1. Find the following:
 (a) \[\int \sin^{100}(x) \cos(x) \, dx \]
 (b) \[\int \frac{3x^2 - 16x + 5}{\sqrt{x^3 - 8x^2 + 5x + 3}} \, dx \]
 (c) \[\int \left(x - \frac{3}{2} \right) \sin(x^2 - 3x) \, dx \]
 (d) \[\int x \ln x^3 \, dx \]
 (e) \[\int_{0}^{\frac{\pi}{2}} \tan^5 x \sec^2 x \, dx \]
 (f) \[\int_{2}^{4} f'(x) \sin(f(x)) \, dx \]
 if \(f \) is a continuous function on the interval \([0, 20]\) such that \(f(0) = 3, f(2) = 1, f(4) = 7, \) and \(f(20) = 5. \)
 (g) \[\int_{1}^{3} (2x - 8)e^{-x} \, dx \]
 (h) \(\bar{f} \), the average value of \(f(x) = x^2 \) over the interval \([3, 8]\).

2. Consider the region \(R \) in the xy-plane where \(x \geq 0 \) bounded by the graphs \(y = x^3 \) and \(y = x^5. \)
 (a) Calculate the area of \(R. \)
 (b) Calculate the centroid of \(R. \)

3. Find the arc length of the part of the curve \(y = 2x^{\frac{3}{2}} \) between the points \((1, 2)\) and \((4, 16)\).

4. Consider the region \(Q \) in the xy-plane bounded by the graphs \(y = x \) and \(y = (x - 2)^2. \) Find the volume of the solid obtained by revolving \(Q \) about the x-axis.