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“Once Upon a Time . . . ”

• Network analysis was a relatively small ‘field’ of study until

∼ 20 years ago

• Epidemic-like spread of interest in networks since mid-90s,

across the sciences and humanities

• Arguably two key factors include

• Increasingly systems-level perspective; and
• Flood of high-throughput data (and the accompanying data

science tools).
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What Do We Mean by ‘Network’?

Definition (OED): A collection of inter-connected things.

Formally, we typically use a graph G = (V ,E ,W ), where

• V is a set of nv = |V | vertices;
• E is a set of ne = |E | edges between vertex pairs; and

• W = [Wij ] is an nv × nv matrix of (non-neg) weights.

A binary adjacency matrix A = [Aij ] captures presence/absence of

edges {i , j} ∈ E .

Caveat emptor: The term ‘network’ is often used in the literature

to refer to the system, a graph, and even visualization(s) of the

graph . . . sometimes in the same paper!
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Our Focus

The statistical analysis of network data
i.e., analysis of measurements either of or from a system

conceptualized as a network.

Core challenges include:

• relational aspect to the data;

• complex statistical dependencies (often the focus!);

• high-dimensional and often massive in quantity.
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Statistics & Networks – Looking Back

Statistics started out as a comparatively minor player in network

science 20 years ago.

Yet networks – as a form of complex data – are fundamentally data

objects and hence the full taxonomy of statistical inquiry and

analysis is relevant (e.g., sampling/design, inference, testing,

prediction, modeling, visualization, etc.).

In the ensuing years, statisticians have since made substantial

contributions to network science, particularly – as often the case –

in a handful of core areas.
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Goal for Today

Provide a (highly selective!) introduction and overview to several

core topics at the interface of statistics and networks, with an eye

towards where we’ve invested and where we might invest.

Chosen as a function of (i) depth / completeness of solution(s);

and (ii) breadth of impact. Established, in the case of where we’ve

invested, and anticipated, in the case of where we might invest.

• Where we’ve invested: Network topology inference;

community detection.

• Where we might invest: Multiple networks; noisy networks.

Apologies for the many topics / contributions we’ll inevitably skip!
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Modus Operandi

For each topic area, I will

1 Describe a canonical problem(s) through pictures;

2 Shine a “Spotlight on . . . ” a key solution(s) ;

3 Give a “Shout Out to . . . ” other solutions .
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Network Topology Inference

Problem in Pictures: Network Topology Inference

Question: Given available information, how might we infer

unknown presence/absence of edges between vertex pairs?

Kolaczyk 2009, Ch 7 7
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Network Topology Inference

A Truly Substantial Literature

Brugere, Gallagher, and Berger-Wolf 2018
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Network Topology Inference

Rich Development Even Within Many (Sub)Domains

Nguyen et al. 2021, “A comprehensive survey of regulatory network inference methods using single cell RNA

sequencing data”.

9



Introduction Where We’ve Invested Where We Might Next Invest Wrapping Up

Network Topology Inference

Spotlight on . . . Gaussian Graphical Models

Let X = (Xv )v∈V represent a vector of continuous measurements

indexed by vertices in an undirected graph G = (V ,E ).

Suppose X ∼ N(0,Σ), and define K = [κij ] = Σ−1.

A Gaussian graphical model (GGM) for X w.r.t G specifies that

κij ̸= 0 when {i , j} ∈ E .

G is called a conditional independence graph or a concentration

graph.

See Drton and Maathuis 2017 for a comprehensive survey on structure learning in graphical models generally.
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Network Topology Inference

GGM Inference

Let S = [Sij ] be a sample covariance based on n observations.

The graphical lasso (glasso) estimator is an ℓ1-penalized MLE:

K̂ gl = argmin
K

{− log det(K ) + tr(SK ) + λ||K ||1}

The estimate Ĝ gl = (V , Ê gl) follows through the rule

{i , j} ∈ Ê gl iff κ̂glij ̸= 0 .

Yuan and Lin 2007; Banerjee, El Ghaoui, and d’Aspremont 2008
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Network Topology Inference

Properties & Implementation

Theorem (Yuan and Lin 2007)

Under appropriate conditions, Glasso selects the correct graph G

with probability tending to 1 (and, at the same time, yields a

root-n consistent estimate of K ).

Implementations utilizing variations on coordinate descent and

theory-driven initialization scale to millions of vertices.

Penalty parameter λ can be chosen adaptively in various ways

(e.g., BIC, stability selection, etc.).

See, e.g., Friedman, Hastie, and Tibshirani 2008; Witten, Friedman, and Simon 2011; Hsieh et al. 2013; Gao et al.

2012; Liu, Roeder, and Wasserman 2010. 12
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Network Topology Inference

Illustration: Gene coexpression in Ecoli

1 > library(igraph)

2 > library(sand)

3 > library(huge)

4 > huge.out <- huge(Ecoli.expr)

5 > huge.opt <- huge.select(huge.out, criterion="stars")

6 > g.huge <- graph_from_adjacency_matrix(huge.opt$refit, "undirected")

7 > summary(g.huge)

8 IGRAPH a04cd27 U--- 153 623 --

9 > plot(g.huge,vertex.size=3,vertex.label=NA)

Kolaczyk and Csárdi 2020, Ch 7.3
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Network Topology Inference

Shout Out to . . .

• Neighborhood selection
(E.g., Meinshausen and Bühlmann 2006; Ravikumar et al. 2011)

• Hypothesis testing
(E.g., Drton and Perlman 2007)

• Robust extensions of GGMs
(E.g., Finegold and Drton 2011; Vogel and Fried 2011; Liu, Han, and Zhang 2012; Bilodeau 2014)

• Semi-parametric extensions of GGMs
(E.g., Liu, Lafferty, and Wasserman 2009; Liu et al. 2012)

• Joint estimation of multiple GGMs
(E.g., Guo et al. 2011; Danaher, Wang, and Witten 2014; Ma and Michailidis 2016 )

• GGMs with covariates
(E.g., Yin and Li 2011; Li, Chun, and Zhao 2012; Cai et al. 2013; Chen et al. 2016; Zhang and Li 2022)
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Community Detection

Problem in Pictures: Community Detection

 Cap21

 Commentateurs Analystes

 Les Verts

 liberaux

 Parti Radical de Gauche

 PCF − LCR

 PS

 UDF

 UMP

Question: Can we infer the vertex labels on the left, and hence

the communities on the right, given only the graph topology?

For general surveys on community detection see, e.g., Fortunato 2010; Fortunato and Newman 2022
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Community Detection

Spotlight on. . . Stochastic Block Models

A stochastic block model (SBM) is essentially a mixture of

classical random graphs.

Suppose each vertex i ∈ V of a graph G = (V ,E ) can belong to

one of Q classes, say C1, . . . , CQ . An SBM dictates that

Zi
i .i .d∼ Multinomial(1, α)

Yij |Zi = zi ,Zj = zj ∼ Bernoulli(πzi ,zj ) ,

for α = (α1, . . . , αQ) and π = [πqr ], where Yij = Yji , Yii ≡ 0, with

1 ≤ i , j ≤ nv .

Sources: Kolaczyk 2017; Zhao 2017; Abbe 2017
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Community Detection

SBM Inference

Inference can focus on

• Parameter inference, i.e., for θ = (α, π), where

α = (α1, . . . , αQ) and π = [πqr ]; and

• Class label inference, i.e., for Z.

The latter corresponds to a model-based version of ‘community

detection’.

17
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Community Detection

Profile Likelihood

For the purposes of community detection, the Q × Q parameter

matrix π can be treated as a nuisance parameter. Given observed

adjacency matrix Y = y = [yij ], this motivates definition of the

estimator

ẑ = argmax
z

ℓ (y ; z, π̂(z)) ,

where

π̂(z) = argmax
π

ℓ (y ; z, π) ,

with

π̂qr (z) =
1

nqr

∑
i<j

yij I (ziq = 1, zjr = 1) ,

for each q and r , where nqr is the maximum number of possible

edges between classes q and r . 18
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Community Detection

Properties and Implementation

Theorem (Bickel and Chen 2009)

Assume some regularity conditions and sufficiently dense

networks (expected average degree grows faster than log nv ).

Then up to permutation, P
(
Ẑ = Z

)
−→ 1, as nv −→ ∞.

Global optimization in this context is NP-hard.

In practice, approximate solution of the underlying

expectation-maximization (EM) problem has been approached in

various ways, with variational methods and belief propagation

being popular.

See, e.g., Daudin, Picard, and Robin 2008; Hastings 2006
19
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Community Detection

Illustration: French blog network

1 > library(blockmodels)

2 > A.fblog <- as.matrix(as_adjacency_matrix(fblog))

3 > fblog.sbm <- BM_bernoulli("SBM_sym", A.fblog,

4 + verbosity=0, plotting=’’)

5 > fblog.sbm$estimate()

Kolaczyk and Csárdi 2020, Ch 6.3
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Community Detection

Caveat Emptor

Community detection, even under just the SBM and with only

K = 2 symmetric classes, is decidedly complex, with subtleties

abounding around phase transitions between types of recovery

(exact, almost exact, partial, weak, distinguishable) as a function

of model assumptions and choice of algorithm.

Source: Abbe 2017
21
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Community Detection

Shout Out to . . .

• Spectral clustering (E.g., Rohe, Chatterjee, and Yu 2011; Sussman et al. 2012; Jin 2015)

• Mixed-membership SBM (E.g., Airoldi et al. 2008)

• Degree-corrected SBM (E.g., Karrer and Newman 2011; Zhao, Levina, and Zhu 2012)

• Dynamic SBM (E.g., Yang et al. 2011; Xu and Hero 2014; Matias and Miele 2017)

• Multilayer SBM (E.g., Valles-Catala et al. 2016; Paul and Chen 2016)

• SBM/covariates (E.g., Binkiewicz, Vogelstein, and Rohe 2017; Zhang, Levina, and Zhu 2016)

• Weighted SBM
(E.g., Mariadassou, Robin, and Vacher 2010; Zanghi et al. 2010; Aicher, Jacobs, and Clauset 2015)

• Number of communities & goodness of fit
(E.g., Daudin, Picard, and Robin 2008; Zhao, Levina, and Zhu 2011; Bickel and Sarkar 2016; Lei 2016)
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Multiple Networks

Problem in Pictures: Multiple Networks

Question: What if instead of numbers

our ‘data points’ were networks?

Source (right): Kramer et al. 2010

23
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Multiple Networks

Spotlight on . . . Fréchet means

Let G = (V ,E ,W ) be a weighted undirected graph, that is

• simple (i.e., no self-loops or multi-edges)

• connected (i.e., only one component)

and define the (combinatorial) graph Laplacian

L = D(W )−W ,

where D is a diagonal matrix of weighted degrees,

i.e., Djj = dj(W ) =
∑

i ̸=j wij .

The Fréchet mean generalizes the notion of an ‘average’ to

arbitrary metric spaces.
24



Introduction Where We’ve Invested Where We Might Next Invest Wrapping Up

Multiple Networks

The Space of Network Graph Laplacians

Theorem (Ginestet et al. 2017)

Let the set Lnv consist of nv × nv matrices A, satisfying:

(1) Rank(A) = nv − 1,

(2) Symmetry, AT = A,

(3) Positive semi-definiteness, A ≥ 0,

(4) The entries in each row sum to 0,

(5) The off-diagonal entries are non-positive, aij ≤ 0 .

Then Lnv is a manifold with corners, of dimension nv (nv − 1)/2.

Furthermore, Lnv is a convex subset of an affine space in Rn2v

of dimension nv (nv − 1)/2.

See also Kolaczyk et al. 2020
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Multiple Networks

Fréchet Mean

For L1, . . . , Ln IID wrt some distribution Q,

and ρF the Frobenius norm, define the population

EQ [L] := arg min
L∈Ld

∫
Ld

ρ2F (L, L̃)Q(dL̃)

and empirical

L̂n := arg min
L∈Ld

1

n

n∑
i=1

ρ2F (L, Li )

(Fréchet) means.

26
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Multiple Networks

A Central Limit Theorem

Theorem (Ginestet et al. 2017)

If the expectation, Λ := EQ [L], does not lie on the boundary of

Ld , and PQ [U] > 0, where U is an open subset of Ld with

Λ ∈ U, then (under some further regularity conditions) we obtain

the following convergence in distribution:

n1/2(ϕ(L̂n)− ϕ(Λ)) −→ N(0,Σ),

where Σ := Cov [ϕ(L)] and ϕ(·) denotes the half-vectorization of

its matrix argument.

27
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Multiple Networks

Hypothesis Testing

Corollary

Under the null hypothesis H0 : E[L] = Λ0, we have,

T1 := n
(
ϕ(L̂)− ϕ(Λ0)

)T
Σ̂−1

(
ϕ(L̂)− ϕ(Λ0)

)
−→ χ2

m,

with m :=
(d
2

)
degrees of freedom, and where Σ̂ is the sample

covariance.

28
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Multiple Networks

Implementation

In order to use these results in practice, we require knowledge of Σ

or, more realistically, for the sample covariance S to be stable.

For n ≫ O(n2v ), it may be that S is stable, but for n ≪ O(n2v ), we

face a “large n, small p” problem.

The extensive literature on estimation of large, structured

covariance/precision matrices from limited data can be exploited in

this context.1

1Our applied work uses the approach of Schäfer and Strimmer 2005.
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Multiple Networks

Illustration – 1000 Functional Connectomes

Unlike more naive (aka ‘mass univariate’) techniques, a Fréchet

mean approach detects the difference in sexes at sample sizes

relevant to single labs.

30
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Multiple Networks

Shout Out to . . .

• Smooth manifolds (E.g., Bhattacharya and Patrangenaru 2003; Bhattacharya and

Patrangenaru 2005)

• Tree spaces (E.g., Billera, Holmes, and Vogtmann 2001; Barden, Le, and Owen 2013; Wang and

Marron 2007; Aydin et al. 2009)

• Symmetric PSD cone (E.g., Bonnabel and Sepulchre 2010; Krishnamachari and Varanasi

2013)

• Fréchet
• ANOVA (E.G., Dubey and Müller 2019)

• Regression (E.g., Petersen and Müller 2019; Tucker, Wu, and Müller 2021)

• Mean for Unlabeled Networks (E.g., Kolaczyk et al. 2020)

• Graph embedding (See Cai, Zheng, and Chang 2018 for a survey.)
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Noisy Networks

Problem in Pictures: Noisy Networks

Noisy Data Network from Data Summary
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=⇒ Density = 0.14± ???

Question: What is the uncertainty associated with network

summaries we routinely report?
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Noisy Networks

Spotlight on . . . Estimation of Subgraph Counts

Consider estimating the edge density

δ =
1

nv (nv − 1)

∑
i ̸=j

Aij ,

under a ‘signal plus noise’ model, where we observe only

Yij = Aij I (εij = 0) + I (εij = 1)

with

P(εij = 1) = α, P(εij = 0) = 1− α− β, and P(εij = −1) = β,

where A is the adjacency matrix for G .

Chang, Kolaczyk, and Yao 2022
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Noisy Networks

A Method-of-Moments Approach

In recent work, we have shown. . .

Impossibility Theorem . . .α, β and δ cannot all be estimated

from a single noisy network [i.e., analogous to a two-component

mixture problem – true generally!]

Somewhat possible with two networks . . . method-of-moments

estimation for β, δ, given known α, well-defined/behaved with two

noisy versions of the same network [i.e., based on network average

and first-order differences]

Entirely possible with three networks . . . method-of-moments

estimation for α, β and δ well-defined/behaved with three noisy

versions of the same network [i.e., augment above with second

order differences]
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Noisy Networks

Properties and Implementation

Theorem (Chang, Kolaczyk, and Yao 2022)

Let N = nv (nv − 1) and assume iid errors. If N1 = Nδ → ∞ and

N2 = N(1− δ) → ∞, it holds that

√
N(α̂− α, β̂ − β, δ̂ − δ)T →d Normal(0,Σ2) ,

provided that δ(1− δ)(1− α− β)4 ≥ c > 0.

These results extend to the case of estimating density of arbitrary

subgraphs and smooth functions thereof.

Complicated expressions for asymptotic (co)variances necessitates

development of a novel bootstrap algorithm. 35
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Noisy Networks

Illustration – Gene Coexpression Network

It is a standard exercise in computational biology to construct and

analyze networks from gene expression data.

We illustrate2 with generic correlation networks of 153 genes,

deriving from 40 experiments (each replicated 3 times) in the

bacteria Escherichia coli (E. coli).

Family-wise error rate controled at the 0.05 level through a

Bonferonni correction.

2Constructed as in Kolaczyk and Csárdi 2020, Ch 7.3.1.
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Noisy Networks

Network Density Little Affected by Noise

• Empirical Edge Densities

Approximately 0.073, 0.075, and 0.074.

• Estimation with ‘Known’ α

Bonferroni control at 0.05 based on 11, 628 hypothesis tests

yields a nominal α ≈ 4.3× 10−6, which in turn yields

estimates β̂ = 0.456 and δ̂ = 0.135, with a 95% CI of

(0.131, 0.139) for the latter.

• Estimation with Unknown α and β

Estimating α as well, we obtain α̂ = 0.024, β̂ = 0.232, and

δ̂ = 0.067, with an accompanying 95% confidence interval for

δ of (0.06, 0.074).
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Noisy Networks

Clustering Coefficient Changes Substantially!

• Estimation of 2-stars, Triangles, and Clustering

Source # 2-Stars # Triangles Clustering Coeff.

Repl 1 19112 3373 0.53

Repl 2 22952 4814 0.63

Repl 3 21820 4349 0.60

Estimate 25248 7243 0.86

The accompanying 95% confidence interval for the clustering

coefficient is (0.81, 0.91).
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Noisy Networks

Shout Out to . . .

• Empirical studies (E.g., Hart, Ramani, and Marcotte 2006; Almquist 2012)

• Network denoising (E.g., Chatterjee 2015)

• Vertex classification (E.g., Priebe et al. 2015)

• Graph matching (E.g., Lyzinski 2018; Arroyo et al. 2021)

• Epidemic branching factors (E.g., Li, Sussman, and Kolaczyk 2020)

In addition, there is an increasingly active literature on the related

(and still quite hard!) problem of uncertainty quantification from

single networks drawn from random ensembles Pr(G ), using

extensions of bootstrapping, jackknifing, and the like.

[See P. Sarkar’s talk next!]
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Thank you!

Questions?

40



Introduction Where We’ve Invested Where We Might Next Invest Wrapping Up

References i

Abbe, Emmanuel (2017). “Community detection and stochastic block models: recent developments”. In: The

Journal of Machine Learning Research 18.1, pp. 6446–6531.

Aicher, Christopher, Abigail Z Jacobs, and Aaron Clauset (2015). “Learning latent block structure in

weighted networks”. In: Journal of Complex Networks 3.2, pp. 221–248.

Airoldi, Edo M et al. (2008). “Mixed membership stochastic blockmodels”. In: Advances in neural

information processing systems 21.

Almquist, Zack W (2012). “Random errors in egocentric networks”. In: Social networks 34.4, pp. 493–505.
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Regression”. In: Journal of the American Statistical Association, pp. 1–15.

Valles-Catala, Toni et al. (2016). “Multilayer stochastic block models reveal the multilayer structure of

complex networks”. In: Physical Review X 6.1, p. 011036.

Vogel, Daniel and Roland Fried (2011). “Elliptical graphical modelling”. In: Biometrika 98.4, pp. 935–951.

40



Introduction Where We’ve Invested Where We Might Next Invest Wrapping Up

References x

Wang, Haonan and JS Marron (2007). “Object oriented data analysis: Sets of trees”. In: The Annals of

Statistics 35.5, pp. 1849–1873.

Witten, Daniela M, Jerome H Friedman, and Noah Simon (2011). “New insights and faster computations for

the graphical lasso”. In: Journal of Computational and Graphical Statistics 20.4, pp. 892–900.

Xu, Kevin S and Alfred O Hero (2014). “Dynamic stochastic blockmodels for time-evolving social networks”.

In: IEEE Journal of Selected Topics in Signal Processing 8.4, pp. 552–562.

Yang, Tianbao et al. (2011). “Detecting communities and their evolutions in dynamic social networks—a

Bayesian approach”. In: Machine learning 82.2, pp. 157–189.

Yin, Jianxin and Hongzhe Li (2011). “A sparse conditional Gaussian graphical model for analysis of genetical

genomics data”. In: The annals of applied statistics 5.4, p. 2630.

Yuan, Ming and Yi Lin (2007). “Model selection and estimation in the Gaussian graphical model”. In:

Biometrika 94.1, pp. 19–35.

Zanghi, Hugo et al. (2010). “Strategies for online inference of model-based clustering in large and growing

networks”. In: The Annals of Applied Statistics 4.2, pp. 687–714.

Zhang, Jingfei and Yi Li (2022). “High-Dimensional Gaussian Graphical Regression Models with Covariates”.

In: Journal of the American Statistical Association, pp. 1–13.

40



Introduction Where We’ve Invested Where We Might Next Invest Wrapping Up

References xi

Zhang, Yuan, Elizaveta Levina, and Ji Zhu (2016). “Community detection in networks with node features”.

In: Electronic Journal of Statistics 10.2, pp. 3153–3178.

Zhao, Yunpeng (2017). “A survey on theoretical advances of community detection in networks”. In: Wiley

Interdisciplinary Reviews: Computational Statistics 9.5, e1403.

Zhao, Yunpeng, Elizaveta Levina, and Ji Zhu (2011). “Community extraction for social networks”. In:

Proceedings of the National Academy of Sciences 108.18, pp. 7321–7326.

— (2012). “Consistency of community detection in networks under degree-corrected stochastic block

models”. In: The Annals of Statistics 40.4, pp. 2266–2292.

40


	Introduction
	Where We've Invested
	Network Topology Inference
	Community Detection

	Where We Might Next Invest
	Multiple Networks
	Noisy Networks

	Wrapping Up

