Math 124, Solutions to Practice Questions for Exam #2, April 26, 2002

1. Which of the following series converges? Explain your answer.
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This is an alternating series which can be written as
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the series converges by the Alternating Series Test.
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Since (sinn)? < 1 for all n, 4 > n for all n. Taking limits of both sides
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which is nonzero. Therefore, the series diverges by the Divergence Test.
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Consider the function f(x) = W It is certainly positive when x > 2. It is decreasing

since its numerator is constant and its denominator is increasing. Thus, the function f(x)
is positive and decreasing on the interval x > 2. Furthermore,
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hence we can use the Integral Test which states that the series converges if and only if
[5° f(x)dx converges. The latter is
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Therefore, the series converges.

0 2

P o
— 8n7 +6n2+5

Use the Limit Comparision Test. Consider the series
=1

D

n=1



Both series have positive terms and, in addition,
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By the Limit Comparision Test, both series either converge or both series diverge. However,
220:1 % converges as it is a p-series with p =5 > 1.
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which is a geometric series which converges since \%\ < 1. In fact, we even know that the
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series is equal to
=38.

—_
|
SIS

(f)
>
n=1

where a; =7 and a,4+1 = EZ—fgan for all n > 1.

Let’s use the Ratio Test.
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but % < 1, therefore, the series converges.
2. Consider the following series
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How many terms in the series must one sum up in order to obtain s correct to within 0.000001

accuracy?
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Since s is an alternating series satisfying 1 T < THaT for all n and
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the Alternating Series Estimation Theorem tells us that the remainder R, = s — s, where
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< 0.000001 = 10~

for all n. We want !
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which is equivalent to n > /99999 — 1 =2 998.999. Therefore, sgg9 is equal to s to within an
accuracy 0.000001. So we need sum up the first 1000 terms of s to obtain the desired accuracy.



3. Consider the following series

n=1

How many terms in the series must one sum up in order to obtain s correct to within an accuracy

of 0.000017

Recall that the series s converges by the Integral Test. By the Remainder Estimate for the
Integral Test, the remainder R,, = s — s,, where s,, = ZZ:1 k%,, satisfies
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which is equivalent to n > /5000 = 223.607. Therefore, sg94 (which is the sum of the first 224
terms) is equal to s up to an accuracy of 0.00001.

4. Consider the function f(z) = 53%_47

(a) Write f(z) as a power series.
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using ﬁ = > 2 o u™ and plugging in u = 3%. Multiplying though, one obtains
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(b) Find its radius of convergence.

Its radius of convergence, R, is equal to the radius of convergence of > >~ 0( L), But the
latter converges if and only if |22| < 1 or, equivalently, when |z| < Z Therefore R =

(¢) Find its interval of convergence.
The series converges on the interval (—I,%).

5. Consider the function f(x) = tan™!(a?).

(a) Write f(x) as a power series.
We have that
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where C' is an integration constant. However, since tan=!(0) = 0, C = 0. Therefore,
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Now we just set u = 2 to obtain
tan! 23 = i(— e
= 2n+1



(b) Find its radius of convergence.
The series converges if |u| = [23| < 1 which is equivalent to |z| < 1. Therefore, the radius
of convergence is 1.

6. Consider the series Y -
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(a) Find its radius of convergence.

Since
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the series converges if |z| < 2 and diverges if |x| > 2 by the Ratio Test. Therefore, the
radius of convergence is 2.

(b) Find its interval of convergence.
We need only check x = +2. If x = 2 then the series is

which is the Harmonic series and, hence, diverges. If x = —2 then the series is
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which converges by the Alternating Series Test. Therefore, the interval of convergence is
[—2,2).
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7. Find the Taylor series centered at 1 of the function f(x) = z5.
Notice that f©(z) = 23 and for all n > 1,
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The we have
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where ¢, = (3)(3-1)---(3 —n+1)ifn>1and ¢ = 1.
8. (a) Find the MacLauren series of the function f(z) = In(3 + z).
Notice that £ (z) =In(3 + x) and for all n > 1,
F () = ()" Hn - 113+ )"
Plugging in 0, we obtain
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(b) Find its radius of convergence.

Since »
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the Ratio Test implies that the radius of convergence is 3.



9. (a) Find a power series expression for the following integral:
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We use the formula

then setting u = —z4,
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where C' is an integration constant.

(b) Find a series representation for the following:
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Just take the answer in the previous answer, plug in z = 2 and z = 0 and take the difference

to obtain
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10. Calculate
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Recall the power series expansion for sin z which is
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Plugging in z = 7, we obtain
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Multiplying through by 2, we obtain

[e%S) 1 2n+12 o —1)" 2n+1
QSiI’IE = (=1)"m = (=1)"m
2 HZZO (2n + 1)1 22n+1 HZ:O (2n + 1)122n

which is our desired series. The answer is therefore 2 sin g = 2.



