Math 124, Practice Exam Questions for Exam #1, February 22, 2002

1. Find the following:
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if f is a continuous function on the interval [0, 20] such that f(0) = 3, f(2) = 1, f(4)
and f(20) = 5.
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where s is a constant not equal to —1



(1) f, the average value of f(x) = z2 over the interval [3, 8].
2. Consider the region R in the xy-plane where x > 0 bounded by the graphs y = 2> and y = x°.

(a) Calculate the area of R.

(b) Consider the solid S whose base is R and whose cross-sections perpendicular to the z-axis
are equilateral triangles. Find the volume V of S.

3. Consider the region R in the xy-plane bounded by ¥ = 0, and y = 9 — 2. Find the centroid of
R.

4. Find the arc length of the part of the curve y = 22% between the points (1,2) and (4, 16).

5. Consider the region @ in the xy-plane bounded by the graphs y = z and y = (x — 2)2. Find the
volume of the solid obtained by revolving @) about the z-axis.

6. Consider the differential equation
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(a) Verify that
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is a solution for any constant C.
(b) Find the solution which satisfies y(0) = 8.

7. Consider the differential equation
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(a) Find the general solution to the above equation.

(b) Find the particular solution which satisfies y(7) = 2.



