Math 564A1, Midterm Exam
Introduction to Topology

(1) (10 points) Consider the diagonal map \(\Delta : X \to X \times X \) taking \(\Delta(x) := (x, x) \).
 (a) Prove that \(\Delta \) a continuous function.
 (b) Prove that \(X \) is Hausdorff if and only if \(\Delta(X) \) is a closed subset of \(X \times X \).

(2) Prove that any two disjoint compact subsets of a Hausdorff space possess disjoint open neighborhoods.

(3) (10 points) Prove that \([0, 1) \times [0, 1)\) is homeomorphic to \([0, 1) \times [0, 1)\).

(4) (10 points) Let \(X \times Y \) have the product topology. Show that \(A \times B = A \times B \).

(5) (10 points) Prove that \(\mathbb{R}^2 \) is homeomorphic to \(S^2 - \{ p \} \) where \(p \) is any point of the unit sphere \(S^2 \).

(6) (10 points) Crossley 5.8

(7) (10 points) Crossley 5.10

(8) (10 points) Crossley 5.11

(9) (10 points) Let \(X \) be a set. A metric on \(X \) is a function \(d : X \times X \to \mathbb{R} \) such that for all \(x, y, \) and \(z \) in \(X \), the following conditions are satisfied:
 - **Positivity:** \(d(x, y) \geq 0 \) where equality holds if and only if \(x = y \),
 - **Symmetry:** \(d(x, y) = d(y, x) \),
 - **Triangle Inequality:** \(d(x, y) + d(y, z) \geq d(x, z) \).
 Choose a metric \(d \) on \(X \) then for all \(x \) in \(X \) and \(r > 0 \), the open ball of radius \(r \) centered about \(x \) is
 \[B_r(x) := \{ y \in X \mid d(x, y) < r \} . \]
 The metric topology on \(X \) induced by the metric \(d \) is the topology on \(X \) which has a basis given by the collection of all open balls \(B_r(x) \).
 (a) Define a metric on \(\mathbb{R} \) by the formula \(d(x, y) := |x - y| \). Show that the metric topology on \(\mathbb{R} \) induced by \(d \) agrees with the standard topology on \(\mathbb{R} \).
 (b) For all \(n \geq 1 \) and positive integers \(p \), let
 \[d_p(x, y) := \left(\sum_{i=1}^{n} |x_i - y_i|^p \right)^{\frac{1}{p}} \]
 for all \(x = (x_1, \ldots, x_n) \) and \(y = (y_1, \ldots, y_n) \) in \(\mathbb{R}^n \). Assume that \(d_p \) defines a metric on \(\mathbb{R}^n \). Prove that all of these metrics induce the same topology on \(\mathbb{R}^n \).
 (c) Let \(X \) and \(Y \) be topological spaces with metric topologies induced from metrics \(d_X \) on \(X \) and \(d_Y \) on \(Y \), respectively. Let \(f : X \to Y \) be a function. Prove that \(f \) is a continuous function if and only if given any \(x \) in \(X \), and \(\epsilon > 0 \), there exists a \(\delta > 0 \) such that \(d_Y(f(x), f(y)) < \epsilon \) whenever \(d_X(x, y) < \delta \).