Math 731A1, Final Exam

Lie Groups, Lie Algebras, and Representations

Due Wednesday May 11, 2005 at noon.

Please slide exams under my office door at MCS 234.

- (1) Let G be a group which is also a manifold with a smooth multiplication μ : $G \times G \to G$ Prove that the map $\iota : G \to G$ taking $\iota(g) := g^{-1}$ is smooth.
- (2) Let G be a Lie group and G_0 be the connected components containing the identity. Prove that G_0 is a normal subgroup of G.
- (3) Calculate the Lie algebra of $PGL(n, \mathbb{R})$.
- (4) Describe a method using characters to compute the multiplicity of V_i in $\Lambda^k V_n$ where V_l denotes the irreducible representation of SU(2) of dimension (l+1).
- (5) Let G be a compact, connected Lie group and let R be its set of real roots. For all α in R, there are elements X_{α} in L_{α} , $X_{-\alpha}$ in $L_{-\alpha}$, and H_{α} in $LT_{\mathbb{C}}$ such that

$$[H_{\alpha}, X_{\pm \alpha}] = \pm 2X_{\pm \alpha}$$

and

$$[X_{\alpha}, X_{-\alpha}] = -H_{\alpha}.$$

Hence, $\{X_{\pm\alpha}, H_{\alpha}\}$ generate a Lie subalgebra of $LG_{\mathbb{C}}$ isomorphic to $sl(2, \mathbb{C})$ for all α in R.

- (6) Verify that the only root systems of rank 2 are those given on page 200 of the xeroxed text.
- (7) Let α and β be roots in a basis and let s_{α} and s_{β} be the associated reflections. Show that $s_{\alpha}s_{\beta}$ has order n = 2, 3, 4 or 6 according to whether the angle between α and β is $\pi/2, 2\pi/3, 3\pi/4$ or $5\pi/6$.
- (8) Prove that a root system splits into a sum of irreducible root systems. The subspaces $V_{\nu} \subset V$ and the subsets $R_{\nu} \subset R$ of such a splitting are uniquely determined by $R \subset V$. Show that the Weyl group of R is the direct product of the Weyl groups of the irreducible components of R.
- (9) Let R be an irreducible root system in V. Show that up to a constant factor, there is exactly one W-invariant Euclidean metric on V.
- (10) Construct the root system of G_2 by starting only with the Dynkin diagram of G_2 (see page 212 of the xeroxed text).
- (11) Let \mathbf{g} be a Lie algebra of dimension n. Consider $\Lambda^{\bullet}\mathbf{g}^*$ together with the map $d: \Lambda^k \mathbf{g}^* \to \Lambda^{k+1} \mathbf{g}^*$ for all k given by the formula

$$(d\omega)(X_1,\ldots,X_{k+1}) := -\sum_{1 \le i < j \le n} (-1)^{i+j} \omega([X_i,X_j],X_1,\ldots,\widehat{X}_i,\ldots,\widehat{X}_j,\ldots,X_{k+1})$$

where \widehat{X}_i and \widehat{X}_j means remove those vectors from the arguments.

- (a) Prove that $d^2 = 0$.
- (b) For all $k \ge 0$, the k-th Lie algebra cohomology is

$$H_{\text{Lie}}^{k}(\mathbf{g}) := \{ d\omega = 0 \, | \, \omega \in \Lambda^{k} \mathbf{g}^{*} \} / d\Lambda^{k-1} \mathbf{g}^{*}$$

where $\Lambda^{-1}\mathbf{g}^* := 0$. Prove that the wedge product on $\Lambda^{\bullet}\mathbf{g}^*$ induces a multiplication on $H^{\bullet}_{\text{Lie}}(\mathbf{g})$ which is unital, commutative (up to sign) and associative.

(c) Prove that if G is a Lie group then there is a ring homomorphism $H^{\bullet}_{\text{Lie}}(\mathbf{g}) \to H^{\bullet}(G)$ where $H^{\bullet}(G)$ is the de Rham cohomology of G.