Math 731A1, Final Exam

Please slide under my office door (MCS 234) by Tues 5/7 at 8am.

(1) (10 points) Pick $a \in \mathbb{C}$. Consider the 3-dimensional Lie algebra over \mathbb{C} , $L_{(a)}$, with basis $\{X, Y, Z\}$ satisfying

$$[X, Y] = Y; [X, Z] = aZ; [Y, Z] = 0.$$

- (a) Is the Lie algebra $L_{(a)}$ nilpotent for any a?
- (b) When is $L_{(a)}$ isomorphic to $L_{(a')}$?
- (2) (10 points) Prove that if L is nilpotent, the Killing form of L is identically zero.
- (3) (10 points) Prove that a Lie algebra L is solvable if and only if [L, L] lies in the kernel of $K^{\flat}: L \to L^*$ where $K^{\flat}(X) := K(X, \cdot)$ for all X in L and K is the Killing form.
- (4) (10 points) Let L be a simple Lie algebra. Let β and γ be two symmetric, nondegenerate, invariant, bilinear forms on L. Prove that β and γ are proportional. In particular, if any such form is proportional to the Killing form of L.
- (5) (10 points) Let T be the set of diagonal matrices in a classical linear Lie algebra L (of type A_l , B_l , C_l , or D_l) over \mathbb{C} .
 - (a) Prove that $T = N_L(T)$ where $N_L(T) := \{X \in L \mid [T, L] \subseteq T\}$ is the normalizer of T in L.
 - (b) Prove that T is a maximal toral subalgebra of L of dimension l.
- (6) (20 points) Let Φ be a root system in E. Consider $\Phi^{\vee} := \{\alpha^{\vee} \mid \alpha \in \Phi\}$ where $\alpha^{\vee} := 2\alpha/(\alpha, \alpha)$.
 - (a) Prove that Φ^{\vee} is a root system in E (called the dual root system to Φ) whose Weyl group, \mathcal{W}^{\vee} , is naturally isomorphic to the Weyl group of Φ , \mathcal{W} .
 - (b) Prove that for all α, β in Φ ,

$$\langle \alpha^{\vee}, \beta^{\vee} \rangle = \langle \beta, \alpha \rangle$$

- (c) If Δ is a base of Φ , prove that $\Delta^{\vee} := \{\alpha^{\vee} \mid \alpha \in \Delta\}$ is a base of Φ^{\vee} .
- (d) Draw a picture of Φ^{\vee} for the cases A_1 , A_2 , B_2 , and G_2 .
- (e) Prove that each irreducible root system is isomorphic to its dual, except that B_l and C_l are dual to each other.
- (7) (10 points) Prove that the Weyl group of a root system Φ is isomorphic to the direct product of the respective Weyl groups of its irreducible components.