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Abstract

The study of gene function is critical in various genomic
and proteomic fields. Due to the availability of tremen-
dous amounts of different types of protein data, integrat-
ing these datasets to predict function has become a signif-
icant opportunity in computational biology. In this paper,
to predict protein function we (i) develop a novel Bayesian
framework combining relational, hierarchical and struc-
tural information with improvement in data usage efficiency
over similar methods, and (ii) propose to use it in con-
junction with an integrative protein-protein association net-
work, STRING (Search Tool for the Retrieval of INteracting
Genes/proteins), which combines information from seven
different sources. At the heart of our work is accomplish-
ing protein data integration in a concerted fashion with re-
spect to algorithm and data source. Method performance
is assessed by a 5-fold cross-validation in yeast on selected
terms from the Molecular Function ontology in the Gene
Ontology database. Results show that our combined use
of the proposed computational framework and the protein
network from STRING offers substantial improvements in
prediction. The benefits of using an aggressively integrative
network, such as STRING, may derive from the fact that
although it is likely that the ultimate gene interaction ma-
trix (including but not limited to protein-protein, genetic, or
regulatory interactions) will be sparse, presently it is still
known only incompletely in most organisms, and thus the
use of multiple distinct data sources is rewarded.

1. Introduction

An understanding of the functional roles of proteins
is central in biology, for purposes ranging from general
knowledge to the development of targeted medicine and

diagnostics. Protein function prediction methods can take
many forms. For biological process and pathway annota-
tion, the use of protein interaction relationships in terms of
functional linkage graphs has been a popular choice in re-
cent years. Markov Random Field model are well suited
to model such relationships, and are commonly applied un-
der a Bayesian framework [6, 9, 11]. Many such relation-
ships and annotations are stored in various databases, such
as BIOGRID, a protein-protein interaction (PPI) dataset;
MIPS, a database for genome/protein sequences, and the
Gene Ontology (GO) database, a rigorous vocabulary for
biological functions and available for computation. Concur-
rently, gene functionality prediction by information integra-
tion has become a major focus. Various genome-wide data
have been employed in Bayesian frameworks [8, 11, 13],
Markov Random Field models [4], and machine learning
approaches [7]. Notably, however, a common feature of
these methods is that they predict protein functions in a
“flat” fashion, without capitalizing on the ontological struc-
tures among functions from the GO database.

Ontology structures, essentially, are hierarchies, with
certain top to bottom annotation criterion, the true-path
rule, which protein function predictions should in princi-
ple follow. Many methodologies have recently been pro-
posed to combine protein data and the ontology structures,
[1, 2, 5, 12]. However, importantly, all of these that pre-
dict at multiple depths in the GO hierarchy take a separate
step to correct inconsistent predictions, rather than produc-
ing them directly in a probabilistically coherent way. This
problem is tackled in [6], but the methodology proposed
therein is limited in that it uses only a simple PPI network
as input.

In this paper, we propose a new framework for protein
function predication – PHIPA (Probabilistic Hierarchical
Inference of Protein Activity) – that uniquely incorporates
integrative aspects at the level of both statistical method-



ology and data input. Our proposed methodology com-
bines protein relational information and different protein
feature data (such as protein motif (domain) and cellular
localization information), together with the Gene Ontol-
ogy (GO) hierarchical structure. At the same time, rather
than encoding protein relational information through a stan-
dard PPI network, we use a network derived from an inte-
grative protein database, containing known and predicted
protein association information from multiple sources, i.e.,
STRING (Search Tool for the Retrieval of INteracting
Genes/proteins) [10]. Interestingly, little work appears to
have been done to date to take advantage of the integrated
information in STRING to predict protein functions. Over-
all, through our proposed approach we achieve greater data
usage efficiency and are able to produce predictions that are
inherently consistent with the true-path rule. The merit of
our work is to carry out the over-riding theme of informa-
tion integration through a combination of data and method-
ology, rather than merely either of them, to best infer pro-
teins’ functional roles.

2. Methodology
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For a given protein ' , we want to predict whether it has a
function ( , a term from the Gene Ontology (GO) database,
given the relational information from protein networks, pro-
tein categorical feature information, and the GO hierarchi-
cal structure. The true-path rule for the gene ontologies
requires that if a child term (i.e., more specific term) de-
scribes the gene product, then all its ancestor terms (i.e.,
less specific terms) must also apply to that gene product.

Ontologies are structured as directed acyclic graphs
(DAG’s), where a child term may have multiple parent
terms. To avoid the NP-hard problem of assigning values to
variables in a DAG of size ) given their conditional prob-
abilities on the arcs, we first apply a minimal spanning tree
(MST) algorithm, to transform a DAG into a tree-structured
hierarchy, as a routine approximation of probability distri-
butions on DAG’s [3]. As a result, term ( has one parent in
the tree, denoted as *,+.-/(10 .

We propose to build a classifier based on the use of hier-
archical conditional probabilities of the form

2 -/3547698:<;>=@? 3549698ACB 4 : 8 ;>=�DFE 49698G�HJI DFE 49678K HLBMI 0ON (1)

The notations are explained as follows.

P The binary variable 3 49698: ;Q= indicates that protein '
has function ( ; otherwise, it takes the value R = .

P The notation E 47698G�H
I denotes all the neighborhood in-
formation for protein ' from protein networks, such

as protein-protein interaction (PPI) network, gene co-
expression and others, as used in [7, 11]. To sim-
plify the notation, we do not use subscripts to distin-
guish different networks. More specifically, E 49698G�HJI ;SUT :WV T ACB 4 : 8

X
, the number of protein ' ’s neighbors la-

beled with term ( and *,+.-/(10 from a given network,
respectively. We do not need to consider the neighbor-
hood size because only neighbors labeled with *,+.-Y(10
can be further annotated with ( and hence affect pro-
tein ' ’s label, due to the true-path rule [6].

P The notation E 49678K HZBMI denotes the categorical feature in-
formation for protein ' , for instance, protein motif (do-
main), protein localization and phenotype information
[11]. Different feature information is not indexed by
subscripts here. Each feature may consist of multi-
ple categories, forming a feature vector. For example,
there are []\�[ protein domains used as the protein mo-
tif vector ^ in this paper, ^ ; -/_a` V NCNbN V _dcFefcU0 ; [�[
cellular location categories are used as the localization
feature, g ; -/hY` V NbNCN V hicFcC0 .

Motivated by reasonable empirical evidence and to fur-
ther aid the tractability of probabilistic calculations, we ap-
ply an assumed Markov property on the protein networks
and the GO hierarchy. That is, we assume that protein ' ’s
functional label is independent of the others given its neigh-
borhood status, and that a GO term is independent of other
terms in the hierarchy given its parent. In addition, a Naive
Bayes assumption is used to separate protein networks and
features, i.e., information from networks is assumed inde-
pendent of that from protein features, given the protein’s
functional annotations.
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It can be derived by Bayes rule that the target probability

(1) has the following form under our model assumptions:2 -/3u49698:<;z=]? 3{49678ACB 4 : 8 ;z=�DME 49678G�H
I DFE 47698K HLBMI 0
;

|~}w���/��f� `1� � | }�� �Y�Z�� � `�� �
=!� | } ���/��f� `p� � | } � �Y�Z�� � `�� � (2)

where ) G�HJI and ) K HZBMI are the numbers of different protein
networks and features used, respectively. We explain the
key components � � and � � in detail below.

The notation � � is the ratio of the probabilities of neigh-
borhood information from network � given protein ' is la-
beled and NOT labeled with the target function ( . Em-
ploying the Hierarchical Binomial-Neighborhood (HBN)
assumption from [6], we can show that for a given network
(omitting network index � ),

� ; � '��x�U_d'J+@hZ-
T :WV T ACB 4 : 8 D *.`b0����

� '
�x�U_q'J+@hZ-
T : V T ACB 4 : 8 D *,�C0��]- = R��%0
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where
T : and

T AbB 4 : 8 are explained before, parameter *x`
(* � ) is the probability with which neighbors of protein ' are
independently labeled with ( and *,+.-Y(10 , given ' is labeled
(NOT labeled) with ( . We estimate them from the train-
ing data using a standard pseudo-likelihood approach. The
parameter � ; 2 -/3 49678: ;z=]? 3 49678AbB 4 : 8 ;>= 0 is estimated by

� ;�� �U�M�9�f� B � � - = R � 0f� G �
�U� V
where � �M�9�F� B � and � G �
�U� are relative frequencies of term (
given its parent on the entire training set and the neighbor-
hood of protein ' , respectively; and the weight � can be pre-
determined or estimated by the pseudo-likelihood method.

The parameter � used in our framework is smoothed
in the above fashion towards a balance point between the
global and local conditional relative frequencies, borrow-
ing information of ( from both the whole training set and
the specific protein neighborhood. In the work of [6], the
parameter � is estimated simply by the global empirical
frequency of ( given *,+.-Y(10 on the training set i.e., w=1.
Note that � is term-specific, which can sometimes lead to
an estimation issue due to a lack of data for rare terms.
Some rare terms with low frequencies on the entire net-
work may have local enrichment [9]. In these cases, using a
smaller global relative frequency may decrease the predic-
tive probability for those proteins and hence increase false
negatives. For example, for term GO:0003774, motor activ-
ity, its global conditional relative frequency ���M�9�F� B � given its
parent GO:0003674, molecular function, is ��N ����[�[ . It has a
local enrichment on the neighborhood of gene YOR035C,
with a local conditional relative frequency � G ���U� ; ��N �]���]� .
Obviously, using ���F�7�f� B � as � is misleading in characterizing
the gene YOR035C.

The notation   � is the ratio of the probabilities of fea-
ture

T
given protein ' being labeled and NOT labeled with

the target function ( . Assuming that feature information
is independent with broader functions (parent terms), given
more specific information below them (child terms), we
have (omitting ' , T )

� ;
2 - E�¡x¢w£%¤!? 3 : ;z= V 3 ACB 4 : 8 ;>= 02 - E!¡�¢�£%¤W? 3 : ; R = V 3 AbB 4 : 8 ;>= 0

; 2 -/¥ ` V NCNbN V ¥§¦ ? 3 : ;¨= 02 -Y¥C` V NbNCN V ¥ ¦ ? 3 : ; R = 0 V
where ¥ � is the � -th category in feature © , _ is the number
of categories for © .

Naive Bayes is a common technique in this scenario. For
example, [11] applied Naive Bayes assumptions to factorize
� in the standard manner, i.e.,

� ; | ¦ � � `
2 -/¥ � ? 3 : ;>= 02 -Y¥ � ? 3 : ; R = 0 N

However, proteins may carry information from two fea-
ture categories that heavily overlap. Such redundancy

among the feature categories is not uncommon. Take
protein motif (domain) categories as an example. There
are 16 proteins associated with motif type IPR002041,
Ran GTPase, among the � = []ª yeast genes we studied,
which is entirely covered by the subset of the [ = proteins
associated with motif type IPR003574, GTPase Rho. Using
Naive Bayes here will cause inflated likelihoods of feature
components, and hence lead to low predictive accuracy.

To solve this problem, we develop a greedy search algo-
rithm to find the maximally informative bins of feature cat-
egories, and use the Naive Bayes assumption upon the bins,
in order to reduce redundancy. More specifically, consider
a categorical feature © ; -M«¥ ` V NbNCN V «¥b¦k0 , where «¥ � takes the
form of an ��¬ = binary vector for category � , and � is the
number of proteins. The ' -th entry in «¥ � being = denotes that
protein ' is assigned to the � -th category; � otherwise. We
compute the correlation coefficient for two binary vectors
as

 ; �w`F`§� �f� R��w` � � � `® -/� `f` � � ` ��0b-¯� `F` � �%� ` 0§-¯�%�F� � � ` �U0§-/�%�f� � �%� ` 0 V

where � Ab° is the number of entry pairs where the first entry
takes value * in the first vector and the second entry takes
value ± in the second vector, where * V ± ;¨= or � .

For a pre-chosen threshold ² for the correlation, and sep-
arately for the proteins’ label status in each term ( (i.e.,3 : ;z= or 3 : ; R = ), we first find the largest subset of cat-
egories where the correlation for any pair is at least ² and set
this subset as the first bin, � ` . For the other categories, we
repeat the same procedure until all categories are analyzed.
Bins are allowed to contain individual categories.

After binning all the categories, the ratio of the feature
components becomes

� ;
| }�³i´ ��µ� � ` 2 - � � ? 3549678:¶;¨= 0| }W·³¯´ �Cµ� � ` 2 - � � ? 3 49678: ; R = 0 N

The above binning process is label-specific. Since we use
two sets of proteins, one labeled and the other not labeled
with term ( , it is possible to get different bins of feature
categories, i.e., ) � 6 G�¸ may not equal ) ·� 6 G�¸ .
���¯¹m�~º»n��wv���npoq���� W�Y�����&�!��nsrut]�&v!�xvW�
n
�/��y

As mentioned, the true-path rule implies
2 -/3q49678:w¼½;

= V 3{49678ACB 4 :&¼ 8 ; R = 0 ; � . With the local conditional prob-
ability for a term ( � at the ¾ -th level below the root term(s� of a given GO hierarchy, the global conditional proba-
bility for a protein ' , 2 -/3u49678:&¼ ;¿=@? E 47698} ¢�¤ DME 49678¡x¢�£%¤ 0 has the



following form

2 -Y3 49678:&¼{;z=]? E 49678} ¢�¤ DME 49678¡x¢�£%¤ 0
; | ��f� ` 2 -Y3549678:�ÀÁ;>=@? 3{47698:xÀJÂ]ÃÄ;z=�DME 49678} ¢w¤ DFE 49698¡x¢w£%¤ 0
Å 2 -Y3 49678:&¼ Â]ÃW;>=@? E 47698} ¢�¤ DME 49678¡x¢�£%¤ 0 V (3)

where ( �§Æ ` is the parent term of ( � along the path from ( �
to the root (s� . The probability of a more specific term will
be no more than that of any of its ancestors, which guaran-
tees to produce threshold-based GO term label assignments
that comply with the true-path rule. This is an advantage
of our method. Most existing methods using terms from the
gene ontology as functions allow inconsistency to happen
and take a separate step to post-process [1, 9].

���iÇm�kÈmÉqÊ�ËÌ"Íº

As part of our overall framework, we use as input on pro-
tein relations a network based on STRING (Search Tool for
the Retrieval of INteracting Genes/proteins) [10]. STRING
is an integrative protein-protein association database, con-
taining known and predicted associations from \ evi-
dence sources: database imports1, high-throughput experi-
ments, co-expression, homology based on phylogenetic co-
occurrence, homology based on gene fusion events, homol-
ogy based on conserved genomic neighborhood, and text
mining.2

STRING simplifies the access to protein association by
providing a comprehensive collection of protein-protein as-
sociations for a large number of organisms. A score Î is as-
signed to each interacting pair of proteins by bench-marking
against the KEGG pathway. The score is calculated by= R�Î ; |

6 - = R�Î 6 0 , where ' indicates the individual ev-
idence type described above, and Î 6 is the score from the' -th source.

We refer to our overall Bayesian framework – incorpo-
rating the GO hierarchy, protein categorical features and
STRING – as Probabilistic Hierarchical Inference of Pro-
tein Activity (PHIPA).

3. Results

¹m�
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P STRING: Associations of Yeast (Saccharomyces cere-

visiae) genes are extracted from the STRING database
[10]. � = [�ª genes are used, after deleting isolated ones,

1PPI and pathway databases. Please refer to [10] for more explanation
on the evidence sources.

2In the following text, we simplify the names of the Ñ evidence sources
as database, experiment, co-expression, co-occurrence, gene fusion event,
neighborhood and text mining.

based on which a functional linkage graph is built,
where an edge is added to two nodes (proteins) if there
is a non-zero STRING score for them.

P Protein motif information: Protein motif categories
are extracted from MIPS database. [@\Ì[ categories are
used, after deleting non-informative ones (motif cate-
gories with less than � proteins assigned). Completely
redundant categories are eliminated, wherein two cat-
egories are judged to be thus if they have an identical
subset of proteins assigned to them.

P Protein localization information: Protein cellular loca-
tions are extracted from the MIPS database. [�[ cate-
gories are used after performing the same data cleaning
step as above.

P GO terms: = ª terms are selected from the Molecular
Function ontology as listed below. These terms were
chosen (i) to focus mainly on DNA binding and signal-
ing, (ii) to check certain other basic metabolic areas, in
case protein motifs are particularly useful in some, but
not all GO categories, and (iii) to explore algorithmic
performance at various depths in the hierarchy.

– terms related to DNA binding: GO:0003677,
DNA binding; GO:0016874, ligase activity;
GO:0004518, nuclease activity; GO:0004386,
helicase activity; GO:0003700, transcription
factor activity.;

– terms related to signaling: GO:0016887, ATPase
activity; GO:0004672, protein kinase activity;
GO:0003924, GTPase activity;

– terms related to other types of molecules, in-
cluding proteins, sugars, membrane ion channels
GO:0008233, peptidase activity; GO:0015075,
ion transporter activity; GO:0004407, histone
deacetylase activity; GO:0051119, sugar trans-
porter activity.

P Protein-protein interaction (PPI): PPI data is extracted
from the GRID database, for the purpose of compari-
son. The same � = [�ª genes as in the STRING network
are used and a functional linkage graph is built based
on their interactions.

¹m�/���~ÒÔÓ&Ð,t]��n
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In order to obtain a sense of the overall performance
gains offered by the various components of our proposed
method, we compared it to two other related methods pro-
posed recently in the literature: the hierarchical Binomial-
neighborhood (HBN) method [6] and the heterogeneous
Binomial-neighborhood (HeteroBN) method [11]. Each of



these methods was referred to earlier and differs from our
PHIPA method in important aspects of integration. Specifi-
cally, (i) HBN integrates only the GO hierarchy with protein
interaction data, (ii) HeteroBN integrates protein interaction
data with protein motif and localization data, and (iii) both
utilize only a standard PPI interaction network to encode
information on protein interactions. In contrast, PHIPA in-
tegrates the protein interaction data with both the GO hierar-
chy and protein motif and localization data, and additionally
utilizes STRING to encode protein interactions.
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Figure 1. Comparison of protein function
prediction accuracy for PHIPA versus pre-
viously published algorithms. [Left/right]:
GO:0015075, ion transporter activity and
GO:0003700, transcription factor activity;
[Top/bottom]: ROC curves and precision-
recall plots.

A 5-fold cross-validation study was performed on the 12
selected molecular function terms using the three methods.
Method performance is evaluated here by (a) ROC curves,
(b) precision-recall plots, where the curves are functions of
a common threshold applied to the probabilities output by
each method, as the threshold varies from � to = . Sensitivity,
specificity, precision and recall are calculated by averaging
the true positive (TP), false positive (FP), true negative (TN)
and false negative (FN) counts over the 5 folds for varying
thresholds.

PHIPA outperforms HBN by an outstanding margin in
all 12 terms, and shows substantial advantage over Het-
eroBN on most of the terms. Interestingly, protein motif
and localization information appear to be highly important
in predicting terms such as GO:0016887, APTase activity,
GO:0004672, protein kinase activity.

Due to space limitations, we show the ROC curves and
the precision-recall plots only for the terms GO:0015075,

ion transporter activity and GO:0003700, transcrip-
tion factor activity, which are representative (Figure
1). Please refer to the supplementary materials at
http://math.bu.edu/people/xiaoyu for all plots and tables for
this paper. The significant gain of PHIPA over HBN and
HeteroBN directly reflects the benefit of effectively inte-
grating the STRING network information, protein motif and
localization information, together with the GO hierarchy
into the construction of the classifier.
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Figure 2. The network dependence of protein
function prediction accuracy. [Left/right]:
GO:0015075, ion transporter activity and
GO:0003700, transcription factor activity;
[Top/bottom]: ROC curves and precision-
recall plots.

To examine the effect of choice of protein interaction
network i.e., STRING vs PPI, we compared PHIPA on
STRING to PHIPA on PPI. Note that protein motif and lo-
calization information and the GO hierarchy are utilized in
both cases. ROC curves and precision-recall plots were gen-
erated for all 12 terms, again under 5-fold cross-validation.
See Figure 2 for two representative sets of plots. These re-
sults indicate that STRING, as an integrative protein asso-
ciation network, offers more information useful to protein
function prediction, than PPI, one of the most commonly
used protein network in this field.
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To study the contribution of protein feature (motif and
localization) information and the GO hierarchical structure,
four models were implemented on the STRING network:



(1)PHIPA with protein features (motif and localization), (2)
PHIPA without protein features (called PHIPA in the leg-
end in Figure 3), (3) HeteroBN, and (4) BN (the Binomial-
Neighborhood method from [9], essentially based on a stan-
dard Markov random field model).
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Figure 3. Effect of protein motif and localiza-
tion information, and the GO hierarchy to pre-
diction accuracy. [Left/right]: GO:0015075,
ion transporter activity and GO:0003700,
transcription factor activity; [Top/bottom]:
ROC curves and precision-recall plots.

Again, ROC curves and precision-recall plots were gen-
erated for all 12 terms. Two representative sets of plots are
shown in Figure 3. Overall, protein motif and localization
information have a small but positive effect on prediction
accuracy when using the STRING network. An intriguing
observation is that the benefit of incorporating the GO hi-
erarchy varies by terms. For some functions, such as ion
transporter activity and DNA binding, the GO hierarchi-
cal structure improves the prediction accuracy significantly;
while for others, such as transcription factor activity and
helicase activity , its contribution can be negligible.

4. Discussion

A unified Bayesian Markov Random Field framework,
PHIPA, is proposed in this paper, integrating the protein-
protein association information from the STRING network,
protein motif and localization features, as well as the GO
hierarchical structure. The core of our work is information
fusion through coherent collaboration of methodology and
data usage to improve predictive capabilities.

The results of the previous section show that the pro-
posed PHIPA framework, with STRING, provides a pow-
erful platform for integrating different protein information

for inference of protein function. The STRING network is
seen to be a major source of the improvements we witness
over other methods. The addition of protein features shows
a more modest performance contribution and, for certain
terms, inclusion of the GO hierarchy demonstrates poten-
tial for noticeable advantages. Further analysis can be con-
ducted in a regression framework to study the effects of dif-
ferent STRING evidence types.

References

[1] Z. Barutcuoglu, S. R. E, and T. O. G. Hierarchical multi-
label prediction of gene function. Bioinformatics, 22:830–
836, 2006.

[2] L. Blockeel, H an dSchietgat, J. Struyf, and A. D. S. Clare.
Hierarchical multilabel classification trees for gene function
prediction. Probabilistic Modeling and Machine Learning
in Structural and Systems Biology (PMSB), 2006.

[3] C. K. Chow and C. N. Liu. Approximating discrete probabil-
ity distributions with dependence trees. IEEE Transactions
on Information Theory, IT-14(3):462–467, 1968.

[4] M. Deng, T. Chen, and F. Sun. An integrated analysis of pro-
tein function prediction. Journal of Computational Biology,
11:463–475, 2004.

[5] R. Eisner, B. Poulin, D. Szafron, P. Lu, and R. Greiner. Im-
proving protien function prediction using the hierarchical
structure of the gene ontology. IEEE Symposium on com-
putational Intelligence in Bioinformatics, 2005.

[6] X. Jiang, N. Nariai, M. Steffen, S. Kasif, and E. D. Ko-
laczyk. Integration of relational and hierarchical network
information for protein function prediction. BMC Bioinfor-
matics, 9:350, 2008.

[7] G. R. G. Lanckriet, T. D. Bie, N. Cristianini, M. I. Jordan,
and W. S. Noble. A statistical framework for genomic data
fusion. Bioinformatics, 20:2626–2635, 2004.

[8] I. Lee, S. V. Date, A. T. Adai, and E. M. Marcotte. A
probabilistic functional network of yeast genes. Science,
306:1555–1558, 2004.

[9] S. Letovsky and S. Kasif. Predicting protein function from
protein/protein interaction data: a probabilistic approach.
Bioinformatics, 19:i197–i204, 2003.

[10] C. V. Mering, L. J. Jensen, B. Snel, and et al. String:
known and predicted protein-protein associations, integrated
and transferred across organisms. Nucleic Acids Research,
33:D433–D437, 2005.

[11] N. Nariai, E. D. Kolaczyk, and S. Kasif. Probabilistic protein
function prediction from heterogeneous genome-wide data.
PLoS ONE, 2(3):e337, 2007.

[12] B. Shahbaba and M. Neal. Gene function classification using
bayesian models with hierarchy-based priors. BMC Bioin-
formatics, 7:448, 2006.

[13] O. G. Troyanskaya, K. Dolinski, A. B. Owen, R. B. Altman,
and B. D. A bayesian framework for combining heteroge-
neous data sources for gene function prediction (in saccha-
romyces cerevisiae). Proc natl Acad Sci USA, 100:8348–
8353, 2003.


