Math 731A1, Homework #1Introduction to Lie Groups and Lie Algebras

- (1) (10 points) Let G be a Lie group. Use the fact that the multiplication map is smooth to prove that the map $\iota: G \to G$ taking $\iota(g) := g^{-1}$ is smooth.
- (2) (10 points) Calculate the Lie algebra of $PGL(n, \mathbb{R})$ and $PGL(n, \mathbb{C})$.
- (3) (20 points) Prove that O(2n+1) is isomorphic to $SO(2n+1) \times \mathbb{Z}_2$ as Lie groups. Prove that O(2n) is diffeomorphic to $X := SO(2n) \times \mathbb{Z}_2$ but is not a Lie group isomorphism. Describe the multiplication that X would inherit from O(2n) (semi-direct product).
- (4) (15 points) Consider the linear map $\phi : so(3) \to \mathbb{R}^3$ defined by

$$\begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix} \mapsto (x, y, z)$$

for all $x, y, z \in \mathbb{R}$. Prove that ϕ is a linear isomorphism satisfying $\phi([X, Y]) = \phi(X) \times \phi(Y)$ where \times denotes the vector cross product in \mathbb{R}^3 . Furthermore, show that $\phi(AXA^{-1}) = A\phi(X)$ for $A \in SO(3)$.

- (5) (20 points) Prove that the Lie algebras su(2) and so(3) are isomorphic. Prove that there is a Lie group homomorphism $\phi: SU(2) \to SO(3)$ by considering the adjoint representation(s). Show that ϕ is surjective and has kernel \mathbb{Z}_2 . Show that SO(3) is diffeomorphic to $\mathbb{R}P^3$.
- (6) (10 points) Show that the exponential map of $SL(2,\mathbb{R})$ is not surjective. What values can the trace $Tr(\exp(A))$ take for $A \in sl(2,\mathbb{R})$? Calculate the image of the exponential map.
- (7) (15 points) Prove that there is a G-equivariant diffeomorphism $\Phi: G/H \to G/K$ if and only if H and K are conjugate in G.