Math 564, Final Exam, April 28, 2004 Due at my office on May 5, 2004 by 11am (Please slide under my door if I'm not there) Prof. Takashi Kimura

Throughout, \mathbf{R} is the set of real numbers, \mathbf{Q} is the set of rational numbers and \mathbf{Z} is the set of integers.

- 1. (10 points) Chapter 2: Problem 4.
- 2. (10 points) Let X be a topological space. Prove that any finite union of compact subspaces of X is compact.
- 3. (10 points) Pick $p \ge 1$ and consider on \mathbf{R}^2 the metric

$$d'(x,y) := (|x_1 - y_1|^p + |x_2 - y_2|^p)^{\frac{1}{p}}$$

for all x, y in \mathbb{R}^2 where $x = (x_1, x_2)$ and $y = (y_1, y_2)$. Prove that for all $p \ge 1$, the topology on \mathbb{R}^2 arising from d' is nothing more than the usual topology on \mathbb{R}^2 .

4. (10 points) Define an equivalence relation on the plane $X := \mathbf{R}^2$ as follows: $(x_0, y_0) \sim (x_1, y_1)$ if and only if

$$|x_0| + |y_0| = |x_1| + |y_1|$$

Let X^* denote the collection of equivalence classes, in the quotient topology. X^* is homeomorphic to a familiar space. What is it?

- 5. (10 points) Chapter 3: Problem 31.
- 6. (10 points) Chapter 4: Problem 7.
- 7. (10 points) Chapter 5: Problem 11.
- 8. (10 points) Chapter 5: Problem 24.
- 9. (10 points) Let K be the 1-dimensional simplicial complex consisting of the edges and vertices of a tetrahedron. Let v be a vertex of K. Let L be the subcomplex of K containing the vertex v consisting of all the edges attached to v. Calculate $\pi_1(|K|, v)$ in terms of generators and relations as we did for the Klein bottle on page 136 - 137 of the text.
- 10. (10 points) Let SU(2) denote the group of 2×2 complex matrices A which have unit determinant and which satisfy the equation $A^{\dagger} = A^{-1}$ where $A^{\dagger} := \overline{A^T}$, A^T denotes the transpose of A, and \overline{B} is the matrix B but where each entry has been replaced by its complex conjugate.
 - (a) Prove that SU(2) is a topological group where the group multiplication is matrix multiplication.
 - (b) Prove that SU(2) is homeomorphic to S^3 .
 - (c) Consider the subgroup $G := \{ \pm 1 \}$ of SU(2) where 1 denotes the identity matrix then we have the action of the group G on SU(2) taking

$$G \times SU(2) \rightarrow SU(2)$$

defined by $(\pm 1, A) \mapsto \pm A$. What is the orbit space SU(2)/G homeomorphic to?

(d) Find the fundamental group of SU(2)/G.