Math 124, Solutions to Practice Questions for Exam #2, April 24, 2006

1. Which of the following series converges? Explain your answer.
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This is an alternating series which can be written as
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the series converges by the Alternating Series Test.
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Since (sinn)? < 1 for all n, 4 > n for all n. Taking limits of both sides
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which is nonzero. Therefore, the series diverges by the Divergence Test.
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Consider the function f(x) = W It is certainly positive when x > 2. It is decreasing

since its numerator is constant and its denominator is increasing. Thus, the function f(x)
is positive and decreasing on the interval x > 2. Furthermore,
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hence we can use the Integral Test which states that the series converges if and only if
[5° f(x)dx converges. The latter is
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Therefore, the series converges.
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Use the Limit Comparision Test. Consider the series
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Both series have positive terms and, in addition,
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By the Limit Comparision Test, both series either converge or both series diverge. However,
it is a p-series with p =5 > 1.
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which is a geometric series which converges since \%\ < 1. In fact, we even know that the
series is equal to
8
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= 8.
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where a; =7 and a,4+;1 = o
Let’s use the Ratio Test.
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but % < 1, therefore, the series converges.
2. Consider the following series
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How many terms in the series must one sum up in order to obtain s correct to within 0.000001

accuracy?
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Since s is an alternating series satisfying 1 Tr? < T for all n and
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the Alternating Series Estimation Theorem tells us that the remainder R, = s — s, where
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< 0.000001 = 10~

for all n. We want !
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which is equivalent to n > /99999 — 1 =2 998.999. Therefore, sgg9 is equal to s to within an
accuracy 0.000001. So we need sum up the first 1000 terms of s to obtain the desired accuracy.



3. Consider the following series
o0
1
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How many terms in the series must one sum up in order to obtain s correct to within an accuracy

of 0.000017

Recall that the series s converges by the Integral Test. By the Remainder Estimate for the
Integral Test, the remainder R,, = s — s,, where s,, = ZZ:1 k% satisfies
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which is equivalent to n > /5000 = 223.607. Therefore, s924 (which is the sum of the first 224
terms) is equal to s up to an accuracy of 0.00001.

4. Suppose that we know that a power series ZZOZO ¢n(x — 1)™ converges when x = 4 and diverges
at x = —6.
We know that for any power series > ¢, (z —a)™, there exists a number R, called the radius

of convergence, such that if |z — a| < R then the series converges, if |z — a| > R then the series
diverges, and if |z — a] = R then the series could either converge or diverge.

In our situation a = 1, clearly. Since the series converges for x = 4, it must be true that
|4 — 1] = 3 < R. On the other hand, the series diverges for t = —6so |—-6—1] =7 > R. So
the only thing we know is that

3<RLST.
(a) What can one say about the convergence of the series at z = —17
Since | — 1 — 1| = 2 < R, the series converges at z = —1.
(b) What can one say about the convergence of the series at x = —77
Since | — 7 — 1| = 8 > R, the series diverges at z = —7.
(¢) What can one say about the convergence of the series at © = —27?
Since all we know is that | — 2 — 1| = 3 < R, the series could either diverge or converge

since R could be equal to 3. So we can’t say anything without any more information.
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5. Consider the function f(z) = #%.

(a) Write f(x) as a power series.
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using ﬁ = > ,u" and plugging in u = 57“7 Multiplying though, one obtains

(b) Find its radius of convergence.

Its radius of convergence, R, is equal to the radius of convergence of Y7 (3%)™. But the

latter converges if and only if |57$| < 1 or, equivalently, when |z| < % Therefore, R = %

(¢) Find its interval of convergence.
The series converges on the interval (=1, %).



6. Consider the function f(z) = tan—!(z?).

(a) Write f(z) as a power series.
We have that
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where C' is an integration constant. However, since tan=!(0) = 0, C = 0. Therefore,
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Now we just set u = 22 to obtain
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(b) Find its radius of convergence.
The series converges if |u| = |23| < 1 which is equivalent to |z| < 1. Therefore, the radius
of convergence is 1.

7. Consider the series Y -
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(a) Find its radius of convergence.

Since
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the series converges if |z| < 2 and diverges if |x| > 2 by the Ratio Test. Therefore, the
radius of convergence is 2.

(b) Find its interval of convergence.
We need only check x = £+2. If x = 2 then the series is
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which is the Harmonic series and, hence, diverges. If z = —2 then the series is
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which converges by the Alternating Series Test. Therefore, the interval of convergence is
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8. Find the Taylor series centered at 1 of the function f(x) = x3.
Notice that f©(z) = 2% and for all n > 1,
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The we have -
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(a) Find the MacLauren series of the function f(z) = In(3 + z).
Notice that £ (2) =In(3 + ) and for all n > 1,

f (@) = (=1 n = 1)IB +a) "
Plugging in 0, we obtain
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(b) Find its radius of convergence.
Since
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the Ratio Test implies that the radius of convergence is 3.

(a) Find a power series expression for the following integral:

/e_’”4 dx

We use the formula

then setting v = —z%,
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where C' is an integration constant.

(b) Find a series representation for the following:
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Just take the answer in the previous answer, plug in x = 2 and = = 0 and take the difference

to obtain
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Calculate
0 (_ l)nﬂ.2n+1

Recall the power series expansion for sin z which is

o (_l)nx2n+1

sinx = g
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Plugging in z = 7, we obtain
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Multiplying through by 2, we obtain
St —1)" 2n+12 0 —1)" 2n+1
2sin T =y U2 g S
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which is our desired series. The answer is therefore 2 sin g = 2.



