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Abstract

Center of pressure (COP) traces have been used
to investigate the dynamics of human balance. In
this paper we employ a wavelet-based multifrac-
tal methodology to identify structural differences in
medio-lateral (ML) and antero-posterior (AP) sway
between COP traces of healthy and Parkinson’s pa-
tients. Two statistical techniques are used to summa-
rize the differences in multifractal spectrum (MFS)
for both groups. The first technique is a multivariate
repeated measures analysis on estimated MF spec-
tra for subjects. The second technique obtains two
characteristic measures from each subject’s estimated
MFS: (i) location and (ii) half-width of the spectrum.
These measures present an intuitive summary of the
MFS for each subject, allowing for statistical com-
parisons between the two groups. Both analyzes lead
to significant discrimination between Parkinson ver-
sus healthy subject’s MFS. We find that COP time
series of Parkinson patients exhibit a greater degree
of roughness as compared to healthy subjects’ COP
traces. Furthermore, MFS for Parkinson patients are
narrower, suggesting a reduction in complexity as
compared to the healthy group. The methodology
presented here maybe helpful in development of clin-
ically relevant measures, including the assessment of
severity of conditions as the measures developed here
correlate with standard severity measures.

Keywords– Center of Pressure, Multifractal Spec-
trum, Multivariate Repeated Measures Analysis.

Introduction

Outputs of the human postural control system under
erect stance are often very irregular. For instance,
center-of-pressure trajectories (COP) of subjects un-
der erect stance are very erratic. Despite the irreg-
ular behavior of COP trajectories, they have been
used as the basis to characterize quantitatively some
of the motor impairments associated with idiopathic
Parkinson’s disease (PD)10. In this paper we im-
plement a methodology to further gain insight into
the differences in COP trajectories between PD and
healthy subjects. While this methodology is applied
to COP data in this paper, it is in fact a procedure
applicable more generally to time series data.

Recently, researchers have identified interesting
properties of COP traces pertaining to their degree
of smoothness and correlation structure. They have
studied these properties as they relate to the dy-
namics of the human postural control system and
its pathologies. In particular, they have identified
long-range dependence, scaling behavior, and fractal-
like properties in COP traces3,7,10,14. Jim Collins et
all. first identified long-range dependence in COP
traces and computed their Hurst parameter, a mea-
sure of both roughness and correlation in a time
series4. Others researchers have investigated the like-
ness of COP displacements to 1/f -noises, and pro-
posed to estimate the fractal dimension of the traces
in order to assess their degree of roughness3,7. More
recently, wavelet-based techniques have been used
to estimate the possibly multiple scaling behavior
present in these signals. In particular, Thurner et
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all. conclude, using wavelet-variance estimation tech-
niques, that COP traces are a correlated process that
presents different scaling regions, suggesting the pres-
ence of a multifractal structure14.

In this paper, we investigate the multifractal na-
ture of COP traces and develop statistical procedures
based on the wavelet transform in order to link the
classical notion of the multifractal spectrum to mea-
sures of potential use in the study of the human pos-
tural control system. More precisely, we implement
a methodology to further gain insight into the differ-
ences in COP trajectories between idiopathic Parkin-
son’s disease patients and otherwise healthy individ-
uals.

As a motivation, consider the two COP trajectories
depicted in Figure 1. The top trajectory is the medio-
lateral (ML) output for a healthy subject, while the
bottom trajectory corresponds to a ML output from
a Parkinson patient (the experimental details will be
given in the Methods section). A striking difference
between the two trajectories lies in their smooth-
ness. The top COP output seems to the eye to be a
much smoother curve than the bottom one, although
its smoothness may not be altogether homogeneous.
This characteristic distinction may serve as the basis
for a discriminating measure between PD and healthy
subjects. In order to construct such a discriminating
measure, we are in need of tools that quantify de-
grees of smoothness in curves. An increasingly popu-
lar measure of a signal’s degree of smoothness is the
so called multifractal spectrum.

The multifractal spectrum of a signal or process
summarizes the scaling behavior and quantifies the
relative degree of regularity present in is13. Processes
for which the MFS exhibits evidence of potentially
intricate, locally varying regularity are termed mul-
tifractal. These processes are increasingly being used
as successful modelling tools in a wide variety of fields
including medicine and biology6,11,16.

The multifractal spectrum consists of two quanti-
ties. The first quantity measures the degree of regu-
larity or smoothness of a time series, while the sec-
ond quantity identifies the prevalence of each degree
of regularity present in such process. Formally, one
first defines a measure of local smoothness, say α, of-
ten based on local scaling properties, and then a set
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Figure 1: The Top graph is the trace of the medio-
lateral sway of a healthy subject, while the bottom
graph displays the medio-lateral trace of a Parkin-
son patient. Notice that the Parkinson trace seems
rougher.

function f(α) that measures the prevalence of the
smoothness α in the signal.

A typical MFS for a multifractal signal is shown in
Figure 2. Notice that the MFS of a multifractal sig-
nal is generally a convex curve. The most prevalent
smooth behavior is α0, and the range of smoothness
is given by the quantities (αmin, αmax). In contrast
to a multifractal signal, a monofractal signal exhibits
a unique smooth behavior α0; that is, the MFS of a
monofractal signal collapses to a single point mass at
α0 = αmin = αmax.

In general, the MFS of a signal provides (i) a mea-
sure of the signal’s prevalent degree of smoothness as
given by the MFS location (i.e. the value of α0),
and (ii) a measure of the signal’s departure from
monofractality as given by the spread of the val-
ues αmin and αmax. Information about differences
in smoothness between two signals can be obtain by
studying both the location and spread of their respec-
tive MF spectra.

In this paper, we will study how estimates of both
location and spread of the multifractal spectrum of
COP traces may lead to discriminating measures be-
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Figure 2: The above graph depicts a typical MFS for
a multifractal signal. The maximum of the spectrum
is reached at the value α0. The quantities αmin and
αmax measure the range of smoothness in a signal.

tween PD patients and healthy subjects. For in-
stance, a difference in location would indicate that
generally COP traces are smoother in one group as
compare to COP traces of the other group. A differ-
ence in spread in their respective multifractal spectra
would suggest a restricted range of smoothness of the
COP traces of one group with respect to the other
group.

It is of paramount importance that tools for the
analysis of multifractal processes are adapted to cope
with these processes’ potential non-stationarity, and
time-varying statistical properties. To this effect, an-
alytic tools for MFS estimation should preserve local
features of the analyzed signal.

Wavelet transforms (WT) are well-suited to the
study of local scaling behavior and regularity of mul-
tifractal processes, since a WT is localized in time
and preserves the scaling properties of a given signal.
Recently, a number of wavelet-based techniques for
estimating a MFS have been introduced by various
investigators1,8,15. In this paper, we use an estima-
tor based on the discrete wavelet transform, which is
analogous to an estimator based on the continuous
wavelet transform in Arneodo et all.1

One of the main aims in this work is to develop
measures that can potentially be used to discrimi-
nate between typical COP trajectories from healthy
subjects and COP trajectories from subjects with
balance pathologies such as those often associated
with disease like idiopathic Parkinson. We propose
in this work statistical models based on MFS estima-
tion that may serve as the basis for identifying human
balance pathologies.

More generally, the techniques developed in this
paper can be the basis for tools to investigate and de-
tect pathological patterns in biological data for cases
where: (a) the biomedical output under study is a
time series, and (b) the presence of the pathological
condition manifest itself through a patterned modifi-
cation of the smoothness of the time series (as com-
pared to the non-pathological base case). Further-
more, the techniques presented here provides the in-
vestigator with reliable and fast procedures leading
to interpretable measures.

Theory

We start with a brief description of the DWT and its
properties. Let ψj,k(t) = 2jψ(2jt− k), where ψ(·) is
a wavelet function with compact support and N van-
ishing moments5. Given a process x(t), the wavelet
coefficients of the process are defined as

Wj,k =
∫

x(t)ψj,k(t)dt , (1)

for all integer pairs (j, k). Notice that for large posi-
tive j, Wj,k contains information in x(t) correspond-
ing to small scales and high frequency; for large neg-
ative j, the information pertains to coarse scales and
low frequencies. Our interest in this paper will be
in the estimation of the fractal spectrum of a time
series, based on the wavelet coefficients {Wj,k} of a
sample.

A key feature of the wavelet transform is that local
smoothness of a signal can be estimated by studying
the decay of the wavelet coefficients. In particular, a
measure of local regularity may be defined as13

α(t0) = lim
k2−j→t0

−1
j

log2 |Wj,k| (2)
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where k2−j → t0 means that t0 ∈ [2−jk, 2−j(k + 1)]
as j → ∞. The quantity α(t0) is a measure of the
smoothness of x(t) around the time t0.

Multifractal processes exhibit such an intricate
pattern of locally varying regularity that estimates
based on properties such as (2) alone are often not
reliable. In order to overcome this difficulty, the so-
called multifractal formalism (MFF) was introduced.
The MFF is a method by virtue of which both the
local regularity and the MFS of a signal can be com-
puted, using a partition function relating the two.

The partition function is chosen so as to char-
acterize the scaling of the statistical moments of
the wavelet coefficients Wj,k. Specifically, for any
q ∈ <, and j ≥ 0 the partition function is defined
as τ(q) = limj→∞ τ(q, j)− 1 where

τ(q, j) = −1
j

log2 E[|Wj,k|q], (3)

and E[·] denotes statistical expectation. Note that in
practice, (3) can be estimated by the q − th sample
moment

τ̂(q, j) = −1
j

log2

N2j∑

k=1

1
N2j

|Wj,k|q. (4)

Under some technical conditions, including the
convexity of the function τ(q, j) in q, the MFF states
that the partition function τ(q) relates the local reg-
ularity of the signal and the MFS via the Legendre
transform

f(α) = min
q

(qα− τ(q)), (5)

where the minimum is attained at the value of q
for which d

dq τ(q) = α. In this way, one can re-
late the MFS f(α) with the local regularity α via
a parameter q. In particular we can define α(q) =
limj→∞ d

dq τ(q, j), and note that convexity of τ(q)
yields that α(q) > 0.13

Based on the MFF, for a range of moments q ∈
(q1, q2) a scale dependent estimator of the local reg-
ularity can be defined as12

α̂(q, j) =
∑N2j

k=1 |Wj,k|q log2 |Wj,k|∑N2j

k=1 |Wj,k|q
, (6)

and the limiting behavior of α(q, j) can be obtained
via a linear regression over a range of scales (j1, j2)

α̂(q) =
j2∑

j=j1

ajα̂(q, j). (7)

where aj = (j − j̄)/(
∑j2

j=j1
(j − j̄)2 are regression

weights, and j̄ is the average scale. Observe that
the estimator α̂(q, j) is a sample-based version of the
exact derivative with respect to q of the partition
function τ(q, j) in (3). An estimate of the MFS can
then be obtained by

f̂(α(q)) = 1 +
j2∑

j=j1

aj(qα̂(q, j)− τ̂(q, j)). (8)

Using wavelet library functions in standard pack-
ages such as Matlab, the above procedure can be eas-
ily implemented. It is also worth noting that due to
the existence of fast algorithms for the wavelet trans-
form, all the computations required can be imple-
mented very efficiently. In addition, wavelet-based
methods yield generally improved estimation of the
MFS of signals1.

In what follows, we will develop a procedure to
test for significant differences in MFS of COP trajec-
tories of healthy subjects and idiopathic Parkinson’s
patients.

Methods

The data for our analysis was gathered in a series of
experiments performed by researchers at the Boston
University Department of Biomedical Engineering.
In the experiments, a Kistler 9287 force platform was
used to record the ML and AP displacements of the
COP under the feet of the subjects.

COP measurements were taken from 25 subjects,
ten healthy and fifteen Parkinson’s patient. A se-
ries of ten 60-second trials was conducted for each
PD and ten 90-second trials for healthy subjects at
a sampling frequency rate of 100 Hz. To avoid dis-
parity in the lengths of the time series, only the first
211 data points of the times series were analyzed for
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Figure 3: Estimated MFS of medio-lateral COP
traces for a healthy patient. The figure displays the
averaged spectrum over ten trials using a Daubechies
wavelet with 3 vanishing moments and a grid of sam-
ple moments q = {−1,−0.95, . . . , 2}. We used scales
(j1, j2) = (5, 11) for the regression based estimates of
both α(q) and f(α(q)).

all subjects. The experimental output to be analyzed
consists then of twenty 211-long time series per sub-
ject: ten univariate series containing ML displace-
ment data, and ten univariate series containing AP
sway output.

To motivate the statistical procedures below, we
will first apply the wavelet-based MFS estimation
method explained in the previous section to the in-
dividual series, and obtain useful descriptive sum-
maries. In particular, for a grid of values q =
{−1,−.95, . . . , 2}, we use a fixed range of scales
(j1 = 5, j2 = 11) to perform the linear regressions
in (6) and (8).

Figure 3 depicts the MFS of ML COP trajectory
of a healthy subject. The convex shape of the MFS
is consistent with evidence of multifractality. A com-
mon practice to summarize the difference in MFS in
signals from two groups is to plot the group’s respec-
tive averaged spectrums. Figure 4 shows the aver-
aged MFS over all trials for the PD and healthy sub-
jects. Notice that the PD averaged spectrum is to
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Figure 4: Average spectrum of Medio-lateral COP
traces for both Parkinson patients and healthy sub-
jects. The Parkinson MFS is displayed by ’o’ and the
healthy MFS by ’+’ (i.e. averaged over all patients
and all trials). The MFS estimation was done with
identical parameters as in Figure 3.

the left of the averaged spectrum for healthy sub-
jects. This fact suggests that, on the average, COP
trajectories of Parkinson’s patients exhibit a lower
degree of smoothness as compared to healthy sub-
jects’ trajectories. A similar pattern is observed for
the averaged spectrum of the AP sway.

The averaged spectra in Figure 4 seem to differ not
only in location but also in their respective spreads
(or curvature). In particular, the averaged MFS for
PD seems narrower than the MFS of healthy subjects,
suggesting that COP trajectories of healthy subjects
have a wider range of smoothness, while COP trajec-
tories of Parkinson’s patients exhibit a reduced range
in regularity. In other words, COP trajectories of
healthy subjects seem to present a higher degree of
multifractality.

While the averaged MFS indicates a marked differ-
ence between the two groups (in location and possi-
bly spread), we would like to know if such difference
is significant in a statistical sense. To answer this
question we propose two complimentary methodolo-
gies. The first method is based on a multivariate
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repeated measures analysis (MRMA) of samples of
the estimated spectrum for each subject, and the
second is based on a multivariate analysis of vari-
ance (MANOVA) of estimated quantities pertaining
to both location and spread of the COP multifractal
spectrum.

For both analysis we assume that the degree of
smoothness of both the ML and AP sway of each sub-
ject can be summarized by an idealized MFS. This
idealized spectrum is to be estimated by repeated
samples from the subject’s COP trajectories. Since
in practice we only have access to a discrete num-
ber of moments q when performing MFS estimation
the output of the wavelet-based procedure explained
above can be viewed as a discretized estimate of the
MFS.

A Multivariate Repeated Measures Model

First observe that the set up of the experiment
where data on the COP trajectories were obtained
corresponds to a so-called repeated measures design
where subject’s COP trajectories are observed over
ten trials. While we could compute estimates for
α(q) and f(α(q)) on a grid of q’s a fine as we de-
sire, sample size considerations lead us to use only
a small number of the q’s. In particular we will use
only five q’s, namely, q = {−1,−.5, 0, 0.5, 1}. From
each subject, we obtain ten estimates of the spec-
trum;that is, α(q) and f(α(q)) are estimated for each
trial on ML and AP COP trajectories separately for
each given q. Each trial yields a sampled spectrum
of points (α̂(qm), f̂(α(qm))) for m = 1, . . . , 5. Hence,
each trial leads to five bivariate observations. In or-
der to keep the ratio of number of dependent vari-
ables to total sample size small, we model exclusively
the sampled α(q)’s. In summary, the data to analyze
comprises a set of five observations per trial per sub-
ject, and since we do not assume that observations
across trials are independent, the design of the data
to be analyzed corresponds to a multivariate repeated
measures (MRM) on the observed α̂(q)’s.

In accordance to standard practice for MRM data,
the model we assume is:

Model 1

αi,t,s(i),m,l = µα + Groupi + Trialt

+Group ∗ Trialit + Qm

+Group ∗Qim + Trial ∗Qtm

+Rts(i)m + εl(ts(i)m)

for

i = 1, 2
t = 1, . . . , 10

s(i) =

{
1, . . . , 10 if i=1,

1, . . . , 15 if i=2.

m = 1, . . . , 5
l = 1, . . . , 25

where the fixed effects are

µα = grand mean of α

Groupi =

{
0 if i = 1,

Parkinson Effect if i = 2.

T rialt = effect of trial t

Group ∗ Trialit = interaction of i-th group
and j-th trial

Qm = effect of moment qm

Group ∗Qim = interaction of i-th group
and moment qm

Trial ∗Qtm = interaction of j-th trial
and moment qm

and all the random effects are subsumed in Rts(i)m,
and εl(ts(i)m) is a random error. It is assumed that
the vector of random errors is distributed as a mul-
tivariate normal variate with mean vector zero and a
positive definite variance-covariance matrix. We as-
sume that the variance-covariance matrix is a block
diagonal matrix where each block corresponds to each
subject’s variance-covariance matrix for the multi-
variate observations across trials. We only assume
independence between subjects, and allow for hetero-
geneity of variances of observations across trials, and
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do not assume that the variances are the same in the
two groups. In summary, the MRM model presented
here is a multivariate normal model where we have
allowed for heterogeneity of variances across subjects
and groups.

In order to motivate the usefulness of this model,
we enumerate the following interpretations for the
test of some of the parameters in the model. Test-
ing that the Groupi effect is statistically significant
addresses the issue that the estimated αi,j,k,m,l’s for
the healthy subjects are on the average different from
the corresponding estimates for the Parkinson’s pa-
tients. That is, a significant group effect means that
after taking into account other effects such as sub-
ject and trial, the two groups are different in terms
of their multifractal spectra. A significant Qm effect
would indicate that there is a difference between the
estimated α(qm)’s when qm varies. This fact would
result in evidence of multifractality of the original
signal since a monofractal signal would yield that
the α(qm)’s attain the same values for all m’s (i.e.
α(−1) = . . . = α(0) = . . . = α(1)). The Group ∗Qim

interaction has the following important interpreta-
tion: if the Group ∗ Qim interaction is significant,
this would be an indication that the way the α(q)’s
are spread around α(0) is different in each group, sug-
gesting a different degree of multifractality for each
group.

While the MRM model just explained deals exclu-
sively with the estimated α(q)’s, it is important to
note that the statistical results will yield information
about the whole spectrum. Particularly, differences
in α(0) between the groups would indicate a differ-
ence in the location of the spectrum. Furthermore,
both the Qm effect and the Group ∗Qim interaction
yield information about the spread of the spectrum,
which translates into a measurement to possibly dis-
tinguish between monofractality and multifractality.

In addition to identifying differences in multifractal
spectra for typical COP trajectories in both groups of
the study in terms of location and spread, it would be
useful to consider the curvature of the spectra and in-
quire if differences are also found in this respect. To
obtain a measure of the curvature of the estimated
spectra for subjects in both groups we need to intro-
duce the estimated values of f(α(q)) into the analysis.

We do so in the following model.

Location and Half-Width of the MFS

In order to investigate the curvature of the MFS of
a signal from its estimate, we propose to measure the
left-hand, half-width of the MFS at a pre-specified
height. Note that under the underlying assumptions
for the existence of a spectrum, we obtain that the
MFS is a unimodal, convex curve with support on
the positive real numbers. Hence, the left-hand, half-
width of the spectrum is a well defined quantity. Ob-
serve that under the aforementioned assumptions, we
have that

0 < αmin ≤ α0

f(α0) = 1 ≥ f(αmin).

We define the d-level half-width of a MFS curve,
denoted by HW (d), as follows. Let α∗ be the degree
of regularity α at which

f(α) = d,

then
HW (d) = α0 − α∗

where α0 is the value α where the spectrum reaches
its maximum. Intuitively the quantity HW (d) gives
an idea of the curvature of the left-hand-side of the
spectrum. A small value of the d-level half-width
would imply a very sharp rise of the MFS between
the values α∗ and α0, suggesting that the presence
of a more monofractal signal than one exhibiting a
larger value for its corresponding spectrum d-level
half-width. Hence, the quantity HW (d) computed
from the MFS of a signal is interpretable as the de-
gree of multifractality of such signal. In practice, it
has been widely reported that the right-hand-side of
the spectrum is particularly elusive2. We propose to
concentrate efforts on the half part of the spectrum
which is more amenable to stable estimation.

It is important to emphasize that the values
α0,s(i), and HW (d)s(i) estimate the two most promi-
nent features of the subjects’ MFS: location and
spread/curvature. The former measuring the preva-
lent smoothness of the signal, and the latter serving
as a measure of departure from this prevalent behav-
ior.
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For each subject, we obtain the estimate
(α̂0,s(i), ĤW (d)s(i)) which are sample averages over
the totality of the trials. A statistical test for a group
difference between the PD and healthy subjects can
then be obtained via a MANOVA on the bivariate es-
timates (α̂0,s(i), ĤW (d)s(i)). To that effect we have
the model:
Model 2

(α̂0,s(i), ĤW (d)s(i)) = µα0,HW (d) + Groupi + εs(i)

for

i = 1, 2

s(i) =

{
1, . . . , 10 if i = 1,

1, . . . , 15 if i = 2.

where µα0,HW (d) is a grand mean for the bivariate
output under consideration, Groupi is the group ef-
fect, and εs is a mean zero bivariate normal random
vector. Notice that a significant group effect would
indicate that both groups differ in their respective
multifractal spectrum with respect to both location
and d-level half-width.

Observe that the quantity HW (d) depends of the
level d; hence, it is pertinent to study the sensitivity
to the choice of level d to use for a given analysis.

An important aspect of this last model is that it
leads to estimates of both location and curvature
which are readily interpretable.

Results

Analysis of results from Model 1

In order to fit the MRM model suggested in the
previous section, we used a maximum likelihood es-
timation (MLE) procedure called PROC MIX avail-
able in the software package SAS for mixed linear
models. This procedure allows to test for significance
even under heterogeneity of variances. For the sta-
tistical test performed, robustness to departure from
the normality assumption depends on sample size
considerations9. In order to preserve the validity of
the statistical tests, we keep the ratio of the smallest
group to the number of trials high (a ratio of at least

Antero-Posterior Sway
Tests of Fixed Effects

Source Pr > F
GROUP 0.0001
Q 0.0001
GROUP ∗Q 0.0063
TRIAL 0.6343
GROUP ∗ TRIAL 0.1658
TRIAL ∗Q 0.3635

Table 1: F Tests for Model 1 (AP sway). Observe
that GROUP , Q, and GROUP ∗Q are highly signif-
icant, suggesting the groups have different MFS, and
that their respective COP traces are multifractal

3 is recommended9). That is, since we have only 10
subjects in the healthy group, we use data from at
most three trials (i.e. t = 1, 2, 3).

Conforming to standard practice, we perform an
approximate F test to investigate the significance of
the fixed effects in the model. Table 1 displays the
result of the approximate F tests for the fixed effects
of the model applied to the AP data. Notice that
Groupi, Qm, and the interaction GROUP ∗Qim are
highly significant. This finding suggests that there is
evidence to conclude that COP trajectories for the
two groups differ in terms of their respective esti-
mated degrees of smoothness α(qm). Furthermore,
for the two groups, the evidence suggests that the
COP trajectories’ MF spectra are consistent with
multifractal behavior. Table 2 displays the results
of the approximate F tests for the analysis of ML
output, which yields similar results to that of the AP
sway.

Analysis of results from Model 2

In order to implement the second model described
in the methods section, we first compute from the
data the values corresponding to α0, and HW (d),
which are the values for location and half-width of
the estimated MF spectra.

To estimate α0 for each subject we take the average
value of α for which f(α) = 1 over all the trials. In or-
der to compute the d-level half-width, it is necessary
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Medio-Lateral Sway
Tests of Fixed Effects

Source Pr > F
GROUP 0.0001
Q 0.0001
GROUP ∗Q 0.0035
TRIAL 0.9240
GROUP ∗ TRIAL 0.7535
TRIAL ∗Q 0.4578

Table 2: F Tests for Model 1 (ML sway). Observe
that GROUP , Q, and GROUP ∗ Q are significant,
suggesting the groups have different MFS, and that
their respective COP traces are multifractal

to first choose the level 0 ≤ d < 1. We chose d = 0.95,
and then performed sensitivity analysis to this choice,
finding that the test results from the MANOVA did
not lead to different conclusions as d was changed
from 0.90 to 0.98. In order to obtain an estimate for
α∗ from the estimated multifractal spectra for each
subject, we need to solve the following inverse prob-
lem: find the value of α for which f(α) = 0.95. Since
the estimated MFS is a discrete sample, there is no
guarantee that there will be a value in the sample the
exactly attains the f(α) value of 0.95. However, we
can compute as many moments q as desired in order
to achieve some tolerance level. Alternatively, one
may interpolate between sampled values of the aver-
age MFS using standard spline algorithms. In any
case, we take α∗ to be the value of α at which f(α)
is approximately equal to 0.95 to within a tolerance
level.

Figure 5 exemplifies the procedure to estimate both
location and half-width. The figure displays the av-
erage MFS for a PD patient over all ten trials. The
estimate of α0 is the α value where the curve f(α)
attains the value of 1, and the HW (0.95) is the hor-
izontal distance between α0 and the α at which the
curve attains the value of 0.95 (to within a tolerance
value of 0.001).

The bivariate quantity (α̂0,s(i), ĤW (d)s(i)) is then
used to compare the two groups in terms of their pos-
sible difference in multifractal spectra. Such differ-

Medio-Lateral Sway
Least Squares Estimates

Group α0 HW (0.95)
Healthy 1.35373 0.09999872
Parkinson 1.01920 0.06845753
Est. Difference 0.33456 0.03154119
(standard error) (0.06695) (0.0047726)

Table 3: LS Means for ML Sway. Observe that both
groups differ in terms of the least squares estimates
of the location parameter α0 and d-level half-width
of the MFS. We also give an estimate of the group
contrast (or estimated difference). The last line gives
the standard error for the estimated difference.

ence, as it was stated before, is quantified by the joint
differences in location and curvature. To visually in-
spect the difference in both location and curvature
exhibited by the MFS of the two groups in consider-
ation, Figure 6 presents a bivariate plot of location
and curvature of the MFS for the two groups. Ob-
serve that there is a clear separation between the two
groups in terms of location and half-width, except
for an obvious outlier. Note that a narrower MFS
would indicate a less complex signal. This can be
interpreted as COP traces of PD patients exhibiting
less complexity than COP traces of healthy subjects.

These two graphs provide a simple, interpretable,
and visual summary of the fact that PD patients ex-
hibit COP traces which are: (i) less smooth than
COP traces of healthy patients, and (ii) exhibit a re-
duced range in degrees of smoothness as compared
to healthy COP traces. That COP traces for PD pa-
tients are rougher in nature as compared to healthy
COP traces is indicated by the estimated regularity
parameter α0, which represents the location of the
MFS. Lower values of α indicates a more erratic be-
havior of COP traces. The half-width of the MFS
represents the degree of multifractality, or in other
words, how homogeneous the COP trace is in terms
of smoothness.

Using SAS to perform a MANOVA on location
and half-width for subjects in the two groups we ob-
tain p-values less than 0.0001 for each AP and ML
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Antero-Posterior Sway
Least Squares Estimates

Group α0 HW (0.95)
Healthy 1.28622 0.09427147
Parkinson 0.96856 0.07542800
Est. Difference 0.31764 0.0188422
(standard error) (0.06482) (0.006852)

Table 4: LS Means for AP Sway. Observe that both
groups differ in terms of the least squares estimates
of the location parameter α0 and d-level half-width
of the MFS. We also give an estimate of the group
contrast (or estimated difference). The last line gives
the standard error for the estimated difference.

sway for all MANOVA standard statistics such as
Wilk’s Lambda, Pillai’s trace, and Roy’s Greatest
Root. This indicates significant differences in the two
groups with respect to their MF spectra in terms of
location and half-width.

Estimated least squares (LS) means for the AP and
ML sway of both groups are displayed in tables 3
and 4, as well as the estimated contrast (or difference)
in terms of α0 and MFS half-width for the two groups.

Multifractal spectra and measures disease severity

In light of the above results, it is important to know
how the measures α(0) and the HW (d) correlate with
standard measures of severity of balance impairment.
Recent development of measures of muscle stiffness
from COP traces reveal that roughness of trajecto-
ries are correlated to the severity of impairment in
the human postural control system. Lauk et all.10 ob-
serve that roughness of AP traces correlates to mea-
sures of rigidity, bradykinesia, posture impairment,
and others. As indicated in Figure 1 of the cited
work, the severity of the affliction seems to be corre-
lated to the degree of smoothness of the AP traces of
Parkinson patients. In the spirit of the cited work, we
compute Kendal’s τ between the location parameter
α(0), and HW (d) with relevant measures of balance
impairment severity. Kendal’s τ , in contrast to the
usual Pearson correlation coefficient, is a measure of
agreement between two quantities for which we can

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05
Multifractal Spectrum

α

f(
α

)

α
o

α
*

HW(0.95)

Figure 5: Estimated MFS of COP traces for a Parkin-
son patient. The figure displays the averaged spec-
trum over ten trials for a Parkinson patient repre-
sented by ’+’. The dotted line represents the measure
HW (d) = α0 − α∗ for d = 0.95.

compute a statistical test without distributional as-
sumptions.

Table 5 shows the correlation measure τ for a di-
verse subset of clinical scales of human balance with
the multifractal spectrum location parameter α(0)
and HW (0.95) for both the AP and the ML traces.
Observe that in the AP direction, the location pa-
rameter α(0) correlates with the clinical measures
in the table, except for arm. For the ML direction,
all clinical measures correlate with the location pa-
rameter. The half-width of the estimated spectrum
correlates with all clinical measures in the AP direc-
tion except again for arm. No distinct trend emerges
in the correlation of clinical measures and the esti-
mated half-width for the spectra of ML traces, ex-
cept that the clinical measure arm seems to correlate
well with both the half-width and location parame-
ter in both the AP and ML directions. An intriguing
fact arises at this point, and it would be interesting
to investigate further why both the degree of rough-
ness (i.e. α(0)) and the degree of multifractality (i.e.
HW (0.95)) correlate well with the clinical measure
arm in the ML direction and not in the AP direction.
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Rank Correlation α(0)
Antero-Posterior Medio-Lateral

Kendall’s τ Kendall’s τ
Clinical Scale (p-value) (p-value)
Rigidity 0.3904 (0.0390) 0.3905 (0.0398)
Bradykinesia 0.3619 (0.0460) 0.4190 (0.0209)
Posture 0.3142 (0.0599) 0.3524 (0.0349)
Hand 0.3143 (0.0920) 0.3333 (0.0740)
Arm 0.0952 (0.6051) 0.3810 (0.0386)
UPDSR 0.3238 (0.0920) 0.3619 (0.0583)

Table 5: Correlation between some clinical scales and
location parameter α(0) for Parkinson patients. The
correlation value shown is the Kendall’s τ , and the p-
values correspond to a test with alternative hypoth-
esis τ 6= 0. Note that this test does not make any
distributional assumptions on the data.

An investigation in this respect may reveal a differ-
ence in the postural control system dynamics for each
direction.

Discussion

Using a wavelet-based procedure to estimate the MFS
of COP traces from healthy subjects and PD pa-
tients, we determined that there is a significant dif-
ference in such traces for the two groups in terms
of their corresponding degrees of smoothness. We
have presented two complimentary statistical proce-
dures to address the issue of comparing multifractal
spectra of subjects with a balance impairing disease
such as Parkinson’s disease to multifractal spectra of
COP traces of otherwise healthy subjects. We find
via the first procedure, a multivariate repeated mea-
sures analysis, that the multifractal spectrum of COP
traces for Parkinson patients is statistically different
from the MFS of healthy subjects in terms of location
and spread. It was also found that the MFS for both
groups (and in both AP and ML sway) suggests that
COP traces exhibit multifractal behavior. The sec-
ond procedure, a MANOVA on bivariate estimates of
location and half-width of the MFS, suggest that the
multifractal spectra of both groups differ not only in

Rank Correlation HW (0.95)
Antero-Posterior Medio-Lateral

Kendall’s τ Kendall’s τ
Clinical Scale (p-value) (p-value)
Rigidity 0.4667 (0.0140) 0.2571 (0.1758)
Bradykinesia 0.3048 (0.0929) 0.1714 (0.3446)
Posture 0.1429 (0.3925) 0.1238 (0.4586)
Hand 0.3333 (0.0740) 0.2571 (0.1681)
Arm 0.1905 (0.3011) 0.4380 (0.0174)
UPDSR 0.3238 (0.0902) 0.2476 (0.1951)

Table 6: Correlation between some clinical scales and
location parameter HW (0.95) for Parkinson patients.
See caption for Table 5.

location, but also in curvature, as measured by the
half-width of the spectrum. Since location and cur-
vature are two defining characteristics of a MFS, we
can confidently claim that both groups differ in terms
of their estimated multifractal spectra.

As it can be observed in Figures 6 and 7, location
and spread of the multifractal spectra of COP traces
serve as good discriminating measures between PD
patients and healthy subjects.

The fact that both the location and the spread of
the MFS of COP traces also correlate with standard
measures of disease severity in PD patients suggests
that they may be potentially useful as objective mea-
sures of severity.

Given the (i) the reliable methodology based on
the wavelet transform presented in this paper (among
others available), (ii) the efficiency of the algorithms
used, (ii) and the potentially useful measures derived,
further study seems appropriate to assess the impact
of these methods in areas pertaining to identification
and diagnosis of balance pathologies.

On a more general note, the methodology devel-
oped here can be applied to other biomedical output
and signals in the form of time series, with the po-
tential of being similarly successful in identifying and
discriminating different degrees of smoothness in sig-
nals.
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Figure 6: Location and Half-Width of the MFS of
AP sway. Observe that overall, Parkinson patients
(shown by ’o’) exhibit smaller values of location and
lower values of HW(0.95) than healthy subjects (de-
noted by ’*’). Notice the good separation between
the two groups indicating that these two measures
have a high discriminating power.
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Figure 7: Location and Half-Width of the MFS of
ML sway. See caption of Figure 6 for legend.
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