ẽr/torsion on Ỹ is an r-th root of ωỸ (−m−q− −
∑

pi 6=pmipi), where q− is the

other side of the node defined by q+. The actual value of m− is determined by the
relation m+ +m− = r − 2, which implies that m− = m.
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In the Ramond case, the vanishing of the global sections of Ẽr|C implies that

st∗(Ẽr|X̃t
) is Ẽr|Ỹ ⊗ E(−q−), so it is an r-th root of ωXt(−(r − 1)p).

In both the Ramond and Neveu-Schwarz cases, the new marked point p = st(q−)

of Xt is labeled with m, just as the old marked point p′ was labeled with m on X̃t.
If no point was marked on C, then the point p remains unmarked (and m− = 0).

Finally, st∗Ẽd is T -flat and R1st∗Ẽr vanishes, so we have that st∗Ẽr commutes
with base change, and the calculations above on the fibers all hold globally on the
family X/T . Thus st∗Er is invertible near p, and st∗cr,1 is an isomorphism near p.

In particular, st∗cr,1 is an r-power map. A similar argument holds for each Ẽd and
each c̃d,d′ near p.

Case 3: The third case is that of a point p ∈ X which is the image of a −2-curve
C̃ of X̃ . Just as in Case 2, it is easy to see that on the unstable (contracted) −2-

curve, the degree of the bundle is −1. Also, we have R1st∗Ẽr = 0; the sheaf st∗Ẽr

is T -flat and commutes with base change; and on the fibers, the induced collection
of sheaves and bundles forms an r-spin structure of type m.

We still must check that the induced sheaves have the necessary family structure
for spin curves (existence of a local coordinate of suitable type, with respect to
which the sheaves have the standard presentation—see Definition 1.2.1), and that
the induced maps are power maps, as described in equation (1). For simplicity we
will assume that the orders m+, m−, m′

+, and m′
− of the r-spin map c̃r,1 along

the two nodes q and q′ where the −2-curve intersects the rest of the fiber have the
property that gcd(m+ + 1,m− + 1) = 1 = gcd(m′

+ + 1,m′
− + 1). The case with

common divisors larger than 1 is similar.
It is shown in [12, §3.1] that X̃ is locally isomorphic to

ProjAA[µ, ν]/(xν − erµ, hrν − µy),

where A = ÔX,x
∼= R[[x, y]]/xy − πr, and e, h and π are elements of the maximal

ideal mR of R with eh = π. This shows the existence of the special local coordinate.
We next show that st∗Ed has a presentation of the form

st∗Ed
∼= 〈ζ1, ζ2|π

(r/d)(vd`d)ζ1 = xζ2, yζ1 = π(r/d)(ud`d)ζ2〉.

If we let µ/ν = s and ν/µ = z, then near the exceptional −2-curve C̃ the curve X̃
is covered by two open sets,

U = {µ 6= 0} ∼= SpecA[z]/(xz − er, y − hrz)

and

V = {ν 6= 0} ∼= SpecA[s]/(x− ers, ys− hr).

Since ({Ẽd}, {cd,d′}) is an r-spin structure, we can describe Ẽr on U by Ẽr|U ∼=

EU (ev, eu) := 〈ζ1, ζ2|zζ2 = euζ1, xζ1 = evζ2〉, and on V by Ẽr|V ∼= EV (hu′

, hv′

) :=

〈ξ1, ξ2|sξ2 = hu′

ξ1, yξ1 = hv′

ξ2〉, where u+ v = u′ + v′ = r.

On the exceptional curve C̃ ∼= P1, the sheaf (Ẽr/torsion)⊗r is isomorphic to
ωP1((1 − u) + (1 − v′)), and degree considerations show that u+ v′ = r, so u = u′

and v = v′. Moreover, in a neighborhood of C̃, if Di is the image of the i-th section
pi : T → X , the invertible sheaf ωX̃(−

∑
miDi) is trivial and is generated by the

element w = dx
x = −dz

z = ds
s = −dy

y . The r-th power map c̃r,1 is an isomorphism

away from the nodes of X̃ , and since it is a power map (changing the isomorphisms
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Ẽr|U ∼= EU (ev, eu) and Ẽr|V ∼= EV (hu, hv), if necessary), it maps the generators ζi
and ξi as follows:

ζr
1 7→ zuw, ζr

2 7→ xvw

and

ξr
1 7→ svw, ξr

2 7→ yuw.

Since c̃r,1 is an isomorphism away from the nodes, we have ζr
1 = zrξr

1 , or ζ1 =

zθξ1, for some r-th root of unity θ. Changing the isomorphism Ẽr|V ∼= EV (hu, hv)
by θ, we may assume

ζ1 = zξ1.

On U ∩ V we also have

ζ2 = sevζ1 = evξ1 and ξ2 = zhuξ1 = huζ1.

So global sections of Ẽ are of the form

Γ(Ẽr) = {((fUζ1 + f ′
Uζ2), (fV ξ1 + f ′

V ξ2)) ∈ EU ⊕EV |

fUζ1 + f ′
Uζ2 = fV ξ1 + f ′

V ξ2 on U ∩ V }.

We claim that the A-module

E(πu, πv) := 〈η1, η2|xη2 = πuη1, yη1 = πvη2〉

is isomorphic to Γ(Ẽr) via

η1 7→ (ζ2, e
vξ1) and η2 7→ (huζ1, ξ2).

The map is clearly an A-module homomorphism. Moreover, for any section
((fUζ1 + f ′

Uζ2), (fV ξ1 + f ′
V ξ2)) ∈ Γ(Ẽr) we may assume that fU ∈ R[z] and f ′

U ∈
R[[x]]. Likewise, we may assume that fV ∈ R[s] and f ′

V ∈ R[[y]].
Consequently, we have

zfU (z) + evf ′
U (x) − fV (s) − zquf ′

V (y) = 0,

or

zfU (z) + evf ′
U (ser) − fV (s) − zhuf ′

V (zhr) = 0.

Thus fU and fV are completely determined by

fU = huf ′
V (y) and fV = evf ′

U (x).

We may, therefore, map Γ(Ẽr) to E(πu, πv) via

(huf ′
V (y)ζ1 + f ′

U (x)ζ2), (e
vf ′

U (x)ξ1 + f ′
V (y)ξ2) 7→ f ′

U (x)η1 + f ′
V (y)η2,

and it is easy to check that this homomorphism is the inverse of the first.
An identical argument shows that Γ(Ẽd) is isomorphic to E(πu′

, πv′

), where
u′ ≡ u (mod d) and v′ ≡ v (mod d). This shows the existence of the desired

presentation for st∗Ẽd.
It remains to show that the maps st∗c̃d,d′ are power maps (2). Again, since the

arguments are essentially identical for each pair d and d′, it suffices to prove this
in the case of c̃r,σ for some σ dividing r.

As above, we have u + v = r. Let σ be a divisor of r, and d = r/σ. Let u′ be
the smallest non-negative integer congruent to ud modulo r and v′ be the smallest
non-negative integer congruent to vd modulo r. Define integers u′′ and v′′ as

u′′ =
du− u′

r
and v′′ =

dv − v′

r
.
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The module Γ(Ẽr) ∼= E(πu, πv) is generated by η1, and η2 with η1 = (ζ2, e
vξ1)

and η2 = (huζ1, ξ2). Further, Ẽσ may be defined on U by 〈φ1, φ2|zφ2 = eu′

φ1, xφ1 =

ev′

φ2〉 and on V by 〈ψ1, ψ2|sψ2 = hv′

ψ1, yψ1 = eu′

ψ2〉, so we may describe st∗Ẽσ

as above: the module Γ(Ẽσ) is isomorphic to E(πu′

, πv′

), and is generated by γ1 =

(φ2, e
v′

ψ1) and γ2 = (hu′

φ1, ψ2).

We must show that ηd−i
1 ηi

2 maps, via st∗(c̃r,σ), to πuixv′′−iγ1 for 0 ≤ i ≤ u′′ and

to πv(d−i)yu′′−(d−i)γ2 for u′′ ≤ i ≤ d.
We will do the first case—the second case is similar. The element ηd−i

1 ηi
2 is of

the form

ηd−i
1 ηi

2 = (ζ2, e
vξ1)

d−i(huζ1, ξ2)
i = (huiζi

1ζ
d−i
2 , ev(d−i)ξd−i

1 ξi
2),

so on U , this element ηd−i
1 ηi

2 maps as

huiζi
1ζ

d−i
2 7→ xv′′−ieuihuiφ2 = πuixv′′−iφ2.

On V , the element ηd−i
1 ηi

2 maps as

e(d−i)vξd−i
1 ξi

2 7→ sv′′−ihiue(d−i)vψ1.

It is straightforward to check that these are the same on U∩V . But this is exactly
the canonical d-th power map (2) for E(πv , πu)⊗d → E(πv′

, πu′

), as desired. �

Remarks 2.4.2. (1) It is important to note that if any of the mi is greater

than r− 1, Lemma 2.4.1 is no longer true. In particular, the sheaf R1st∗Ẽr

no longer vanishes in case 2 of the proof, and the subsequent fiber-to-family
transitions are not valid.

(2) As was mentioned in the Introduction, the entire theory including the above
proof can be reformulated in the language of twisted curves (orbicurves).
The proof in the orbicurve formulation requires the use of the Abramovich-
Vistoli stabilization of twisted stable maps [2, Prop 9.1.1] instead of the
usual Behrend-Manin stabilization that we use here, but the cases and con-
ditions that need to be checked are essentially the same in both approaches.
For this paper we chose the torsion-free sheaf formulation because it is more
concrete, closer to the physical origin of the theory, and consistent with the

papers [27, 26, 24] where the virtual class on M
1/r

g,n is constructed. It is
also better suited to the treatment of the generalized descent property of
Subsection 4.6, which provides an important link between ordinary (non-
spin) Gromov-Witten invariants with descendants and spin Gromov-Witten
invariants without descendants.

3. Cohomology classes

Here we introduce and study various cohomology classes in H•(M
1/r,m

g,n (V, β),Q)
necessary for constructing spin Gromov-Witten invariants and the corresponding
CohFT.

3.1. Tautological classes.

There are many natural cohomology classes in H•(M
1/r,m

g,n (V, β),Q). Of special
interest are the tautological classes induced by the universal sections

pi : M
1/r,m

g,n (V, β) → C1/r,m
g,n
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corresponding to the marked points of the universal curve π : C
1/r,m
g,n → M

1/r,m

g,n (V, β).
These are classes

(6) ψi := c1(p
∗
i (ωπ)) and ψ̃i := c1(p

∗
i (Er))

(and also classes ψ̃
(d)
i for each divisor d of r). In [16] it is proved that these classes

are closely related:

(7) rψ̃i = (mi + 1)ψi.

Although they will not be used in this paper, it is worth noting that the boundary
classes, which are also of interest, have a combinatorial structure that is nicely
described in terms of decorated graphs in a straightforward generalization of the
methods of [16].

3.2. Spin virtual class.

Recall from [16, §4.1] that an r-spin virtual class on the stack of stable, r-spin
curves gives, among other things, a cohomology class

(8) c1/r
g,n(m) ∈ H2D(M

1/r,m

g,n ,Q)

for every stable g, n, and r, (i.e., for 2g − 2 + n > 0). Here, the dimension D is

(9) D =
1

r

(
(r − 2)(g − 1) +

n∑

i=1

mi

)
.

The collection of classes c
1/r
g,n(m) is required to satisfy the axioms of convexity,

cutting edges, vanishing, and forgetting tails.
Currently two different constructions of a spin virtual class c1/r are known, an

algebro-geometric [27] and an analytic [24].
We can use the choice of an r-spin virtual class for stable r-spin curves to produce

a similar r-spin class for all stacks of stable spin maps in the stable range of (g, n).

Definition 3.2.1. Given an r-spin virtual class {c
1/r
g,n(m) ∈ H2D(M

1/r,m

g,n ,Q)}
satisfying the axioms of [16, §4.1], then for each V , and for each stable pair (g, n),

we define the r-spin virtual class on M
1/r,m

g,n (V, β) by

(10) c̃1/r
g,n(m) = s̃t

∗
c1/r
g,n(m) ∈ H2D(M

1/r,m

g,n (V, β),Q).

In the case that (g, n) is not a stable pair (i.e., 2g − 2 + n ≤ 0), we define the
r-spin virtual class directly. We do this first in genus zero.

Definition 3.2.2. If g = 0 and n < 3 then we define c̃
1/r
0,n (m) to be the top Chern

class of the dual of the first cohomology of the r-th root bundle Er; namely,

(11) c̃
1/r
0,n (m) = cD(−R1π∗Er),

where Er is the r-th root of the universal spin structure ({Ed}, {cd,d′}) on the uni-

versal curve π : C → M
1/r,m

0,n (V, β).

In the case that g = 1 and n = 0, the moduli space M
1/r

1,0 (V, β) decomposes into
the disjoint union of d substacks, where d is the number of positive divisors of r
(including 1 and r); these components correspond to the fact that (on the smooth
locus) r-spin structures are in one-to-one correspondence with r-torsion points of
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the Jacobian of the underlying curve. No deformation of the underlying curve can
take a point of order i to a point of order j unless i = j, so the moduli space breaks
up into disjoint substacks

M
1/r

1,0 (V, β) =
∐

i|r
1≤i≤r

M
1/r,(i)

1,0 (V, β).

We call i the index of the substack if the r-th root is a point of exact order i in the
Jacobian of the underlying curve.

Definition 3.2.3. If g = 1 and n = 0, define the r-spin virtual class c̃
1/r
1,0 (V, β) to

be the following 0-dimensional class

(12) c̃
1/r
1,0 =

{
−(r − 1) if the index is 1
1 otherwise.

Proposition 3.2.4. If g = 0 and n < 3, and if no marking mi in m is equal to

r − 1, the r-spin virtual class c̃
1/r
0,n(m) has dimension zero; and thus we have

c̃
1/r
0,n (m) =

{
0 if any mi = r − 1

1 otherwise.

Proof. The degree of the sheaf Er is an integer and is given by

deg Er = (2g − 2 −
∑

mi)/r,

hence when g = 0 we have
∑

mi ≡ −2 (mod r).

The dimension D of c̃
1/r
0,n is

D = ((2 − r) +
∑

mi)/r.

If n = 0 we have
∑
mi = 0, which implies r = 2, and we immediately have D = 0.

If 2 ≥ n ≥ 1, then since 0 ≤ mi ≤ r − 2, we have 0 ≤
∑
mi ≤ 2(r − 2); and

hence
∑
mi = r − 2 is the only solution to the congruence

∑
mi ≡ −2 (mod r).

Consequently,

D = (2 − r +
∑

mi)/r = 0.

If any of the mi are equal to r − 1, then the argument in the proof of Axiom 4
in [16, Theorem 4.1] shows that c̃1/r must be zero. �

Theorem 3.2.5. If g = 0, then c̃
1/r
0,n (m) is the top Chern class cD(−R1π̃∗Ẽr) of

the bundle whose fiber is the dual of the first cohomology of the r-th root Ẽr on the

universal curve π̃ : C̃ → M
1/r,m

0,n (V, β).

Proof. For n < 3, this is true by definition.

In the case that n ≥ 3, since g = 0, the r-spin virtual class c
1/r
0,n ∈ H2D(M

1/r,m

0,n ,Q)

is the top Chern class cD(−R1π∗Er) of the first cohomology of the r-th root Er on

the universal curve π : C → M
1/r,m

0,n , by the convexity axiom of [16, §4.1].
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We have the following commutative diagram.

C̃
φ
- C ×

M
1/r,m
0,n

M
1/r,m

0,n (V, β)
p1

- C

M
1/r,m

0,n (V, β)

p2

?

s̃t
-

π̃
-

M
1/r

0,n

π

?

Here φ is the natural map induced by π̃ and stabilization of C̃. If Ẽr is the r-th
root on C̃, then by Lemma 2.4.1 and the universality of the sheaves involved, φ̃∗Ẽr

is isomorphic to the pullback p∗1Er of the r-th root Er from C, and R1φ∗Ẽr = 0. By
the Leray spectral sequence we have

R1π̃∗Ẽr = R1p2∗(p
∗
1Er).

Even though the morphism s̃t is not flat, the natural map

(13) s̃t
∗
R1π∗Er

- R1p2∗(p
∗
1Er))

is an isomorphism. Indeed, since the morphism p2 has relative dimension 1, for any
sheaf F we have R2p2∗F = 0. This implies that the functor R1p2∗ ◦p

∗
1 is right exact

and therefore by [9, III.12.5] the map (13) is an isomorphism.
Thus we have

cD(−R1p2∗(p
∗
1Er)) = s̃t

∗
cD(−R1π∗Er) = s̃t

∗
c
1/r
0,n = c̃

1/r
0,n (m).

�

Remark 3.2.6. The proof of Theorem 3.2.5 depends upon the fact that the mark-
ings mi in m lie in the range 0 ≤ mi ≤ r−1. In particular, when an mi lies outside
that range, Lemma 2.4.1 fails.

We shall also see (in Remark 4.6.2) that Theorem 3.2.5 is false in the case that
any mi is larger than r − 1.

Definition 3.2.7. We define [M
1/r

g,n(V, β)]virt to be the pullback

[M
1/r

g,n(V, β)]virt := p̃∗[Mg,n(V, β)]virt

of the usual virtual fundamental class [Mg,n(V, β)]virt of Mg,n(V, β) via

p̃ : M
1/r

g,n(V, β) → Mg,n(V, β).

3.3. Decomposition of classes.

Using the notation of the commutative diagram (5), since ẽvi = evi ◦ p̃, for any
γ1, . . . , γn ∈ H•(V,Q) we have the equality

ẽv∗1γ1 ∪ ẽv
∗
2γ2 ∪ · · · ∪ ẽv∗nγn = p̃∗(ev∗1γ1 ∪ · · · ∪ ev∗nγn).

We also have the following important relation on pushforwards of classes, which
is the crucial step in proving that the CohFT defined by stable r-spin maps is the
tensor product of the CohFTs of r-spin curves and stable maps (Theorem 4.3.2).
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Theorem 3.3.1 (Decomposition). Given any set {γ1, . . . , γn} of classes in A∗(V )

(or H•(V )), and given the r-spin virtual class c̃1/r on M
1/r,m

g,n (V, β) defined by
equations (10), (11) and (12), the relation
(14)

q∗(c̃
1/r ∪

n∏

i=1

ẽv∗i (γi)∩ [M
1/r

g,n(V, β)]virt) = p∗c
1/r ∪ st∗(

n∏

i=1

ev∗i (γ) ∩ [Mg,n(V, β)]virt)

holds.

Proof. We will give the proof on the level of (operational) Chow groups A∗ with
notation as in [22, V §8]. From [22, VI §2] it will follow then that such results also
hold for H•(V ).

To begin, let us fix some notation. We denote the identity maps on Mg,n,

M
1/r

g,n , Mg,n(V, β), M
1/r

g,n ×Mg,n
Mg,n(V, β), and M

1/r

g,n(V, β) by I, Ir, IV , I×, and

Ir,V , respectively. We have c1/r ∈ A∗(M
1/r

g,n) := Ā∗(Ir : M
1/r

g,n → M
1/r

g,n), and

c̃1/r = s̃t
∗
(c1/r) ∈ A∗(M

1/r

g,n(V, β)). We take γi in A∗(V ), so that ẽv∗i (γi) is in

A∗(M
1/r

g,n(V, β)). Also, we have [Mg,n(V, β)]virt ∈ A∗(Mg,n(V, β)).
Finally, by

c̃1/r ∪

n∏

i=1

ẽv∗i (γi) ∩ [M
1/r

g,n(V, β)]virt

we mean (
c̃1/r ∪

n∏

i=1

ẽvi(γi)

)

Ir,V

∩ [M
1/r

g,n(V, β)]virt.

As in [22, V §8.9], for any morphism Y → X , we define f∗ : A∗(X) → A∗(Y ) to
be

(15) f∗(δ)h ∩ y := δf◦h ∩ y,

where δ ∈ A∗(X) and h : L → Y is an arbitrary morphism, and y ∈ A∗(L). We
also define, for any proper, flat morphism f : Y → X of Deligne-Mumford stacks
X and Y , the proper flat pushforward f• : A∗(Y ) → A∗(X) to be

(16) f•αg ∩ c := f∗(αf ′

Y
∩ f∗(c)),

where g : L → X is an arbitrary morphism, α is an element of A∗(Y ), and c is an
element of A∗(X).

Remark 3.3.2. Note that part (ii) of Manin’s definition in [22, V §8.9] of the
operational Chow ring A∗(M) for the identity morphism I : M → M states that
elements of A∗(M) only need to commute with pullback along representable, flat
morphisms of DM-stacks, despite the fact that standard definitions of general op-
erational Chow rings require that these elements commute with pullback along all
flat morphisms of DM-stacks (see Vistoli [28, 5.1.i] and Manin [22, V.8.1.i]).

In what we do below, we will need the definition of A∗(M) that requires com-
mutativity with all flat pullbacks; that is, we require the following.

Let f : X → Y be a flat morphism of Deligne-Mumford stacks, which is not
necessarily representable, and let h : Y → Z be an arbitrary morphism of Deligne-
Mumford stacks. For any σ ∈ A∗(Z) and y ∈ A∗(Y ), we have

(17) σh◦f ∩ f∗(y) = f∗(σh ∩ y).
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This seemingly minor difference in the definition of A∗ allows us to prove a
projection formula for non-representable morphisms.

Lemma 3.3.3. Let f : X → Y be a proper, flat morphism of Deligne-Mumford
stacks (which is not necessarily representable).

1. For an arbitrary morphism h : L→ Y of Deligne-Mumford stacks we have

(18) h∗f• = fL•h
∗
X .

2. (Projection formula for f•) For any σ ∈ A∗(X) and β ∈ A∗(Y ) we
have

(19) f•(σf
∗(β)) = f•(σ)β.

Proof. For part 1 of the lemma, the same proof as given by Manin for this equation
[22, V.8.30] works exactly for our case, too; nowhere is the representability of f
used in Manin’s proof.

For part 2, again Manin’s proof of the projection formula [22, V.8.29] works for
non-representable morphisms, the only change needed is that [22, V.8.22] (commu-
tativity with flat, representable pullbacks) must be replaced by our equation (17)
for non-representable, flat pullbacks. �

One more fact we will need in the proof of Theorem 3.3.1 is the commutativity
with proper pushforwards required by the definition of A∗ (cf. [22, V.8.21]); namely,
if p : P → L is proper, and h : L→M is an arbitrary morphism, then by definition
of A∗(M), for any σ ∈ A∗(M) and for any y ∈ A∗(P ) we have

(20) σh ∩ p∗(y) = p∗(σhp ∩ y).

Now we may proceed with the proof of Theorem 3.3.1. We will refer throughout
the proof to the notation of the commutative diagram (5).

Since q1 is a birational map, it is a splitting morphism (i.e., q1•q
∗
1 = I×, as a

map on A∗). Moreover, the morphism st is proper,p is flat [11, Theorem 2.2] and
proper [11, Theorem 2.3], and q1 is flat and proper by Proposition 2.2.3. We have
the following relations:

q∗

((
c̃1/r ∪

n∏

i=1

ẽvi(γi)

)
∩ p̃∗[Mg,n(V, β)]virt

)
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= q2∗q1∗



q∗1

(
pr∗1c

1/r ∪ pr∗2

n∏

i−1

ev∗i (γi)

)

Ir,V

∩ q∗1pr
∗
2 [Mg,n(V, β)]virt





(dfn. of q1•) = q2∗


q1•q∗1

(
pr∗1c

1/r ∪ pr∗2

n∏

i−1

ev∗i (γi)

)

I×

∩ pr∗2 [Mg,n(V, β)]virt




(q1 is splitting) = q2∗

((
pr∗1c

1/r ∪ pr∗2
∏

ev∗i (γi)
)

I×

∩ pr∗2 [Mg,n(V, β)]virt

)

= st∗pr2∗

((
pr∗1c

1/r ∪ pr∗2
∏

ev∗i (γi)
)

I×

∩ pr∗2 [Mg,n(V, β)]virt

)

(dfn. of pr2•) = st∗

(
pr2•

(
pr∗1c

1/r ∪ pr∗2
∏

ev∗i (γi)
)

IV

∩ [Mg,n(V, β)]virt

)

(prj. fmla. for pr2•) = st∗

((
pr2•(pr

∗
1c

1/r) ∪
∏

ev∗i (γi)
)

IV

∩ [Mg,n(V, β)]virt

)

(Equation 18) = st∗

((
(st∗p•c

1/r) ∪
∏

ev∗i (γi)
)

IV

∩ [Mg,n(V, β)]virt

)

= st∗

(
(st∗p•c

1/r)IV ∩
(
(
∏

ev∗i (γi))IV ∩ [Mg,n(V, β)]virt
))

(dfn. of st
∗
) = st∗

(
(p•c

1/r)st ∩
(
(
∏

ev∗i (γi))IV ∩ [Mg,n(V, β)]virt
))

(Equation 20) = (p•c
1/r)I ∩ st∗

(
(
∏

ev∗i (γi))IV ∩ [Mg,n(V, β)]virt
)
.

This completes the proof of Theorem 3.3.1. �

4. Gromov-Witten invariants and tensor products of CohFTs

4.1. Standard Gromov-Witten invariants.

Let V be a smooth projective variety. The moduli space of stable r-spin maps

M
1/r

g,n(V ) gives rise to a set of correlators satisfying axioms analogous to those
satisfied by Gromov-Witten invariants. This will follow from Theorem 4.3.2, which

states that the CohFT associated to M
1/r

g,n(V ) is the tensor product of the Gromov-
Witten CohFT with the r-spin CohFT.

We recall that the Gromov-Witten invariants Λ
(V )
g,n,β : H•(V,C) → H•(Mg,n,C),

defined as

Λ
(V )
g,n,β(γ1, . . . , γn) = st∗[(

n∏

i=1

ev∗i γi) ∩ [Mg,n(V, β)]virt],

can be combined in formal power series as follows:

Definition 4.1.1. Let R denote the ring consisting of formal sums of expressions
qβ with complex coefficients, where β ∈ H2(V,Z) belongs to the semigroup B(V )
of numerical equivalence classes such that β · L ≥ 0 for all ample divisor classes
L in V . Furthermore, we impose on R the relations qβ1+β2 = qβ1qβ2 . We define

Λ
(V )
g,n : H•(V )⊗n → H•(Mg,n,R) as

Λ(V )
g,n :=

∑

β

qβΛ
(V )
g,n,β.
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Let Λ(V ) denote the collection {Λ
(V )
g,n } and 1 denote the unit in H•(V ).

Let η be the Poincaré pairing on H•(V ) and let ηµν := η(eµ, eν) be the coeffi-
cients of its matrix with respect to a basis {eµ} for H•(V ). Denote by (ηµν) the
inverse matrix of (ηµν ).

Recall that a fundamental property of the Gromov-Witten invariants Λ(V ) is
that they define a CohFT on (H•(V ), η) with flat identity over R [19]. We refer
the reader to [19, 16] for further details about CohFTs.

4.2. Spin CohFT.

Like ordinary Gromov-Witten invariants defined by means of stable maps, the
spin Gromov-Witten invariants also form CohFTs.

Definition 4.2.1. Let r ≥ 2 be an integer and let (H(r), η(r)) be the (r − 1)-
dimensional C vector space with basis {e0, . . . , er−2} together with a metric

η(r)
m1,m2

:= η(r)(em1 , em2) = δm1+m2,r−2.

Let c1/r be an r-spin virtual class on M
1/r

g,n satisfying the axioms from [16, §4.1].
Let

Λ(r)
g,n : H(r)⊗n

→ H•(Mg,n)

be defined by

(21) Λ(r)
g,n(em1 , . . . , emn) := r1−gp∗c

1/r,m
g,n

for all nonnegative numbers g, n such that 2g−2+n > 0 where p : M
1/r,m

g,n → Mg,n.

Finally, let Λ(r) denote the collection {Λ
(r)
g,n}.

Remark 4.2.2. As in the case of the CohFT based on ordinary stable maps, the

classes {Λ
(r)
g,n} a priori may depend on the choice of the spin virtual class c1/r.

Currently, there exist two different constructions of a candidate for such class on

M
1/r

g,n : an algebro-geometric construction of [27], resembling algebraic constructions
of the virtual fundamental class, and an analytic construction of [24] developing
Witten’s original idea [29]. While it is not known yet whether these constructions
give the same class for all g and r, they agree when g = 0 (and any r) or r = 2 (and
any g). In these cases, any class satisfying the axioms must be equal to the class

constructed in [16] and therefore the resulting classes {Λ
(r)
g,n} and the corresponding

correlators do not depend on this choice.

Theorem 4.2.3 ([16, Theorem 3.8]). For each integer r ≥ 2, the triple (H(r), η(r),Λ(r))
forms a CohFT with flat identity e0. It is called the r-spin CohFT.

Since the space M
1/r

g,n is associated to the r-spin CohFT, and the space Mg,n(V )
is associated to Gromov-Witten theory, it is natural to ask if there is a natural

CohFT associated to the space M
1/r

g,n(V, β). The answer is yes, and this CohFT is
the tensor product of the other two.

4.3. Tensor products of CohFTs.

The category of cohomological field theories has a canonical tensor product op-
eration (see [21]). This reflects the fact that the diagonal map Mg,n → Mg,n ×

Mg,n is a coproduct with respect to the composition maps of the modular operad

{H•(Mg,n)}.
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In the case of Gromov-Witten invariants, Behrend [4] proved that the CohFT
arising from Mg,n(V ′ × V ′′) is the tensor product of that arising from Mg,n(V ′)

and Mg,n(V ′′). Restricting to genus zero, one can regard this as a deformation of
the Künneth theorem. Similarly, it was shown in [17] that the tensor product of an
r-spin CohFT and an r′-spin CohFT can be geometrically realized by means of the
moduli space of (r, r′)-spin curves. To complete this picture, we need to provide
an intersection-theoretical description of the tensor product of the Gromov-Witten
theory with the r-spin CohFT.

Definition 4.3.1. Let (H•(V,C), ηP ) denote the cohomology of V together with its
Poincaré pairing ηP . Let (H(V,r), η) denote the tensor product of (H•(V ), ηP ) with
(H(r), η(r)). For each stable pair (g, n) and β ∈ H2(V,Z), define the (cohomological)
correlators (or the spin Gromov-Witten invariants) to be linear maps

Λ
(V,r)
g,n,β : H(V,r) → H•(Mg,n,C)

given by

(22) Λ
(V,r)
g,n,β(γ1 ⊗ em1 , . . . , γn ⊗ emn) = Q∗[(c̃

1/r,m
g,n

n∏

i=1

ev∗i γi) ∩ [M
1/r

g,n(V, β)]virt],

where Q : M
1/r

g,n(V ) → Mg,n is the morphism that forgets both the stable map and

the r-spin structure, [M
1/r

g,n(V, β)]virt is the virtual fundamental class of M
1/r

g,n(V ),

and γi ⊗ emi ∈ H(V,r).

The following theorem holds.

Theorem 4.3.2. Let Λ
(V,r)
g,n : H(V,r)⊗n

→ H•(Mg,n,R), where

Λ(V,r)
g,n :=

∑

β

qβΛ
(V,r)
g,n,β .

Let Λ(V,r) denote the collection {Λ
(V,r)
g,n }. The collection (H•(V,R), η,Λ) forms a

CohFT (over the ground ring R) with flat identity 1⊗ e0 and is the tensor product
of the CohFTs (H•(V,R), η,Λ(V )) and (H(r), η(r),Λ(r)).

Proof. This is an immediate consequence of Theorem 3.3.1. �

The r-spin CohFTs behave as though the elements of H(r) were cohomology
classes of fractional dimension, similar to the orbifold cohomology classes of Chen
and Ruan [6]. Since r-spin CohFTs correspond to the case of r-spin maps into
a point, the elements of B(V ) in that theory are all trivial. However, the theory
associated to r-spin maps into a general target V does satisfy axioms analogous to
those of Gromov-Witten theory. In particular, this theory, like the Gromov-Witten
theory, is of qc-type in the sense of [22, 23].

4.4. Spin Gromov-Witten invariants.

The classes Λ
(V,r)
g,n,β have properties analogous to those of Gromov-Witten invari-

ants.

Theorem 4.4.1. Let (g, n) be a stable pair of integers. The collection {Λ
(V,r)
g,n,β}

satisfies the following properties:

1. (Effectivity) Λ
(V,r)
g,n,β = 0 if β /∈ B(V ).
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2. (Sn-Equivariance) Each map Λ
(V,r)
g,n,β is Sn-equivariant.

3. (Degeneration Axioms) Given a basis {eµ} for H(V,r), let η(V,r)
µν := η(V,r)(eµ, eν)

and (η(V,r)µν
) denote the inverse matrix.

(a) Let

ρΓtree : Mk,j+1 ×Mg−k,n−j+1
- Mg,n

be the gluing map corresponding to the stable graph

Γtree =
j

1

g-kk

j+1

i

i

i

i

n

.

The forms Λ
(V,r)
g,nβ satisfy the composition property:

ρ∗Γtree
Λ

(V,r)
g,n,β(γ1, γ2, . . . , γn) =

∑

β1+β2=β

Λ
(V,r)
k,j+1,β1

(γi1 , . . . , γij , eµ)η(V,r)µν
⊗ Λ

(V,r)
g−k,n−j+1,β2

(eν , γij+1 , . . . , γin)

for all γi ∈ H(V,r).
(b) Let

ρΓloop
: Mg−1,n+2

- Mg,n

be the gluing map corresponding to the stable graph

Γloop =
g-1

1

2

ni

i
i

.

The forms Λ
(V,r)
g,nβ satisfy the composition property:

ρ∗Γloop
Λ

(V,r)
g,n,β(γ1, γ2, . . . , γn) = Λ

(V,r)
g−1,n+2,β(γ1, γ2, . . . , γn, eµ, eν)η(V,r)µν

for all γi ∈ H(V,r).
4. (Identity Axiom) Let 1 := 1⊗ e0, where 1 is the unit in H•(V ) and e0 the

unit of H(r). We have

Λ
(V,r)
g,n+1,β(γ1, . . . , γn,1) = π∗Λ

(V,r)
g,n,β(γ1, . . . , γn)

for all γi ∈ H(V,r), where π : Mg,n+1(V ) → Mg,n is the forgetful morphism.
5. (Dimension Axiom) Let KV denote the canonical class on V . The map

Λ
(V,r)
g,n,β of Z-graded modules must be homogeneous of degree

∣∣∣Λ(V,r)
g,n,β

∣∣∣ = 2

∫

β

KV + 2(g − 2) dimC V +
2

r
(r − 2)(g − 1).

6. (Divisor Axiom) Let α⊗ e0 belong to H2(V ) ⊗H(r). We have

π∗Λ
(V,r)
g,n+1,β(γ1, . . . , γn, α⊗ e0) = Λ

(V,r)
g,n,β(γ1, . . . , γn)

∫

β

α,

for all γi ∈ H(V,r), where π : Mg,n+1(V ) → Mg,n is the forgetful morphism.
7. (Mapping to a Point Axiom)

Λ(V,r)
g,n (γ1 ⊗ em1 , . . . , γn ⊗ emn) = p2∗

[
p∗1(

n∏

i=1

γi) ∪ cd(TV � L)

]
∪ p∗c

1/r,m
g,n
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for all γi ∈ H•(V ), where p1 : V ×Mg,n → V and p2 : V ×Mg,n → Mg,n

are the canonical projections, TV is the tangent bundle, L = R1π∗OCg,n

where OCg,n is the structure sheaf on the universal curve π : Cg,n → Mg,n,

and d = g dimC V (the rank of TV ⊗ L). Finally, p : M
1/r

g,n → Mg,n is the
morphism forgetting the spin structure and m = (m1, . . . ,mn).

Proof. All axioms follow immediately from Theorem 3.3.1 and the corresponding
properties of usual Gromov-Witten invariants [19]. �

4.5. Potential functions.

Recall the potential functions associated to Mg,n(V ).

Definition 4.5.1. Consider the correlation functions

〈τa1(γ1) . . . τan(γn)〉g,β :=

∫

[Mg,n(V,β)]virt

n∏

i=1

(ψai

i ev
∗
i γi)

for all integers a1, . . . , an ≥ 0 and γ1, . . . , γn in H•(V ). Correlation functions such
that some of the ai are nonzero are called gravitational descendants.

The large phase space potential (function) associated to Mg,n(V ) is

Φ(V )(t) :=
∑

g≥0

λ2g−2Φ(V )
g (t) ∈ λ−2R[[λ2]][[tαa ]],

where

Φ(V )
g (t) :=

∑

β∈B(V )

〈exp(t · τ )〉g,βq
β

and

t · τ :=
∑

a≥0

∑

α

tαa τa(εα),

relative to a basis {εα} for H•(V ) such that ε0 is the identity.
The small phase space potential (function), Φ(V )(x) where x = (x1, . . . , xn) are

coordinates on H•(V ) relative to the basis {εα}, is obtained from Φ(V )(t) by setting
xα := tα0 and tαa := 0 for all a ≥ 1 and all α.

There are analogous potential functions associated to M
1/r

g,n(V ).

Definition 4.5.2. Consider the correlation functions

〈τa1(γ1 ⊗ em1) . . . τan(γn ⊗ emn)〉g,β :=

∫

[M
1/r,m
g,n (V,β)]virt

r1−g c̃1/r(m)

n∏

i=1

(ψai

i ev
∗
i γi)

for integers a1, . . . , an ≥ 0, γ1, . . . , γn ∈ H•(V ), and em1 , . . . , emn ∈ H(r). Cor-
relation functions such that some of the ai are nonzero are called gravitational
descendants.

The large phase space potential (function) associated to M
1/r

g,n(V ) is

Φ(V,r)(u) :=
∑

g≥0

λ2g−2Φ(V,r)
g (u) ∈ λ−2R[[λ2]][[H(V,r)]],

where

Φ(V,r)
g (u) :=

∑

β∈B(V )

〈exp(u · τ )〉g,βq
β
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and

u · τ :=
∑

a≥0

∑

α,m

uα,m
a τa(εα ⊗ em),

relative to the basis {εα ⊗ em} for H(V,r).
The small phase space potential (function), Φ(V,r)(y) where y consists of coordi-

nates {yα,m} on H•(V ) relative to the basis {εα ⊗ em}, is obtained from Φ(V,r)(u)
by setting yα,m := uα,m

0 and uα,m
a := 0 for all a ≥ 1 and all α,m.

Theorem 4.5.3. The small phase space potential function Φ(V,r)(y) is completely

determined by the potential Φ(V )(x), the cohomological correlators {Λ
(V )
g,n }, and

{Λ
(r)
g,n}.

Proof. Theorem 3.3.1 shows that the intersection numbers 〈γ1⊗em1 · · · γn⊗emn〉g,n

are completely determined by the classes {Λ
(V )
g,n } and {Λ

(r)
g,n} if (g, n) is stable.

We must still address the unstable cases—when (g, n) ∈ {(0, 0), (0, 1), (0, 2), (1, 0)}.
But by Proposition 3.2.4 and Definition 3.2.3, these are always of dimension zero.

Let M
1/r,m

g,n :=
∐

i M
1/r,m,(i)

g,n , where M
1/r,m,(i)

g,n are the connected components of

M
1/r,m

g,n , and let p̃(i) : M
1/r,m,(i)

g,n (V, β) → Mg,n(V, β) be the morphisms forgetting

the r-spin structure. Furthermore, let c̃1/r,m,(i) be c̃1/r restricted to M
1/r,m,(i)

g,n and

let us assume that c̃1/r,m,(i) is zero dimensional. For all γ⊗e := γ1⊗em1 · · · γn⊗emn

in H(V,r), we have

〈γ ⊗ e〉g,β = r1−g

∫
(ẽv∗γ ∪ c̃1/r) ∩ [M

1/r,m

g,n (V, β)]virt

=
∑

i

c̃1/r,m,(i)
g,n r1−g

∫
ẽv∗γ ∩ [M

1/r,m

g,n (V, β)]virt

=
∑

i

c̃1/r,m,(i)
g,n r1−g

∫
p̃∗(i)ev

∗γ ∩ p̃∗(i)[Mg,n(V, β)]virt

=
∑

i

c̃1/r,m,(i)
g,n r1−g

∫
(ev∗γ)p̃(i)

∩ p̃∗(i)[Mg,n(V, β)]virt

=
∑

i

c̃1/r,m,(i)
g,n r1−g

∫
p̃∗(i)(ev

∗γ ∩ [Mg,n(V, β)]virt)

=
∑

i

c̃1/r,m,(i)
g,n r1−g deg(p̃(i))

∫
ev∗γ ∩ [Mg,n(V, β)]virt

=
∑

i

c̃1/r,m,(i)
g,n r1−g deg(p̃(i))〈γ〉g,β ,

where deg denotes the (orbifold) degree of p̃(i). This completes the proof. �

4.6. The descent property.

In this subsection, we show that when g = 0, our constructions on M
1/r

0,n (V, β)
satisfy a generalization of the so-called descent property (introduced in [15]). This
property of r-spin invariants gives a geometric origin for the ψ classes (at least in
genus zero) in the definition of the usual Gromov-Witten invariants of V .
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It may seem curious that M
1/r

g,n(V, β) is defined to be the disjoint union of

M
1/r,m

g,n (V, β), where the n-tuple of nonnegative integers m = (m1, . . . ,mn) is re-
quired to satisfy mi ≤ r − 1 for all i = 1, . . . , n. The latter restriction, however, is
reasonable because of the isomorphism

M
1/r, em

g,n (V, β) - M
1/r, em+rδi

g,n (V, β)

from Proposition 2.1.5, where i = 1, . . . , n, δi is the n-tuple whose i-th component
is 1 and the rest are zero, and m̃ := (m̃1, . . . , m̃n) is any n-tuple of nonnegative
integers.

On the other hand, in genus zero the classes c1/r(m̃) change under this identifi-
cation in the following manner.

Theorem 4.6.1. (The descent property) Let m̃ = (m̃1, . . . , m̃n) be an n-tuple of
nonnegative integers and let m = (m1, . . . ,mn) be the reduction of m̃ (mod r) (i.e.,
m̃ ≡ m (mod r) and 0 ≤ mi ≤ r − 1 for i = 1, . . . , n).

Let c̃1/r(m̃) be the top Chern class of the vector bundle R1π∗E(m̃)∗ on M
1/r,m

0,n .

The following equation is satisfied on M
1/r,m

0,n for all i = 1, . . . , n, where δi is
the n-tuple whose i-th component is 1 and the rest are zero:

(23) rc̃1/r(m̃ + rδi) = −(m̃i + 1)ψic̃
1/r(m̃).

Proof. The proof is identical to the case of M
1/r

g,n in [15]. It follows from the short
exact sequence

0 - Er(m̃ + rδi) - Er(m̃) - σ∗
i Er(m̃) - 0

and the fact that

rψ̃i := rc1(σ
∗
i Er(m̃)) = (mi + 1)ψi

for all i = 1, . . . , n, which follows from an immediate generalization of Proposi-
tion 2.2 from [16]. �

Remark 4.6.2. The descent property holds on both M
1/r

0,n and M
1/r

0,n (V, β), but

the ψ classes on M
1/r

0,n (V, β) are not pullbacks of the corresponding ψ classes on

M
1/r

g,n—just as in the case of stable maps, they differ by divisors that are collapsed
under the stabilization map (see [20, 22]). This illustrates the fact, alluded to in

Remarks 2.4.2 and 3.2.6, that when any m̃i is larger than r−1, the class s̃t
∗
c1/r(m̃)

is not equal to the class c̃1/r(m̃).

The previous theorem motivates the following generalization of the small phase
space potential function in genus zero.

Definition 4.6.3. Let the n-tuples m̃ = (m̃1, . . . , m̃n) and m and the class c̃1/r(m̃)

on M
1/r,m

0,n be the same as in the previous theorem.
Define the correlation functions

〈τ̃0(γ1 ⊗ em̃1) . . . τ̃0(γn ⊗ em̃n)〉0,β :=

∫

[M
1/r,m
0,n (V,β)]virt

rc̃1/r(m̃)

n∏

i=1

ẽv∗i γi.

Consider the analog of the genus zero small phase space potential

Φ̃
(V,r)
0 (t̃) ∈ R[[λ2]][[t̃α,m̃]],
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where
Φ̃

(V,r)
0 (t̃) :=

∑

β∈B(V )

〈exp(t̃ · τ̃ )〉0,βq
β ,

and
t̃ · τ̃ :=

∑

α,m̃

t̃α,m̃τ̃0(εα ⊗ em̃),

where the last sum runs over all α and all nonnegative integers m̃.

Corollary 4.6.4. Let r ≥ 2 be an integer. The potential functions Φ̃
(V,r)
0 (t̃) and

Φ
(V,r)
0 (u) are equal after making the assignment:

t̃α,(ar+m) :=
(−1)ara

[r(a− 1) +m+ 1]r
uα,m

a ,

where a and m are nonnegative integers such that m ≤ r − 1 and

[r(a − i) +m+ 1]r :=

a∏

i=1

(r(a − i) +m+ 1).

5. Examples and special cases

5.1. The case of r = 2.
In [16, 29], the virtual class c1/r(m) when r = 2 was constructed for all genera

and n-tuples m = (m1, . . . ,mn) with 0 ≤ mi ≤ 1. It was shown that the r = 2 case
reduced to the Gromov-Witten invariants of a point. A similar result is true for all
2-spin Gromov-Witten invariants.

Theorem 5.1.1. For a pair of nonnegative integers (g, n) and β ∈ H2(V,Z) let

p̃ : M
1/2

g,n(V, β) → Mg,n(V, β) be the map forgetting the spin structure. For i =

1, . . . , n, let γi ⊗ e0 belong to H(V,r), then

21−g p̃∗

(
c̃1/2(0)

n∏

i=1

(ẽv∗i γi) ∩ [M
1/2

g,n (V, β)]virt

)
=

n∏

i=1

(ev∗i γi) ∩ [Mg,n(V, β)]virt.

Consequently, the large phase space potential functions Φ(V,2)(u) and ΦV (t) agree

after setting u
(α,0)
a = tαa .

Proof. This was proved in the case where V is a point in [16]. The same proof
goes through here using the definition of c̃1/r (which is now defined in the unstable

range) and the fact that [M
1/2

g,n(V, β)]virt = p̃∗[Mg,n(V, β)]virt. �

5.2. The case of g = 0 and β = 0.
Genus zero Gromov-Witten invariants of V give rise to the quantum cohomology

of V , which is a certain deformation of the cup product on H•(V ). The cup product
itself appears as the β = 0 part of the genus zero potential function. Similarly, the

Frobenius structure associated to M
1/r

g,n(V ) can be regarded as a deformation of

the following commutative, associative product on H(V,r).

Proposition 5.2.1. Let V be a smooth projective variety and n ≥ 3 be an integer.
Let γ1, . . . , γn belong to H•(V ) and e0, . . . , er−2 be the standard basis in H(r), then

〈γ1 ⊗ em1 · · · γn ⊗ emn〉g,β=0 =

∫

M
1/r,m
0,n

c1/r(m)

∫

V

γ1 ∪ . . . ∪ γn.
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Proof. This follows from the Mapping to a Point property. �

5.3. The case of g = 0, r = 3, and V = P1. Throughout this section let r = 3
and V = P1. We will now compute its genus zero small phase potential function,
denoted by

χ(t) := Φ
(P1,3)
0 (t),

where t is a set of coordinates tα,m associated to the basis {τα,m := εα⊗em} (where

α = 0, 1 and m = 0, 1) for H(P1,3). Here ε0 is the identity element in H•(P1) and
ε1 is the element in H2(P1) Poincaré dual to a point. The metric in this basis is

η(α1,m1),(α2,m2) := η(εα1 ⊗ em1 , εα2 ⊗ em2) = δα1+α2,1δm1+m2,1.

The potential function can be broken into two pieces:

χ(t) = χβ=0(t) + Ψ(t),

where χβ=0(t) consists of only those terms corresponding to the moduli spaces

M0,n(P1, 0); while Ψ(t) contains the contributions (“instanton corrections”) from

M0,n(P1, β) where β 6= 0. Corollary 5.2.1 implies that

(24) χβ=0(t) =
1

2
t1,1(t0,0)2 + t0,0t0,1t1,0 +

1

18
t1,1(t0,1)3.

Theorem 4.4.1 implies that

(25) Ψ(t) =
∑

β≥1

∑

n1,n2≥0

qβ (t0,1)n1(t1,0)n2(t1,1)6β+2n1−5

n1!n2!(6β + 2n1 − 5)!
〈τn1

0,1τ
n2
1,0τ

6β+2n1−5
1,1 〉β .

Furthermore, Theorem 4.4.1 implies that the potential function must satisfy the
WDVV equation

∂3χ(t)

∂tα1,m1∂tα2,m2∂tα+,m+
η(α+,m+),(α−,m−) ∂3χ(t)

∂tα−,m−∂tα3,m3∂tα4,m4
=

∂3χ(t)

∂tα3,m3∂tα2,m2∂tα+,m+
η(α+,m+),(α−,m−) ∂3χ(t)

∂tα−,m−∂tα1,m1∂tα4,m4

for all mi, αi = 0, 1 and i = 1, . . . , 4, and where the summation convention has been
used.

Setting (α1,m1) = (1, 0), (α2,m2) = (0, 1), and (α3,m3) = (α4,m4) = (1, 1) in
the WDVV equation and plugging in equation (24), we obtain

∂3
1,1Ψ = − ∂2

0,1∂1,0Ψ∂1,0∂
2
1,1Ψ

− ∂0,1∂
2
1,0Ψ∂0,1∂

2
1,1Ψ

+
1

3
t0,1∂2

0,1∂1,1Ψ

+ ∂2
0,1∂1,1Ψ∂

2
1,0∂1,1Ψ

+ (∂0,1∂1,0∂1,1Ψ)2,

where we have used the shorthand notation

∂n
α,m =

(
∂

∂tα,m

)n

.
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Together with the Divisor Axiom in Theorem 4.4.1, we obtain the recursion relations
for β = 1 correlators

〈τ0,1τ
3
1,1〉1 =

1

3
〈τ2

1,0τ1,1〉1,

and, for all n1 ≥ 2,

〈τn1
0,1τ

2n1+1
1,1 〉1 =

n1

3
〈τn1−1

0,1 τ2n1−1
1,1 〉1.

These collectively imply that for all n1 ≥ 1,

〈τn1
0,1τ

2n1+1
1,1 〉1 =

n1!

3n1
〈τ2

1,0τ1,1〉1.

Furthermore, the tensor product property implies that

〈τ2
1,0τ1,1〉1 = 1.

Together with the Divisor Axiom, this determines all of the β = 1 correlators.
If β ≥ 2 then we obtain the following recursion relation for all n1 ≥ 0:

〈τn1
0,1τ

6β+2n1−5
1,1 〉β =

n1β
2

3
〈τn1−1

0,1 τ6β+2n1−7
1,1 〉β

+
∑

(−β′β′′

(
n1

n′
1

)(
6β + 2n1 − 8

6β′ + 2n′
1 − 1

)
〈τ

n′

1+2
0,1 τ

6β′+2n′

1−1
1,1 〉β′〈τ

n′′

1
1,0τ

6β′′+2n′′

1 −5
1,1 〉β′′

− (β′)2
(
n1

n′
1

)(
6β + 2n1 − 8

6β′ + 2n′
1 − 3

)
〈τ

n′

1+1
0,1 τ

6β′+2n′

1−3
1,1 〉β′〈τ

n′′

1 +1
1,0 τ

6β′′+2n′′

1 −3
1,1 〉β′′

+ (β′′)2
(
n1

n′
1

)(
6β + 2n1 − 8

6β′ + 2n′
1 − 2

)
〈τ

n′

1+2
0,1 τ

6β′+2n′

1−1
1,1 〉β′〈τ

n′′

1
1,0τ

6β′′+2n′′

1 −5
1,1 〉β′′

+ β′β′′

(
n1

n′
1

)(
6β + 2n1 − 8

6β′ + 2n′
1 − 4

)
〈τ

n′

1+1
0,1 τ

6β′+2n′

1−3
1,1 〉β′〈τ

n′′

1 +1
1,0 τ

6β′′+2n′′

1 −3
1,1 〉β′′),

where the first summation is over β′, β′′ ≥ 1 such that β = β′ + β′′, and over
n′

1, n
′′
1 ≥ 0 such that n1 = n′

1 + n′′
1 . Furthermore, we have defined

〈τ−1
0,1 τ

6β−7
1,1 〉β := 0.

Together with the Divisor Axiom, these recursion relations completely determine
all of the n-point correlators of the theory where n ≥ 3.

Finally, the 0, 1 and 2 point correlators (those in the unstable range) are de-
termined as a special case of Theorem 4.5.3. The only nonvanishing correlators of
these types are

〈τ1,1〉1 = 〈τ1,0τ1,1〉1 = 1.
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