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Abstract—Detection of traffic anomalies is an important prob-
lem that has been the focus of considerable research. Recent work
has shown the utility of spatial detection of anomalies via cross-
link traffic comparisons. In this paper we identify three advances
that are needed to make such methods more useful and practical
for network operators. First, anomaly detection methods should
avoid global communication and centralized decision making.
Second, nonparametric anomaly detection methods are needed
to augment current parametric approaches. And finally, such
methods should not just identify possible anomalies, but should
also annotate each detection with some probabilistic qualifier of
its importance.

We propose a framework that simultaneously advances the
current state of the art on all three fronts. We show that
routers can effectively identify volume anomalies through cross-
link comparison of traffic observed only on the router’s own
links. Second, we show that generalized quantile estimators are
an effective way to identify high-dimensional sets of local traffic
patterns that are potentially anomalous; such methods can be
either parametric or nonparametric, and we evaluate both. Third,
through the use of false discovery rate as a detection metric, we
show that candidate anomalous patterns can be equipped with an
estimate of a probability that they truly are anomalous. Overall,
our framework provides network operators with an anomaly
detection methodology that is distributed, effective, and easily
interpretable. Part of the underlying statistical framework, which
merges aspects of nonparametric set estimation and multiple
hypothesis testing, is novel in itself, although the derivation of
that framework is necessarily given elsewhere.

I. INTRODUCTION

Detecting unusual traffic patterns is a critical problem
for network operators. An important specific instance is the
problem of detecting volume anomalies. A volume anomaly is
an unusually large or small volume of traffic occurring within
some predefined time period. Such anomalies can be evidence
of a wide range of operational problems, including malicious
behavior (denial of service attacks, worm spreads), miscon-
figuration or equipment failure (traffic shifts), or changes in
customer behavior.

Unfortunately, network traffic exhibits high variability in
many different dimensions, and the large amount of noise in
the system makes precise detection of volume anomalies a
challenging problem. Approaches based on timeseries analy-
sis, while well-studied, (e.g., [1], [3]) can be difficult to tune
and use in many networks.

In contrast to timeseries methods, a more recent approach
showing promise for volume anomaly detection takes a
network-wide approach [10]. In the network-wide method,
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links with anomalous traffic volumes are not identified by
comparing with past values, but rather by comparing with
other values in the network at the same time. That is, network-
wide traffic analysis makes use of typical relationships be-
tween traffic volumes on different links, and identifies points
in time when individual links or sets of links violate those
typical patterns.

However, as proposed to date, network-wide volume
anomaly detection relies on comparing traffic on all or most
network links simultaneously. This implies moving traffic
measures to a central location for analysis. Unfortunately, such
a centralized scheme suffers from at least two key problems.
First, as networks increase in size, moving data to a central
location is an expensive proposition and does not scale well.
Second, a centralized scheme has a single point of failure
making it susceptible to attack.

Thus, the first and primary goal of this paper is to develop
a distributed scheme with an ability to identify anomalies
that is on par with the global, network-wide approach. We
assume that distributed detection will need to be implemented
in routers (or devices attached to routers), and we note that a
router with N links to other routers has 2N traffic measures
that it can obtain by itself, without exchanging any information
with other routers. The distributed method we introduce here
then consists of two distinct stages, involving extremely low
communication among routers. In the first stage, each router
identifies a set of candidate anomalies by comparing traffic
measures on only the small subset of 2N links local to it. More
precisely, each router identifies outliers in the 2N -dimensional
space visible to it by exploiting local traffic correlations. Then,
in the second stage, a set of consensus anomalies are produced
through a simple adjacent-neighbor filtering algorithm that acts
to submit locally declared candidate anomalies to a degree
of verification. In this step, each router communicates its
outlier information with its neighbors, and outliers are finally
classified as anomalies by consensus if two connected routers
both report an outlier for the same time bin. Note that this
distributed scheme is no longer network-wide, but is still
spatial rather than temporal. We therefore term it spatial
volume anomaly detection.

To succeed in our proposed approach, we need to adopt a
first-stage detection framework that is well-suited to the kind
of variation that network traffic typically exhibits. Generalized
quantile sets (GQSs) are natural to use here. Formally, given
a probability distribution P , we define a β-level generalized
quantile set to be a set of minimum Euclidean volume with
probability mass at least β. In other words, GQSs encapsulate
regions of space where the mass of P is most concentrated.
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As such, outliers are naturally characterized in terms of GQSs.
The larger β is allowed to grow before a measurement falls
in the corresponding β-level GQSs, the more extreme or
‘outlying’ that measurement may be considered. Note that in
the case where P is a multivariate Gaussian distribution, the
GQSs are just ellipsoids.

Unfortunately, while this approach is natural, applying it to
network traffic can be difficult because for such data, the mod-
eling and estimation of the underlying distribution P is quite a
challenge. On the one hand, with sufficiently strong modeling
assumptions, a parametric framework may be adopted for this
purpose. For example, extensive studies of network traffic have
shown that in some settings traffic can be modeled well as
Gaussian. These settings are those in which traffic is highly
aggregated, either in terms of number of concurrent flows or
amount of time per sample [7]. However, the convergence of
traffic volumes to Gaussian may not occur in practice if aggre-
gation is insufficient and the traffic sources being aggregated
show high variability in terms of their sending rates. Such
high variability is not uncommon in network traffic [13], [16],
and so in many cases the Gaussian model is not appropriate.
The alternative is to adopt a nonparametric framework i.e.,
one in which minimal assumptions are made on the nature of
the underlying distribution P . But generally larger amounts of
data are required for estimation in nonparametric contexts.

As a result of these issues, the second goal of this paper
is to explore the relative utility of both parametric and non-
parametric GQS approaches for volume anomaly detection.
In the parametric case, we assume the underlying distribution
of the typical data (here, the traffic vector seen at a router)
to be multivariate Gaussian. In the non-parametric case, we
essentially infer the distribution from the data itself.

The third and final goal of this paper is to go beyond
simple generalized-quantile-based detection and attempt to
annotate the resulting outliers with a measure of significance.
The reason that this is needed is that we are applying the
generalized quantile test repeatedly over time. If we use a
fixed mass constraint (β) we get a constant number of outliers
(potential anomalies) at each router — a constant alarm rate.
Thus, while one router may experience a large number of
true volume anomalies, another router may generate the same
number of detections while only experiencing a small number
of true volume anomalies. It is therefore helpful to have a
measure of how severe an anomaly is for comparison across
routers. Another way to state the issue is that we need to
vary the alarm rate threshold at each router since each can
potentially include a differing number of false alarms.

Technically speaking, what we identify here within the
volume anomaly detection problem is a version of the well-
known multiple testing problem in statistics. This problem
refers to the context where one subjects a number of separate
tests to the same acceptance/rejection criterion that would be
used when considering only a single test. As the number of
separate applications of the test grows, it begins to outweigh
the unlikeliness associated with any individual test declaring
a detection based on nominal (i.e., non-anomalous) data.

These errors are considered false positives or false discoveries.
In principle, the number of such false discoveries can be
controlled simply by expanding the acceptance region of the
test (i.e., making the test more conservative). But such a
gain comes at the cost of a corresponding decrease in ability
to detect true anomalies. Alternatively, over the past decade
methods have been developed for controlling the rate of false
discoveries – rather than the number – which have proven
to balance the detection of true and false positives much
more successfully [2] [15]. We use so-called false discovery
rate (FDR) methods here, in conjunction with our GQS-based
detection strategy, to annotate our detections1 .

Our overall contribution in this paper is a distributed,
two-stage strategy for volume anomaly detection, that first
utilizes a combination of generalized quantile sets and false
discovery rate methods to identify a prioritized set of candidate
anomalies. Then, it outputs a final set of anomalies verified
by consensus through a simple exchange of candidates among
neighbors. To assess the accuracy of this strategy, we apply
it to traffic measurements from the Abilene network. Since
we are interested in whether distributed spatial methods can
perform as well as centralized whole-network methods, we
compare our detections against those obtained using the sub-
space method as described in [10]. Comparing our distributed
approach against the subspace approach gives us some indi-
cation of how well our approach does in the absence of any
global information.

Our results show that, in general, distributed methods can
perform nearly as well as the centralized method, despite the
lack of global knowledge in the distributed case. We find that
nearly all anomalies detected by the subspace method are also
detected by our distributed spatial methods with low FDRs.

In comparing parametric and non-parametric approaches,
we find that overall the non-parametric approach does nearly
as well as the parametric approach with Gaussian-like data,
and it does better where the data appear to be distinctly
non-Gaussian. This is precisely what one would expect with
our data, since these datasets are from a highly aggregated
backbone-type network, and hence are usually (but not always)
well modeled as multivariate Gaussian.

Finally, we show the utility of the FDR method in terms
of identifying more precisely a set of the most significant
anomalies in our data, and annotating those anomalies with
a measure of their importance.

II. BACKGROUND

Several techniques have been proposed to detect anomalies
in network traffic. They can be largely classified into spatial
and temporal techniques.

Early anomaly detection techniques used primarily tem-
poral methods [3]–[5] Temporal techniques exploit patterns
in a timeseries to expose network anomalies. Techniques
proposed in [3], [4] use deviation from normal behavior in

1 The joining of FDR methods and nonparametric GQS estimation is in
fact new, and was developed by the authors in conjunction with the material
in this paper, but is necessarily presented elsewhere [14].
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a timeseries to identify network faults. Deviation from the
norm is combined with the probabilistic framework of a
Bayesian network to detect faults by [5]. In [1], the authors
perform a signal analysis of network data that exploits its
time frequency characteristics. In [9], a sketch-based change
detection technique is used to detect significant changes in
massive data streams. Time-series forecast models (ARIMA,
Holt-Winters etc.) for anomaly detection detect significant
changes by looking for flows with large forecast errors. In
[18], the authors use temporal techniques (EWMA, Fourier /
Wavelets) to first detect candidate anomalies from link traffic
measurements. While each of these temporal methods has been
shown to be effective in certain settings, the temporal approach
requires careful timeseries modeling, which can be difficult to
tune in practice due to the bursty and long-range dependent
nature of network traffic.

Spatial methods [10] exploit correlation among links in the
network to define normal traffic behavior. Unlike temporal
techniques, these techniques do not require delicate parameter
tuning to capture normal traffic behavior in data. However,
these methods are inherently centralized, leading to commu-
nication burden across the network. The authors in [6] reduce
the data movement needed in network-wide anomaly detection
through judicious use of network-wide communication. Each
network monitor continuously tracks principal components
to within an error tolerance. A monitor sends its recent
measurements to the central entity only if the local error
tolerance is violated. However, that approach reduces but does
not eliminate network-wide communication. The need to com-
pletely eliminate such communication is a prime motivation of
our work; to our knowledge the current paper represents the
only fully-distributed volume-based spatial approach to traffic
anomaly detection.

Distributed signature generation techniques have also been
proposed for anomaly detection. In [8], each anomaly detec-
tion monitor first identifies suspicious source IP addresses.
Next, each monitor shares the source IP address among all
monitors. The authors assume the availability of a multicast
facility to all monitors. The authors in [17], define a framework
within which systems from different administrative domains
can participate in coordinated intrusion detection. Every over-
lay axis node maintains a global and a local view of intrusion
and attack activity. Axis nodes receive summaries from their
peers which are then used to create a view of global activity.
Our notion of a distributed approach differs from the above
in that only neighboring routers communicate. This allows for
very low communication overhead.

III. PROPERTIES OF TRAFFIC DATA

In this section we describe the data used, and point out
properties of the data that motivate our approach.

As described in Section I, our approach seeks to minimize
communication between routers. This implies that routers
primarily make use of traffic measures on their own links.
Routers are assumed to measure the volume of traffic passing
over each link in fixed time intervals. Our methods are equally

applicable to any traffic measures for which volume anomalies
are important, such as bytes, packets or flows; in our examples
we focus on byte traffic. A router having 2N unidirectional
links thus obtains a timeseries of vectors {xi, i = 1, . . . , T}
with xi ∈ IR2N .

A. Data Used
To illustrate our approach we use data collected from Abi-

lene, the Internet2 backbone network. The Abilene backbone
carries traffic from universities in the US and is hence non-
commercial. This network has a total of 11 PoPs across
continental USA.

We use a total of four weeks of data, one week (Week
I) from Apr 2003 (Apr 7-13) and three weeks (Week II-IV)
from Dec 2003 (Dec 8-28), and process one week of data
at a time. We refer to these data sets as Weeks I-IV. Traffic
volume (in bytes) from the Abilene network is binned in 10
minute intervals. This gives a total of 1008 timepoints per
week. For comparison, in [11] the authors study backscatter
data over several weeks and find that typically, about 50%
of the attacks are less than 10 minutes in duration and about
80% are less than 30 minutes. So, anomalies detected by our
scheme are ones that are pronounced in traffic volume in a 10
minute interval, which account for a significant percentage of
anomalies reported in [11].

Each router connects to between two and four other routers.
So for our data, we have xi ∈ IR2N with N = 2, 3, or
4. Hence, our measurements lie in a space of dimension
between 4 and 8. To visualize such vectors we project to two
dimensions in constructing the figures shown in this paper;
but all of our methods are implemented in the full 4 to 8
dimensional space of actual measurements.

B. Correlation Properties
Spatial anomaly detection relies on the presence of correla-

tions between traffic measurements on different links. Hence
an important first question to ask is whether traffic observed at
an individual router’s links (as opposed to across all links in a
network) exhibits correlations, and whether those correlations
are strong enough to usefully inform the outlier detection
process.

To answer this question we show examples of traffic mea-
surements taken from the Abilene network. Figure 1 shows
scatterplots of traffic on two links at each of the Atlanta,
Chicago and Indianapolis routers; Figure 2 shows scatterplots
of traffic on two links at each of the Chicago, Houston, and
Sunnyvale routers.

The figures show that there are strong correlations in the
traffic that effectively constrain the space of “normal” traffic
and provide useful boundaries for outlier detection. For exam-
ple, in Figure 1 large traffic volumes on one link correspond to
large traffic volumes on the other link — so an outlier detection
method that takes into account both values simultaneously will
be more sensitive than one that examines each value separately.
Likewise, in Figure 2 certain combinations of traffic values are
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Fig. 1. Scatter plots of traffic volume at the links connecting to routers in Atlanta (Week III), Chicago (Week I) and Indianapolis (Week III).
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Fig. 2. Scatter plots of traffic volume at the links connecting to routers in Chicago (Week I), Houston (Week I) and Sunnyvale (Week II).

much more likely than other combinations, although in these
cases the relationship is more complex.

Given that strong correlations exist between traffic measures
on different links, the natural next question is: how should
we describe the correlations in a manner useful for outlier
identification? The most common approach in such problems
is to use a parametric model to describe the data, and the most
common parametric model used is the multivariate Gaussian.
To illustrate the use of such a model for our data, we have
plotted the ellipses corresponding to the β = 0.99 threshold of
the maximum likelihood fit of a multivariate Gaussian to our
data (details are in Section IV). If the data were well described
as multivariate Gaussian, then the shape of the point cloud
would roughly match the ellipse and 99% of the data points
should lie inside the ellipse.

Visual inspection suggests that the multivariate Gaussian
model is a good fit for data in Figure 1, but not for the data
in Figure 2. Thus we conclude that while the multivariate
Gaussian may be a good model for a router’s link traffic in
some cases, it is not so in all cases.

The irregular nature of the point clouds in Figure 2 suggest
the need for a non-parametric description of the data useful
for outlier detection. We present such a method in Section IV;
here we simply show the results of applying the method, and
again selecting a set containing 99% of the data. (Both the
parametric and nonparametric methods used here are instances
of GQS estimates). The nonparametric sets are shown in gray
outline. In general, the nonparametric approach seems to yield

a much better match to the distribution of the data shown in
Figure 2.

To illustrate the outliers that would be identified by both
methods, we show outliers for the nonparametric method with
small circles, while outliers for the parametric method are
simply the points that fall outside the ellipse. There are a num-
ber of observations that can be made. First, the two methods
clearly identify different outliers, but the difference is much
more pronounced when the data are irregularly distributed as
in Figure 2. Second, when data are irregularly distributed, the
multivariate Gaussian model is quite poor, establishing bounds
that are far too wide, as seen in the case of the Sunnyvale
router in Figure 2. Finally, the nonparametric method, although
more general, does not necessarily do as well as the parametric
method when data are approximately Gaussian. This can be
seen in the case of plots in Figure 1, where the nonparametric
method can select outliers than appear to be better described
as normal data.

These observations suggest that it is important and worth-
while to consider both parametric and nonparametric ap-
proaches to outlier detection for this problem, which is how
we proceed in the remainder of the paper.

IV. DETECTING ANOMALIES

A. Generalized Quantile Sets and False Discovery Rate
In this section we describe the methodology whereby can-

didate anomalies are selected locally at each router. (The final
declaration of whether one of these candidates is actually an
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anomaly is made by the adjacent neighbor filtering described
below.) Recall that at a router we observe traffic volumes
{x1, . . . ,xT } at T distinct time points, as described in sec-
tion III.

We adopt the goals of (1) ranking the measurements
x1, . . . ,xT in order of their potential to be anomalous, and
(2) assigning annotations γ1, . . . , γT , with 0 ≤ γt ≤ 1, to
each xt ∈ D. Our annotations respect the ranking established
in the first goal, with larger annotations corresponding to more
potentially anomalous timepoints. Furthermore, they provide
an interpretable quantification of the degree to which each xt

appears to be anomalous. The annotations may be thresholded
to obtain local decisions, or propagated to neighboring routers
and aggregated in some way, as is done in the distributed
detector described below.

To construct such an annotated ranking we adopt the frame-
work developed by the second and third authors and developed
in detail in [14]. To begin, we discuss the problem of ranking.
Adopting a probabilistic framework, we view the typical (non-
anomalous) local measurements xt as independent realizations
(ignoring temporal dependencies) from a common probability
distribution P . A key assumption underlying our approach is
that anomalies are outliers with respect to this distribution.
Therefore, we rank the points xt according to how extreme
they are with respect to the nominal distribution P .

To make the notion of “extreme” precise in this multidi-
mensional setting, the concept of generalized quantile sets 2

is adopted. Given 0 ≤ β ≤ 1, the generalized quantile set at
level β with respect to P is defined to be

Gβ = arg min
all sets G

λ(G)

s.t. P (G) ≥ β.

Here λ denotes Euclidean volume (Lebesgue measure). The
GQS is the smallest set (in terms of Euclidean volume) that
encompasses at least 100β% of the probability mass of P . If
f(x) denotes the density of P , then it can easily be seen that
Gβ = {x : f(x) ≥ η} for some η > 0, where η increases as
β decreases. That is, GQSs are density level sets. Then, we
rank xt according to

βt := inf
0≤β≤1

{β : xt ∈ Gβ},

with larger values of βt corresponding to more potentially
anomalous volume patterns.

We now turn to the matter of assigning meaningful anno-
tations. The values βt are themselves an obvious, and indeed
not unreasonable, candidate for such an annotation. Indeed, βt

is the probability that a nominal measurement is less extreme
than xt. However, there is the need to interpret these values
and, although the values βt provide a meaningful interpretation
of each xt when viewed in isolation, they are not designed to
be meaningfully interpreted en masse. This observation is a

2 Generalized quantile sets are also known as minimum volume sets and
minimum measure sets in the literature. While the term ‘minimum volume
sets’ is perhaps most common, we prefer to avoid confusion with traffic
volumes.

variation on the issue at the heart of the so-called ‘multiple
testing problem’ in statistics. One version of the problem is
that, even if all xt are indeed nominal, for any β, we expect
about 100(1−β)% of the βt to be greater than β. For example,
if an isolated measurement xt has βt > β = 0.95, we would
feel confident ascribing a large annotation to xt. However, if
we gather T = 1000 measurements, then we expect about
1000 × 0.05 = 50 measurements to have βt > 0.95 just by
chance. Such an outcome is often unsatisfactory, particularly
when nontrivial amounts of energy are expected to be used
to follow up on discoveries, as is often the case in anomaly
detection problems.

This problem has received a great deal of attention in the
statistical literature over the past decade since the seminal
paper of Benjamini and Hochberg [2], who developed an
approach based on the false discovery rate (FDR). To describe
this concept in our setting, let Q denote the distribution of the
contaminated measurements. That is, Q is a mixture of P and
the distribution on anomalies. Adopting Storey’s framework
[15], we may associate an FDR to xt by

FDR(xt) := Q(x ∼ P |x /∈ Gβt
).

Thus, the FDR associated with xt is the probability that, given
that a “discovery” is made relative to xt (i.e., a measurement
is more extreme than xt), that discovery is in fact false. We
therefore propose, as a more meaningful alternative to the
values β(xt), to annotate our ranked observations by the values

γt := 1 − FDR(xt). (1)

These annotations, defined in terms of FDR, convey valu-
able information to a network operator, for example, who
can afford to devote only limited time to the pursuit of
false discoveries. Furthermore, it can be shown that these
annotations preserve the ranking defined in terms of the βt

[14].
Since the annotations depend on the unknown probability

distributions, these quantities must be estimated from the
data x1, . . . ,xT , which are realizations of the contaminated
mixture distribution Q. The details of this estimation procedure
are given in [14], where the emphasis is on nonparametric
setting but applies equally well to the parametric setting with
minor modifications. A central ingredient in that estimation
procedure is a method for GQS estimation. In particular, if
f̃ denotes the density of the contaminated distribution Q, we
must estimate the smallest level set of f̃ containing xt, say
Gt, for each t.

One question addressed in the present work is whether
the local Abilene data D is best modeled in a parametric or
nonparametric fashion. To address this question, we compare
outlier detectors based on parametric and nonparametric meth-
ods of estimating the level sets Gt. In both cases, we perform
density estimation based on x1, . . . ,xT to obtain an estimate
of f̃ . The set Gt is then estimated by thresholding the estimate
of f̃ such that xt is right on the boundary of the estimated
level set.
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In the parametric approach, the data are assumed to be
Gaussian, and the parameters of the Gaussian density, the
mean and covariance, are estimated by maximum likeli-
hood, yielding the sample mean and sample covariance of
x1, . . . ,xT . A second parametric approach is also considered.
Since the data D is by its very nature contaminated, it contains
some outliers that might influence the maximum likelihood
approach. Therefore, we also experimented with the method
of robust Gaussian parameter estimation described in [12]. In
the nonparametric approach, the density f̃ was estimated using
a kernel density estimator having an isotropic Gaussian kernel.
Selection of the kernel bandwidth is described in [14].

B. Adjacent Neighbor Filtering
As described so far, the distributed method involves no

communication between routers. However we observe that
the benefits of a distributed approach are maintained even
if strictly local communication is employed. In particular,
adjacent routers exchange traffic in normal operation, and so
exchange of information for outlier filtering is reasonable.

Thus, having identified candidate anomalies locally using
FDR-annotated generalized quantile sets, we use adjacent-
router communication to add strength to the conclusion that
an outlier is in fact an anomaly. The intuition behind this step
is that when a true anomaly occurs on a link, the two routers
on each end of the link should both report the timepoint as an
outlier. Hence, only if two adjacent routers observe an outlier
at the same timepoint do we classify it as an anomaly. We
will see in Section V-A that this overall algorithm is effective
in classifying outliers into anomalies and keeping the number
of false positives low.

C. The Subspace Method: A benchmark
Our goal is to demonstrate that a distributed anomaly detec-

tion appraoch can perform as well as a centralized approach. A
prominent example of the centralized approach is the subspace
method, so we use the anomalies detected via the subspace
method as our comparison case.

The subspace method uses Principal Component Analysis
(PCA) to detect volume anomalies (which we will call p-
anomalies) by starting with the traffic vector corresponding
to measurements of all network links, and separating it into
normal and anomalous components. The key idea in the
subspace-based detection stage is that the subspace corre-
sponding to maximal traffic variation can be identified with
normal behavior; so normal and anomalous data components
can be effectively separated by projecting traffic onto these
two subspaces.

Residual traffic (the portion lying in the anomalous sub-
space) is thresholded using a 1 − α confidence limit that
corresponds to a false alarm rate 3 of α. The confidence limit
is derived under the assumption that the traffic vector follows
a multivariate Gaussian distribution. Space does not permit

3 We note that in following [10], this use of false alarm rates does not
correct for multiple testing, as we do in our proposed methods. To do so here
in a comparable manner is beyond the scope of this paper.

a detailed explanation of the subspace method; more can be
found in [10].

V. RESULTS

In this section, we assess the performance of our methods.
To do so, we treat p-anomalies (those detected using PCA) as
ground truth anomalies. This allows us to assess whether our
distributed methods detect as well as the centralized (PCA)
method. However, we note that our distributed methods may
additionally detect true anomalies that were not detected by
PCA. For the purposes of our evaluation, these will be treated
as false alarms, even though they may not be. Thus the
detection rates and false alarm rates we report are conservative
with respect to true anomalies.

To represent ground truth we use the subspace method
(PCA) at detection thresholds of α = 0.999 and 0.995. Our
distributed methods will use thresholds of γ = 0.75, 0.50,
0.25 and 0.10. (We will discuss the significance of these
thresholds in Section V-C.) Events identified by PCA are
called p-anomalies, and those identified by our distributed
GQS approach, are called q-anomalies. A timepoint refers to
a single time bin; an anomaly may span multiple timepoints.
An event may occur on multiple links at the same timepoint
or over consecutive timepoints on the same link or links. We
call each such occurrence a unique event. In comparing the
methods, we consider the distributed method to identify a
unique PCA event if the q-anomaly includes some or all of the
timepoint(s) of the p-anomaly. On the other hand, we consider
the distributed method to have identified a PCA timepoint
only if a p-anomaly and q-anomaly were reported at the same
timepoint.

A. Evaluation of Proposed Methods
Table I compares the number of p-anomalies identified

by the parametric and the non-parametric GQS methods for
the four γ thresholds. The table shows that the distributed
methods are effective at identifying p-anomalies. For PCA
at α = 0.995, the parametric method identified 34 and the
non-parametric method identified 33 out of 38 p-anomalies.
Similarly, for a PCA at α = 0.999, both methods identified
all the 19 p-anomalies.

Most p-anomalies are multi-timepoint events. An analysis
of the data revealed that all of the unidentified p-anomalies
were single timepoint events. Nonetheless, over 50% of the
single timepoint p-anomalies are identified by the distributed
method.

Detection rate increases with decreasing γ. However, it is
important that the false alarm rate does not grow too large in
order to obtain a high detection rate. To explore this question
we show both detection and false alarm rates, in the form
of Receiver Operating Characteristic (ROC) curves. These are
shown, broken down by week, in Figure 3. The figure shows
the ROC curves for the non-parametric method on the left,
and for the parametric method on the right.

The figure shows that for most weeks and both method
variants, high detection rates can be obtained at quite low false
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γ threshold Unique PCA PCA events PCA events Unique PCA PCA events PCA events
Events identified by identified by PCA events identified by identified by
α = 0.995 non-parametric parametric α = 0.999 parametric non-parametric

γ = 0.75 38 23 24 19 15 15
γ = 0.50 38 28 27 19 16 16
γ = 0.25 38 31 32 19 17 19
γ = 0.10 38 33 34 19 19 19

TABLE I
COMPARING PCA EVENTS FOR α = 0.999 AND 0.995 AGAINST PARAMETRIC AND NON-PARAMETRIC GQS METHODS FOR A RANGE OF γ THRESHOLDS
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Fig. 3. Detection and false-alarm rates for the non-parametric (left) and the parametric (right) methods.

alarm rates. For example, for Week IV, detection rates of 100%
can be obtained at false alarm rates as low as 2%, for either the
parametric or non-parametric approach. Thus, not only can the
distributed approach be an effective alternative to centralized
detection methods, but it can do so with minimal numbers of
false alarms.

Figure 3 also shows that while the parametric method
outperforms the non-parametric method in Week I, the non-
parametric method does well in Week III. Results from Weeks-
II and IV are about the same. In summary, while neither one
of the two distributed methods consistently outperforms the
other, they are both successful in identifying the p-anomalies
with relatively low false alarm rates. This motivates a closer
comparison of the two approaches, which we present in the
next section.

B. Parametric vs Non-Parametric
To explore the differences between parametric and non-

parametric method, we compare results at individual routers.
In Figure 4, we show ROC curves for three selected routers.

The figure shows that the difference in performance between
parametric and non-parametric methods varies strongly across
routers. In the case of the Chicago and Denver routers, the non-
parametric method outperforms the parametric method while
for the Washington router, the parametric method does better.

To better understand why one method does better than the
other, we look at traffic patterns at each router. In Figure 5
we show scatter plots of traffic volume at each of the three
routers. Although there are multiple links at each router, we
plot data for two links that illustrate the differences we found.
It is clear that traffic at the Chicago and Denver routers are

much more irregularly distributed than that of the Washington
router, and that modeling them using a multivariate Gaussian
distribution would be a poor choice. On the other hand, the
data from the Washington router is well modeled as Gaussian.

As seen in Figure 4(a), the strongly non-gaussian nature
of data at the Chicago router means that as we lower the
γ threshold,the non-parametric method identifies all the p-
anomalies at a γ threshold of 0.25. The parametric method
on the other hand does not identify any p-anomalies even
for the lowest γ threshold of 0.1. At the other extreme, the
Gaussian nature of data at the Washington router (Figure 4(b))
implies the parametric method detects all the p-anomalies at a
γ threshold of 0.25. The non-parametric method on the other
hand is able to identify only 50% of the p-anomalies for a
γ threshold of 0.1. For the Denver router, as expected, the
non-parametric method identifies more p-anomalies than the
parametric method for each γ threshold, as seen in Figure 4(c).

Finally, another property of the data (not shown) is that,
as the number of links at a router increases, the parametric
method tends to do relatively better. So for Sunnyvale and
Kansas City routers (8 links in each router), the parametric
method generally outperformed the non-parametric method.

We conclude that in most cases, the parametric method
slightly outperforms the non-parametric method on our data.
This is a consequence of the high aggregation level of traffic in
the Abilene (backbone) network. However the differences in
performance between parametric and non-parametric are not
large, and the non-parametric method is additionally effective
in cases where data is irregularly distributed — as would
be expected in lighter-utilized networks or those with less-
aggregated traffic, such as edge or enterprise networks.
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Fig. 4. ROC curves for Chicago (Week-III), Washington (Week-I) and Denver (Week-IV) routers for γ thresholds of 0.75, 0.5, 0.25 and 0.1
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Fig. 5. Scatterplots showing all anomalies for Chicago (Week-III), Washington (Week-I) and Denver (Week-IV) routers

C. Finding FDR using Gamma plots
Finally, we illustrate the benefits that accrue through the

use of FDR based detection (γ thresholds). For comparison,
we contrast FDR based annotation with the usual method, that
is, the β value as described in Section IV.

Figure 6 shows both β and γ annotations for a particular
router and week, using both the non-parametric (left) and the
parametric (right) methods. Points are sorted in increase order
of their β value, and the vertical stems denote the timepoints
that are p-anomalies. As expected, the β annotation (which is
essentially a statement of the fraction of observed data smaller
than the given observation) increases linearly with the rank
of the point considered. One implication of this fact is that
setting a β threshold for detection (as is commonly done) is
a somewhat arbitrary decision.

On the other hand, the range of γ values shows a sharp knee.
This shows that points with similar β values can have very
different likelihoods of being a true detection. Furthermore,
setting a γ threshold is less arbitrary since there is a clear
knee to guide the choice. Finally, we reiterate the underlying
strength of the FDR approach to detection by γ thresholding:
it allows the operator to directly express the severity of
detections of interest, by specifying the likelihood that a
detection is a false alarm (see eqn. (1)).

We also note that the γ annotations for the non-parametric
method have a sharper knee than that of the parametric

method. This implies that for a given γ threshold, the non-
parametric method will report fewer datapoints than the para-
metric method. This is confirmed by the fact that the false
positive rate of the non-parametric method is consistently
lower, for any given γ than that of the parametric method
in our datasets.

A clear illustration of the ability of the FDR method to
control false alarms is shown in Figure 7. This figure compares
the γ and β methods across each week. For each week, the
first two bars show the number of timepoints detected by
(1) setting a fixed β threshold (0.99) at each router and (2)
setting a γ threshold yielding approximately the same number
of detections (averaged over all four weeks). The third and
fourth bars show the portions of the first two bars that are
false alarms.

Figure 7 also shows a key property of the FDR method,
namely, that a different number of unique timepoints are
detected in each week. This is in contrast to the β threshold
method which by definition detects the same number of
timepoints in each week. The figure also shows that the FDR
method results in significantly fewer false alarms than the β
threshold method.

VI. CONCLUSIONS

In this paper we have shown that a distributed approach to
spatial volume anomaly detection can be nearly as effective
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Fig. 6. Different annotations (β and γ) for all timepoints of Week-III Chicago router traffic.
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Fig. 7. Detection and false alarms for a given β and γ for Weeks I-IV

as centralized methods. This holds promise for more robust,
fault-tolerant and attack-resistant methods for volume anomaly
detection. We have also shown that both parametric and non-
parametric variants of the generalized quantile set approach are
effective for this problem, and provided insight into situations
in which each variant is preferred over the other. Finally, we
have illustrated the utility of using false discovery rate as a
annotation and detection criterion, to make detections more
informative to the operator.

A number of open questions remain. First, the scope of
our evaluation did not allow detailed inspection of individual
detections. This means that our methods may perform even
better than we have reported here, but it also means that subtle
differences in the nature of anomalies detected by centralized
versus distributed methods are not known. We anticipate more
detailed study in future work. Further, we are eager to extend
these promising results to a larger class of traffic anomalies
and explore the performance of our methods in different (edge,
enterprise) networks.
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