Math 722A1, Final Exam Differential Topology II

Due Monday May 9, 2005 at noon.

Please slide exams under my office door at MCS 234.

- (1) Spivak Vol 1, Chapter 10, Problem 12
- (2) Spivak Vol 1, Chapter 10, Problem 26
- (3) Let M be a smooth manifold with a Koszul connection ∇ .
 - (a) For any α in $\Omega^1(M)$, define ∇' via

$$\nabla'_X Y := \nabla_X Y + \alpha(X) Y$$

for all vector fields X, Y on M. Prove that ∇' is also a Koszul connection.

- (b) How are the curvatures and torsions of both ∇ and ∇' related?
- (4) Let **g** be a Lie algebra. Let $\operatorname{ad} : \mathbf{g} \to \operatorname{End}(\mathbf{g})$ be defined by $\operatorname{ad}(X)Y := [X, Y]$ for all X, Y in **g**. Let K be the bilinear form on **g** defined by

$$K(X,Y) := tr(ad(X)ad(Y))$$

where tr denotes the trace over \mathbf{g} .

(a) Prove that for all X and Y in \mathbf{g} ,

$$\operatorname{ad}([X, Y]) = [\operatorname{ad}(X), \operatorname{ad}(Y)]$$

where the right hand side is the commutator.

(b) Prove that K is a symmetric, bilinear form satisfying

$$K(X, [Y, Z]) = K([X, Y], Z)$$

for all X, Y, Z in **g**.

- (c) Prove that if K is nondegenerate then $\mathbf{g} = [\mathbf{g}, \mathbf{g}]$ where $[\mathbf{g}, \mathbf{g}]$ is the subspace of \mathbf{g} generated by the vectors of the form [A, B] for all A, B in \mathbf{g} .
- (d) Let (M, ω) be a symplectic manifold with the action of a Lie group G which preserves the symplectic structure. Prove that if K on the associated Lie algebra **g** is nondegenerate then the symplectic vector field \tilde{Y} on M associated to any element Y in **g** is a Hamiltonian vector field.
- (5) Let M := ℝ²/ℤ². Let dx ∧ dy denote the 2-form on ℝ² in cartesian standard coordinates and let ω denote the symplectic form on M induced from dx ∧ dy.
 (a) Prove that (M ω) is a symplectic manifold.
 - (a) Prove that (M, ω) is a symplectic manifold.
 - (b) Consider the Lie group $G:=\mathbb{R}^2.$ Consider the group action $G\times M\to M$ defined by

$$((a,b),[x,y]) \mapsto [x+a,y+b]$$

for all (a, b) in G and [x, y] in M. Prove that this group action preserves the symplectic structure but the symplectic vector field \tilde{Y} on M associated to any element Y in the Lie algebra \mathbf{g} associated to G need not be a Hamiltonian vector field.

(6) Let (M, ω) be a compact, connected, symplectic manifold with the action of a Lie group G which preserves the symplectic structure. Furthermore, suppose that ω = dθ where θ is a G-invariant 1-form on M. Prove that the action of G on (M, ω) is Hamiltonian.