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ABSTRACT

We describe here a theory for a certain class of multiscale likelihood factorizations wherein,
in analogy to a wavelet decomposition of an L? function, a given likelihood function has an
alternative representation as a product of conditional densities reflecting information in both
the data and the parameter vector localized in position and scale. The underlying framework
is developed as a set of sufficient conditions for the existence of such factorizations, formulated
in analogy to those underlying a standard multiresolution analysis for wavelets. Hence, we
establish a theory of multiresolution analysis for likelihoods, and we show how the associated
conditions may be used to characterize families of distributions whose members permit a mul-
tiscale likelihood factorization. We then consider the use of these alternative representations in
a class of problems in nonparametric, complexity penalized likelihood inference, and show that
certain fundamental connections between our factorizations, recursive partitioning and a type
of generalized Haar basis allow such problems to be solved using analogues of the best-subset

and best-basis methods in the literature on wavelets.
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1 Introduction.

Much of the recent work in adaptive, nonlinear statistical methods employs a paradigm
that begins with the traditional “signal plus noise” model and then seeks an alternative repre-
sentation, often with respect to an orthonormal basis or redundant expansion, that is somehow
more appropriate for the assumed underlying structure — Fourier and wavelet-based methods,
of course, being canonical examples. However, in many nonparametric statistical problems the
“signal plus noise” model can be less applicable or even inappropriate, while a more general
likelihood-based model may suggest itself in a natural manner. In such cases, the concept of,
say, an orthogonal basis decomposition may be replaced by analogy with a factorization of the
data likelihood.

Our focus in this paper is in how the above-mentioned issues of representation pertain to

7 Often the primary features of scientific interest in a studied phenomena are revealed

“scale.
through data analyses that allow for simultaneous consideration of local structure or behavior
at varying levels of what alternately can be termed scale, resolution, or granularity. Commonly
a phenomenon of interest is viewed as a function f(-), and observations modeled as samples of
f in additive noise i.e., Y; = f(i/N) + Z;, for i = 1,..., N. Wavelets frequently are used then

to provide an alternative representation of this model in a manner sensitive to location/scale

variations in f. That is, the relation

f&) = D" wietk(®) (1)
(k)€ 4

provides a mechanism through which the details in f gained between certain approximations at
scales j and j+1, in the vicinity of locations indexed by k, are captured by the coefficients w; ; =
(f,%j k), where for example the 1; ;(t) = 21/24)(27t — k) are orthonormal dilations/translations

of a wavelet function 1 (t) satisfying the admissibility condition [ (¢)dt = 0.
Not surprisingly, nonparametric function estimation is the area of statistics that has been
the most profoundly impacted by the introduction of wavelets into the literature (e.g., DeVore

and Lucier 1992; Donoho and Johnstone 1994; and a variety of papers since, by numerous
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other authors). Yet for many statistical problems in which “scale” is relevant it is difficult
or even inappropriate to entertain the “signal plus noise” model and conventional wavelet
representations. For example, the data may arise with respect to a counting process (i.e., non-
additive noise), or even be categorical in form (i.e., non-ordinal). Alternatively, and sometimes
in addition, the data may derive from highly irregular sampling patterns, or the data space
may be lattice in structure (rather than a continuum), two situations particularly common to
many spatial contexts.

In such cases it often can be found that many of the standard statistical methods begin
with the specification of a common likelihood function for the data. Hence we take as a premise
to our work in this paper that, for a likelihood p(X|@), a natural analogue to the orthogonal

wavelet decomposition of a function f in (1) is a multiscale factorization
p(X10) =[] p(Djr(X)|wik()) , (2)
gk

where the random variables D; ;, contain information in the original data X local to scale j and
position k, and the parameters w; j reflect similar information in the original parameter 8. We
use the notation p(-) here and throughout the paper to denote either a probability density or a
probability mass function, which we shall refer to generically as a density (i.e., p.d.f.) defined
with respect to some appropriate dominating measure (which we typically will suppress).

Our interest here is in the existence and derivation of factorizations like that in (2), as well
as in their usage for problems of nonparametric inference. In the case of wavelets these issues
are connected intimately to the notion of a multiresolution analysis (MRA). Although the first
systems of smooth orthonormal wavelets (Stromberg 1982; Meyer 1985), generalizing the con-
struction of Haar (1910), in fact were derived prior to the development of the MRA formalism,
arguably it was only with the development of the latter (Mallat 1989; Meyer 1992) that a frame-
work was established for an intuitive understanding of these wavelets and the construction of
others. The term “multiresolution,” broadly speaking, refers to a method whereby an object of

interest is studied at various, nested scales of resolution, and indeed such methods pre-date the



appearance of wavelets and the wavelet MRA. For example, multiresolution approaches have
been common for some time in the fields of image processing and computer vision, where they
arise quite naturally (e.g., Burt and Adelson 1983; Witkin 1983).

Therefore, we describe here a theory of multiresolution analysis for likelihoods. Specifically,
we begin in section 2 with the development of a set of sufficient conditions for the existence of
a certain class of multiscale factorizations, which are formulated quite naturally in analogy to
those underlying a standard MRA for wavelets. In section 3 we then demonstrate how these
conditions may be used for characterizing families of distributions whose members permit a
multiscale likelihood factorization. Examples are found to include the Gaussian and Poisson
families, as well as a certain sub-class of the discrete natural exponential family distributions.
Having thus considered issues of existence and characterization, we then study in section 4 the
usage of our multiscale factorizations in a general class of nonparametric, complexity penal-
ized likelihood problems. In particular, we show that fundamental connections between our
factorizations, the underlying partitions, and a class of generalized Haar bases may be used to
develop analogues for best-subset and best-basis methods found in the literature on wavelet
and related methods. A brief numerical illustration of these methods is presented in section 5.

Finally, some additional discussion closes the paper in section 6.

2 Multiresolution Analysis for Likelihoods.

2.1 The Example of Wavelets.

We begin this section with a brief review of the components underlying a multiresolution
analysis for wavelets, based on the material in Daubechies (1992). The idea behind this method
is to construct a sequence of subspaces V; C L?(IR), across various scales j, whose members
serve as successively finer approximations to functions f € L?(IR). Consider requiring the

following four characteristics of these subspaces.



A. HIERARCHY OF NESTED SUBSPACES. The subspaces V; satisfy the condition
- VocCcViCcVycVicVy---

where N, 7V = {0} and UjezVi = L?(IR).

B. ORTHONORMAL BASis WITHIN V. There exists a function ¢ such that the collection

{#(- — k)} ;g forms an orthonormal basis for V.

C. SCALING BETWEEN SUBSPACES.

geEV;<=g(277) eV

D. TRANSLATION WITHIN SUBSPACES.

geVv=y9(-—k)eW, VkeZ.

Our interest in the above characteristics (gathered into these four labeled categories for
our own later convenience of exposition) centers primarily on the fact that they form a set
of sufficient conditions for the existence of a (wavelet) function 1 € L?(IR) for which the
collection {1} x} forms an orthonormal basis of L?(IR), as in equation (1). In other words, these
conditions assure a multiscale decomposition or “decoupling” of any given function f € L?(IR)
into components of L? “energy” localized to certain combinations of scale j and position .
The fact that this decoupling is with respect to an orthonormal basis implies that knowledge
of these components (i.e., the coefficients and their corresponding wavelets) is equivalent to
knowledge of the function f itself — only the representation has changed.

As an important aside, we mention here that the conditions in (A) - (D) technically form
a multiresolution analysis corresponding to most of what now have come to be called “first
generation” wavelets. These include wavelets produced with the addition of more conditions

(e.g., vanishing higher order moments, near-symmetry, etc.), as well as the slight loosening of
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certain of these original conditions (e.g., requiring the weaker condition of a Riesz basis for the
collection {¢g x} in (B)). In contrast, members of the so-called “second generation” of wavelets
(Sweldens 1997) in fact give up the basic translation and scaling structure (i.e., induced by
conditions (C) and (D)) inherent in the %;; in equation (1). In our development below we
focus on crafting a multiresolution analysis for likelihoods more analogous to that associated
with the original, “first generation” method for wavelets, while at various points throughout the

paper we comment additionally where “second generation” analogues are or might be feasible.

2.2 Likelihood MRAsSs.

Let X = (Xi,...,Xn) be a vector of random variables, with p.d.f. p(-|@), for some
parameter 8 € O C RN. We shall assume throughout that the use of indices {1,...,N}
reflects an ordering in the underlying data space. (This condition is convenient but not necessary
for the results in this section and section 3, but is necessary for the result of Theorem 9 in
section 4.2.) Accordingly, this set of indices generally will be referred to as the (discrete)
interval Iy = (0, N], and subsets of indices referred to as subintervals (denoted generically as
I C Ij)). Note that while such an ordering certainly might correspond to something typical like
time or distance (e.g., a financial time series), it may also correspond to a non-temporal index
(e.g., spectral energy in astronomy), or even a non-physical index (e.g., opinions in a survey,

” “agree,”, etc.). The framework we develop next applies equally in

ordered as “strongly agree,
each of these cases, as well as in others.

We begin by formalizing the expression in equation (2) with the following definition.

Definition 1 By the term multiscale likelihood factorization we shall mean an equality of the

form

p(X|0) =[] »(Da (X) |wa (8)) 3)
a€g

between the original data likelihood and a factorization with respect to some graph G reflecting

a hierarchy of scales, where

(i) X — D(X) is a mapping to an N-length representation of statistically independent
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components Dy (X)), each containing information localized to a scale/position combination
indezed by nodes a € G and distributed according to some member of a common parametric

family of distributions, and

(ii) @ — w(0) is an accompanying, one-to-one re-parameterization of @ into multiscale com-

ponents that are L-independent with respect to the multiscale likelihood function.

In requiring L-independence (Barndorf-Nielsen (1978, pg. 26)), we ask that the domain of
variation of w be equal to the product of the domains of the components w,, and that the role
of w in the likelihood p(D | w) can be separated into isolated roles as in (3) i.e., one and only one
parameter component per probability component. In this sense we achieve a phenomenon like
that which occurs in an orthonormal basis decomposition, as in equation (1), wherein a function
f is represented as the aggregation of contributions from separate pairs of template functions
1 r and parameters wj . In (3), the template functions are replaced by template distributions,
as it were, and the common shape of the various wavelets is replaced by a requirement that the
distributions fall in the same parametric family.

A simple example of (3) occurs in the case where the data are described by the model
X; = 0;,+0Z;, where the Z; are i.i.d. Gaussian with zero mean and unit variance, and a discrete
orthogonal wavelet transform is applied. The result, as is well known, is the transformed model
D = wjy+0Zjy, where D; ;. are the empirical wavelet coefficients of the data, the w;; are
the wavelet coefficients of the vector 8, and the Z; ;, are similarly i.i.d. Gaussian with zero mean
and unit variance. The graph G in this case is a simple binary tree, induced by the underlying
dyadic structure of the discrete wavelet transform, and the multiscale likelihood factorization
is in fact like that in equation (2), where the components on the right-hand side are univariate

2. These results may be

Gaussian density functions with means w;; and common variance o
contrasted with those that follow in the case where, for example, the X; instead are modeled
as independent Poisson, with means 6;, and a discrete wavelet transform similarly is applied.
A factorization in terms of individual wavelet coefficients (2) is not possible in the Poisson case

due to the statistical dependency among the D, ; (Kolaczyk 1999a).
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In analogy to the four characteristics (A) — (D) outlined in section 2.1, we will now describe
four characteristics sufficient to insure a certain multiscale factorization with structure like that
in (3). The first three characteristics will be seen to play roles similar to those of (A), (B), and
(C), while the last would seem to pertain uniquely to the context of likelihoods. To begin with,
we suppose that the notion of multiple resolutions arises (or can be viewed as having arisen)

through recursive partitioning (or, conversely, hierarchical aggregation) of the dataspace i.e.,

A*. HIERARCHY OF RECURSIVE PARTITIONS. A collection {P;} ; of recursively defined

partitions of the discrete interval (0, N], resulting in the nesting

PrC---CPn,

such that P; = (0, N] and Py = UY, {i}.

We assume that, following the coarsest partition P;, each intermediate partition in the hier-
archy is obtained by splitting one and only one interval of its immediate predecessor into two
subintervals (hence resulting in N such Py). In general, we will write P* = {P;}} ,, and refer
to P* as a complete recursive partition (C-RP). For example, if N = 4, two possible C-RP’s of
(0,4] are

{{1,2,3,4}, {{1,2}, {3, 43}, {{1}, {2}, {3:4}}, {{1}, {2}, {3}, {4}}}

and

{{1,2,3,4}, {{1},{2,3,4}}, {{1},{2,3}, {4}}, {{1}, {2}, {3}, {4}}} .

The former is a complete, recursive dyadic partition (C-RDP), while the latter is non-dyadic.
Note that to any C-RP there corresponds a labeled, binary tree, which we denote 7* = T (P*),
where the label a at each vertex of 7* refers to some corresponding subinterval I, of Iy with
cardinality, say, Ny, . If P* is the C-RDP, for example, then we may adopt the standard (j, k)
indexing of dyadic wavelet bases for our labels. Without loss of generality, we will continue

to emphasize through our notation the role of intervals and partitions over that of the corre-
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sponding trees, except in cases where explicit use of the latter is particularly convenient and/or
useful in making a given argument.

Hierarchies of partitions occur quite naturally in many contexts. For instance, with respect
to our earlier examples, they might arise through the aggregation of time series or spectral data
over successively wider bins of time or energy, or the collapsing of response categories in an

opinion survey. To condition (A*) we next add

B*. INDEPENDENCE WITHIN Pn. The components of X are statistically independent, the

components of @ are L-independent with respect to the likelihood of X i.e.,

P(X\O)ZUP(XH&) ,

and the p.d.f for each X; is a member of some common parametric family

F={p(-|0): 0 € © CR}.

This condition can be seen to be analogous to condition (B), in that the assumption of a
likelihood factorization in the original data space, with respect to the index set {1,..., N},
and in components identical up to the parameters 6;, mirrors the spirit and function of the
orthonormal basis {¢(- — k)} in Vj. However, we should point out that, just as the condition
of orthonormality can be weakened in the case of wavelets (as mentioned in section 2.1), and
therefore is not a necessary condition, so too we shall see in Theorem 5 (Section 3) that condition
(B*), while sufficient, is not a necessary condition either.

The net result of conditions (A*) and (B*) is a hierarchically defined scheme for grouping
subsets of a vector of independent random variables, whose distributions are identical up to
parameterization within some family . The manner of grouping derives from the C-RP P*,
which describes how any given “parent” interval I = (i1 ... in,] is split into two “children”
subintervals Io; 1)y and Iy, denoted | =“left” and r =“right” with respect to the ordering
underlying the original index set {1,..., N}. For each interval I, it is desirable to combine the

information in {Xj;,,...,X; Nz} into a single summary statistic, X, with the simplest approach



being through direct summation i.e.,
XIEXi1+"'+XiNIa (4)

which will be focused on exclusively in the sequel. Our third condition is then

C*. REPRODUCIBILITY BETWEEN PARTITIONS.  The family F is reproducible in 8, in the
sense that VN; > 1, and V8 € OV the p.d.f. of 3;c; X; is p(-|0;) € F, where 0; =
Eie] 0;.

Conceptually, reproducibility simply dictates that the distributional family is in some sense
“invariant” under summation (a scale-invariance, if you will). Practically speaking, however,
there are in fact a number of similar definitions in use (see section 3). We use the very simplest
definition here, found for example in Wilks (1962), which describes the well-known behavior of
such distributions as the Gaussian, Poisson, Cauchy, and others.

We now have the following

Theorem 1 Given conditions (A*), (B*), and (C*), there holds a factorization of the form

p(X|0)=p(X1,|10) JI »pXawulX1,0), (5)
IENT(P*)

where NT(P*) is the set of all non-terminal intervals in P* (i.e., non-singletons), and the

probability components p(Xch([)’l|X1, 0) all belong to the same parametric family of distributions.

Proof of Theorem 1: For notational simplicity, we suppress the role of 8. Given the inde-
pendence of the X; and the binary nature of the tree 7* underlying P*, for equation (5) it is

sufficient to note the relation

P(Xenn) s Xenn)r) = P(Xen(ny | X1) p(X1)

and apply it recursively on NT'(P*) moving from fine scales to coarse (i.e., from the leaves of 7*
10



to the root). Alternatively, this result may be viewed as a consequence of the fact that conditions
(A*) and (B*) imply a so-called directed, local Markov property for the graphical model given
by {X1, }ac7+, when T* is equipped with arrows denoting parent/child relationships. Equation
(5) then follows as an example of a recursive factorization (e.g., Lauritzen 1997, theorem 3.27).
The fact that the conditional distributions in the factorization are of the same family follows
from condition (C*). O

Note that equation (5) essentially achieves the form that we seek in equation (3) of Definition
1, with Dy (X) =¢ Xen(ra)y | X1a, except that the components of @ cannot necessarily be
expected to be L-independent with respect to this factorization as well. Put another way, we
have a factorization of p(X|@) into components that are functions of only local information in
X, but global information in 8. However, one may hope that there exists some corresponding
reparameterization of @ that achieves a similar localization. Such behavior may be assured

through the following condition.

D*. “DECOUPLING” OF PARAMETERS WITH PARTITIONS (1.E. CUTS).
For any X; ~ p(-|0;) € F, i = i1,19, there exists some re-parameterization

(05, 6;,) — (01,,,wr,,) such that
p( Xi]’XiQ |9i1,0i2 ) = p(X112 ‘ ejlz)p(Xil |X112,w112) s

where X1, = X;, + X;, and 01, = 6;, + 6;,. That is, Xy, is a cut for (X;,, X;,).

Generally speaking, given a statistic S = S(Y) defined with respect to a random variable Y
with distribution function F, S is said to be a cut if the mapping F — (Fs, F¥) is surjective,
where Fg and F'S are the marginal distribution of S and the conditional distribution given S,
respectively. In the event that F' is parameterized, a cut refers to a separation or “decoupling”
of the parameters (or some re-parameterization thereof) with the marginal and conditional
distributions. Conceptually, a cut is similar to the idea of sufficiency; in fact, it is equivalent to
the principle of so-called S-sufficiency. The reader is referred to Barndorff-Nielsen (1978) for a

detailed exposition these ideas, their definitions, and their usage.
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We are now able to state the main result of this section.

Theorem 2 Assume that the conditions (A*), (B*), (C*), and (D*) hold. Then there exists a

factorization of the form

p(X|0) =p(Xp, 16r,) [l pXenwyalX1,wr) (6)
IENT(P¥)

with respect to some re-parameterization {0r,,w} of 8, where 87, = YN, 6;.

Recalling the recursive, pairwise treatment of the random variables in the proof of Theorem 1,
and noting the pairwise nature of condition (D*), the proof of Theorem 2 is immediate.

We see that (6) is an example of (3). For a random variable X associated with family F
for whom (A*) — (D*) are satisfied, we will say that F allows a multiresolution analysis with
respect to 8. A side-by-side comparison of the conditions underlying a wavelet MRA and a
likelihood MRA is given in Table 1. As remarked above, the first three conditions of each are
quite analogous in form and function. In fact, since condition (C*) arguably shares the spirit of
not only condition (C) but (D) as well in a wavelet MRA, it would appear that condition (D*)
alone stands out as being particularly unique to the likelihood-based context. In considering
the factorization in (6), note that the role of a wavelet coefficient/function pair (w;x,¥;x), in
capturing detail lost between scales j + 1 and j in approximating f € L?(IR), is played here
by the conditional density p(X.p(r)|X1,wr), a natural form of expressing the information lost
between the aggregations dictated by a partition P C P* and its immediate predecessor. In
the next section we present results characterizing those families F, within certain broad classes,
that allow a multiresolution analysis and provide in the process examples of explicit forms for

these conditional densities.

3 Characterization.

Consider again the conditions underlying our likelihood MRA. While (A*) establishes a fixed
C-RP P* and (B*) imposes fairly standard distributional assumptions on the X;, conditions

12



(C*) and (D*) arguably are the determining factors as to whether or not a family F allows
an MRA. There are relatively small but detailed literatures on both reproducibility and cuts,
mainly pertaining to their roles in exponential family distributions. In this section we illustrate,
through the proofs of Theorems 3 and 4, how results from this literature may be used for the
purpose of characterization. By a one-parameter natural exponential family (NEF), we shall

mean a family F with densities of the form
p(Xilni) = a(n:)b(X;) exp{n; X}

with respect to some sigma-finite measure v(-), for n € E C IR. Such families will be assumed to
be minimal throughout, and either steep or regular (as dictated by our use of existing results).

We begin by illustrating the role that may be played by the condition of reproducibility and,
for reasons that will become clear in the proof that follows, we adopt a slightly more general

version of that given in (C*).

(C**) REPRODUCIBILITY-N?: The family F is reproducible-N? in 6, in the sense that VN; > 1,
there exists a constant § € IR (independent of Ny) and a surjective mapping gn, : © — ©

such that the p.d.f. of (N;)% Y., X; is given by p(-|gn, (01)) € F .

This particular definition is analogous to that of Bar-Lev and Enis (1986), whose definition
was for random variables independent and identically distributed. When (C**) is combined
with conditions (A*), (B*), and (D*), the factorization of equation (6) again follows, but in
the scaled random variables Y7 = N, }3 X1 (where the notation in (D*) is to be modified in the

obvious fashion). We then have the following characterization result.

Theorem 3 Suppose that F is a (minimal and steep) one-parameter NEF. Then it follows that

(i) F allows a likelihood MRA with respect to the natural parameterization @ = n if and only

if F is the family of Gaussian distributions;

(ii) F allows a likelihood MRA with respect to the mean parameterization 8 = p(n) if and only

if F is either the family of Gaussian distributions or the family of Poisson distributions.
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Proof of Theorem 3: Assume a C-RP like that in (A*) and the independence structure of
(B*). Next, note that the collection of NEF’s F satisfying (C**) must be contained within the
collection of such F which do so in the case of i.i.d. random variables i.e., wheren; = ... =y =
n, for some 7 € E. A characterization of this latter case is provided in Bar-Lev and Enis (1986).
Specifically, among various other results, these authors show that reproducibility implies that
F must have a power variance function (PVF) i.e., of the form var(X) = V(u(n)) = o x (u)7,
for some v € IR — {2}, in which case the parameter § in (C**) is given by g = (1 —~)/(y — 2).
Furthermore, they present a characterization of all such NEF-PVF families, listing them as
Gaussian (y = 0, 8 = —1/2), Poisson (y = 1, 8 = 0), compound Poisson (y € (1,2)), and a
class generated by certain stable distributions (y > 2).

Now for (i) we can consult the cumulant generating function (cgf) U(t;n) = log E[e!X],
for which condition (C**) implies that we must have ¥ (¢, gn, (nr)) = 2221 U(tN Iﬁ imi) , where
N1 = Y;er M- Examination of the four such possible ¥(¢,7), provided in the ii.d. case by
Bar-Lev and Enis (1986), quickly yields result (i), due to the fact that for all but the Gaussian
distribution the cgf’s are prohibitively nonlinear in 7. For (ii), it is more convenient to work
with the variance function V (i), which (along with x(E)) uniquely characterizes its NEF within
the class of all NEFs (Morris 1982). Since E[NIﬂ Y Xi) = NIﬂ > p; and F must have PVF, we
have the condition U(Nf Soui)? = NI% > ou], which is satisfied only in the case of v = 0 or 1.

Finally, it remains to show that the sum of independent random variables forms a cut for the

joint distribution in the case of the Gaussian and Poisson families, hence satisfying condition

(D*), which is straightforward (e.g., Barndorff-Nielsen 1978). [

We will find it useful in sections 4 and 5 to have recorded the specific forms of the multiscale

factorizations for Gaussian and Poisson data in the following corollary.
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Corollary 1 Let i1 = ficp(r), + Hen(r),r denote the mean of Xp,VI € P*.

(i) Suppose that the original observations X; ~ Gaussian(p;,o?). Then

N

I p(Xilpi, o) dX; = p(Xplury, Nipo®)dXs,  [I  p(Xennya| X1, wr, c10®)dX ey
i=1 TENT(P*)
(7)
where
Xr1o|pe14, N1po? ~ Gaussian (/,L]O,N[00'2) ,and
N,
Xen(n | X1, wr, cro® ~ Gaussian (MiL'I —wr, 6102> )
I

with

Wy = er (Hch(l),r . Uch(I),l)
Nentyr  Newyy)

for e1 = New(ryy Nenry,r/N1-

(ii) Suppose that the original observations X; ~ Poisson(u;). Then

N

[ p(Xils) = p(Xioluery) T  p(Xenny il Xr,wr) (8)
i=1 IENT(P*)

where Xy, |pr, ~ Poisson(ur,) and Xch(l),l|X1,w1 ~ Binomial(X;wy),

with wr = pen(ry/B1-

We postpone more detailed discussion of the above expressions until section 4. Before

moving onward with our characterization results, however, we make the following observations.

Remark 1: Parameterization matters — hence our care in writing that a given family
F allows an MRA with respect to a given parameterization. For the Gaussian distri-
bution, the natural and mean parameterizations are equal up to a constant scaling

term, and so the two cases are essentially the same. For the Poisson, however,

n; = log(ps).
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Remark 2: Choice of a class of families {F} matters. For example, the family of
gamma, distributions is not reproducible as a one-parameter NEF (where o is fixed),
but is so when viewed as a two-parameter family (Bar-Lev and Enis 1986). This
latter perspective necessitates the broadening of the concept of “family” to include
NEF-PVF’s that have the same values of v and p(E), but potentially different

support.

Remark 3: Similarly, from the perspective of reproducibility, there are families
outside of NEF’s that suggest themselves. A particularly attractive candidate is
the Cauchy distribution, a member of the larger of class of stable distributions for
which a generalization of our notion of reproducibility could be introduced. It is
not difficult to show, however, that the X; do not qualify as cuts under the Cauchy

distribution (Kolaczyk 1999a), thus violating condition (D*).

In the above approach we used reproducibility to reduce our class of candidate families
F to just a handful, after which we applied the concept of cuts case-by-case. Now consider
the converse, wherein the condition of cuts is applied first. By far the most explicit general
statements regarding cuts can be made regarding discrete NEF’s, and so we have the following
alternative characterization of the Poisson distribution among families allowing a likelihood

MRA.

Theorem 4 Suppose that F is a (minimal and regular) discrete, one-parameter NEF, for which
the sample space X is a subset of {0,1,2,...} containing the points 0 and 1. Then the family
F allows a likelihood MRA if and only if F is Poisson.

Proof of Theorem 4: As in the proof of Theorem 3, assume a C-RP like that in (A*) and the
independence structure of (B*). Next, without loss of generality, consider any pair of random
variables X;, and X;, with distributions in F. The joint distribution will be a bivariate NEF
(minimal and regular) with sample space containing the points {0,0}, {0,1}, and {1,1}. By
theorem 4 of Barndorff-Nielsen (1976), which pertains to a multivariate version of our bivariate
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case, X;, + X, is a cut (and hence satisfies condition (D*)) if and only if the joint distribution
of (Xi,,X;,) is that of a sum-symmetric power series distribution (SSPSD). However, the in-
dependence of X;, and X, dictated by condition (B*) is satisfied, among all SSPSD’s, only by
the multivariate Poisson distribution (Joshi and Patil 1968, property 6.3). Reproducibility of
the Poisson distribution in the mean parameterization is well-known, and hence condition (C*)
is satisfied. The conclusion of the theorem then follows. [

On a final note, we see from the above proof that the family of SSPSD’s plays a key role
in the theory of cuts for discrete exponential families, but that the independence assumption
of condition (B*) excludes all but one member from allowing a likelihood MRA. Interestingly
enough, despite the general dependency possessed by its members, the entire class of SSPSD

families can be shown to permit multiscale likelihood factorizations like that in (6).

Theorem 5 Suppose that the vector (X1, Xo,...,Xn) follows a sum-symmetric power series

distribution i.e., with probability mass function of the form

X1 XN
01 HN

p(X10) = b(X) =

where the generating function g(-) depends on @ only through 61+---+6y. Then p(X|0) allows
a multiscale factorization, as in equation (6), where X,|01, follows the univariate power series
distribution with parameter 01, and generating function g(01,), and Xch(l),l|X[,w1 is distributed

as Binomial(Xr;wr), with wr = Ocp(1),1/01, where 01 = 3,1 6;.

Proof of Theorem 5: Assume a C-RP like that in (A*). The proof follows by exploiting prop-
erties 4.5, 4.6, and 4.3 of Joshi and Patil (1968), while constructing the relevant conditional
probabilities recursively in I € NT(P*), as in the proof of equation (6). Specifically, suppose
that the underlying C-RP P* dictates that the first grouping (or, conversely, the final parti-
tioning) of indices occur between {{i},{i + 1}} and {i,7 + 1} (which, in our interval notation
correspond to {(¢ — 1,1, (4,4 + 1]} and (i — 1,7 + 1], respectively). Then by property 4.5 of
Joshi and Patil, it follows that the N — 1 length vector (X1,...,X;—1, X1, Xiy2,---, Xn)

obeys an SSPSD, with parameter (61,...,0;—1,6;41,0it2,...,0n) and generating function
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901 +...+0;1+6;;41+0;10+...+6x) . Additionally, by property 4.6 of Joshi and Patil, we
have that, given (X1,...,X;-1, Xii+1, Xit2,...,Xn), the conditional distribution of X is the
product of N — 1 independent (singular) multinomial distributions. One of these multinomials
corresponds to the distribution of (X;, X;+1)|X; + X1, which is just binomial, while the rest
correspond to the trivial distributions of X,| Xy, for each ¢ # 4,7 + 1. Hence the result of this
step is to factor the original data likelihood into the product of a single binomial and an SSPSD
component of dimension N — 1. This sequence of arguments may be continued recursively and,
at the end, property 4.3 of Joshi and Patil can be used to conclude that the distribution of X7,
is a PSD with the stated parameterization. []

Comparing Theorem 5 and Corollary 1, we see that the factorization for the Poisson distri-
bution holds generally for all SSPSD’s, up to the term involving the marginal distribution of
X1,- Also, in Theorem 5 we see indications of how the MRA defined in section 2 may general-
ize. For example, the independence assumption underlying condition (B*) is sufficient, but not
necessary, as the components of X are in general dependent for members of the SSPSD family
other than Poisson (e.g., multinomial, negative multinomial, multivariate logarithmic, etc.).
On the other hand, as the concept of cuts and SSPSD’s are closely intertwined, this further
suggests the relevance of condition (D*). Additionally, property 4.5 of Joshi and Patil (1968),
in its more general form than was used here, is essentially a property of reproducibility. That is,
if P={I,...,In} is a partition of (0, N], for m < N, then the distribution of (Xy,,...,Xr,,)
is again a member of the family of SSPSD’s. Here reproducibility is to be interpreted in a
broader sense, as the dimension of the relevant SSPSD changes with each recursion. The reader

is referred to section 6 for additional discussion on potential extensions to the basic likelihood

MRA of section 2.

4 Adaptive Methods of Inference.

So far in this paper our attention has been on the development of conditions under which

multiscale likelihood factorizations of a certain type exist, and the characterization of exam-
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ples within certain classes of distributional families. We now turn our focus to the role that
may be played by such factorizations in problems of adaptive nonparametric inference. In
particular, we show how fundamental connections between our multiscale factorizations, their
underlying partitions, and a specific class of orthonormal wavelet bases may be used to develop
analogues of the best-subset and best-basis methods popular in the literature on wavelet-based

nonparametric function estimation.

4.1 Partitions, Bases, and Factorizations — Connections.

Motivating our work on factorizations was the goal of finding alternative, multiscale repre-
sentations for the data likelihood, in analogy to those provided for functions f by orthonormal
bases of wavelets. Key to our approach is the assumption of a hierarchical collection of re-
cursively defined partitions i.e., P*, of the corresponding data space. Hence our particular
multiscale factorizations possess an intimate connection with recursive partitions, which in
turn are fundamental to a variety of adaptive statistical methods (e.g., CART).

At the same time, a C-RP P* can be put in one-to-one correspondence with a certain type
of orthonormal wavelet basis. Let the inner product of functions f and g defined on (0, N] be

given by (f,g) = >°; f(7)g(¢). We then have the following

Theorem 6 To the specification of any C-RP P* of (0, N| there corresponds the construction
of an orthonormal basis of RY , B(P*) = {¢1,} U {1} renT(P), where ¢y(i) = Xl(i)/NIl/z and

9)

brli) = & [Xch(z),r(’i) B Xch(I),l(i)]

New(n) Newn,

Here x1 is the characteristic function on I, and

) N2
¢ = (Mot + Nottrya) (10)

18 a normalizing constant.

Proof of Theorem 6: As each function v; corresponds to the partitioning of one interval in a
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given partition P C P* into two components, and this operation is performed N — 1 times in
constructing a C-RP, it follows that the cardinality of B(P*) is N. Additionally, the elements
of B(P*) are normalized and pairwise orthogonal by construction. The latter property follows
from observing that between any pair of elements, one will be fully supported on a subinterval
in which the other is constant, and all elements but ¢;, have zero mean. []

The system B(P*) is a simple example of an unbalanced Haar basis (UHB). Girardi and
Sweldens (1997) derive UHBs in some generality for nested partitions of arbitrary measure
spaces. Note that B(P*) is in fact a generalization of the standard dyadic Haar basis (Haar
1910). The latter corresponds to the special case of a complete recursive dyadic partition,
say P;‘Jy, in which each subpartition P is formed from its predecessor by splitting one of the
candidate subintervals precisely in half. Engel (1994) exploits this connection between Phy
and the dyadic Haar basis in one dimension, while Donoho (1997) makes use of an analogous
result for anisotropic, dyadic Haar bases in two dimensions. The UHB’s defined in Theorem 6
constitute an example of so-called “second generation” wavelet bases, in that the functions

“mother” wavelet function .

11 cannot be expressed as the dilations/translations of a single
Nevertheless, they are accompanied by such standard properties as a multiresolution analysis
and fast transform algorithms.

Now implicit in the relationship between P* and B(P*) is a similar relationship between
subpartitions P C P* and certain subsets of B(P*). To make this statement more concrete,
consider the problem of representing the mean p of data X with respect to either a recursive
partition P C P* or the UHB B(P*). Suppose that p is in fact piecewise constant on P. Then
we may write u; = pr/Ni, when i € I, on the terminal intervals I of P i.e., for I € T(P).
Noting that the binary tree 7 = T (P) corresponding to P is in fact a pruned version of 7*

suggests that p can be represented in terms of the corresponding UHB by retaining only some

structured subset of UHB coefficients. The following theorem makes this notion precise.
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Theorem 7 Let P* be a C-RP of (0, N], and suppose that p is piecewise constant with respect

to some partition P C P* i.e.,

pi= Y (1) pr(i) - (11)

IeT(P)

Then p has an equivalent representation in terms of the UHB B(P*) in the form

pi=p 4 > () (i) (12)

IENT(P)
That is, the presence or absence of UHB components (u,¥r) s in the expansion of p can be
expressed through a collection of indicators M(P) = { M}, where the My satisfy the following

two conditions
(H1) Each My is either 0 or 1, VI € NT(P*).

(H2) My=1= Mp =1,VI' DI, while M; =0=> M =0, VI" C I.

Proof of Theorem 7 is straightforward, following an argument similar to, for example, an anal-
ogous result of Engel (1994) in the context of certain nonparametric regression estimators on
recursive dyadic partitions. Donoho (1997) provides a result identical to that of Engel, in two di-
mensions, and labels the analogues of conditions (H1) and (H2) as hereditary constraints. These
constraints are a critical component in Donoho’s demonstration of an equivalence between a
certain restricted form of least-squares CART estimation (Breiman, Friedman, Olshen, and
Stone 1983) and complexity-penalized least-squares best-basis estimators over a certain library
of basis functions. In particular, the best-basis estimators are seen to result from application
of the same “bottom-up” optimal tree-pruning algorithm as used in CART.

The results that we present next, in section 4.2, are of a similar spirit for complexity-
penalized likelihood estimation. Before proceeding, however, it is important to consider the
relationship implied by the above results between our factorizations and UHB’s. Of most im-

mediate relevance is the fact that for each of the three families permitting multiscale likelihood
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factorizations in section 3 — Gaussian, Poisson, and SSPSD (i.e., treating Poisson as separate
from other SSPSD’s) — the multiscale coefficients w; obey a set of hereditary constraints in
one-to-one correspondence with those of the UHB coefficients. For example, in the Gaussian
case wr = (cr/ch){(p,r), and hence the M; indicate whether wy = 0 or not. Similarly, in the

Poisson case we have that

Ben(I)l cr (1, %r1)
wr = =c - , 13
! Kr ! (Nch(I),r BI (13)

and therefore when M; = 0, indicating that (u,1;) = 0, it indicates as well that w; = pr =
Nep(ry,/N1. Finally, for SSPSD’s in general, since p; = (u1,/01,) 6, we have that (u,4r1) =0
if and only if (8,%r) = 0, and so My = 0 indicates that wr = O.(1);/01 = pr by a similar
argument.

In other words, the re-parameterizations of p induced by the likelihood factorizations in
section 3 behave analogously to the coefficients corresponding to the UHB B(P*). However,
the fact that these re-parameterizations are not identical to the UHB coefficients is important.
That is, if one instead begins with an analysis directly of the data X with respect to a UHB, a
likelihood factorization like that in (6) generally does not follow. The optimization algorithms
we describe next for complexity penalized inference, although analogous to best-subset and best-
basis algorithms in the wavelet literature, are available in part only because such factorizations

exist.

4.2 Complexity Penalized Likelihood Methods.
4.2.1 Fixed C-RP P*.

Consider now a class of complexity-penalized likelihood estimators that are of the general
form

9(X) = arg max {logp (X|0(P; X)) + pen (6(P; X))} (14)
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where (i) p(X|0) admits a multiscale likelihood factorization, (ii) the estimators 8(P; X) can
be expressed in terms of the multiscale re-parameterization (p,w), induced by P*, in a manner
consistent with the hereditary constraints (H1) and (H2), and (iii) the penalty functional pen(-)
is additive in the components of w. As the optimization is over all subpartitions P within a
given C-RP P*, this is analogous to a type of constrained, best-subset problem in regression
analysis. We illustrate the types of estimators that we have in mind through the following three

examples of data likelihood and penalty pairs.

1. Gaussian Data and Hard Thresholding.

Suppose X; ~ Gaussian(u;,0?), as in part (i) of Corollary 1. Note that @ = pu. As
remarked above, the multiscale parameters in this case are simply proportional to the UHB
coefficients of p. Therefore, a logical estimator here is that based on hard thresholding
of the empirical UHB coefficients (in the spirit of standard wavelet-based estimators for
this problem e.g., Donoho and Johnstone 1994), but subject to hereditary constraints.
Under this strategy, a coefficient (u,r) is estimated by the empirical coefficient (X ,1)r)
when the latter exceeds a threshold A in absolute value; otherwise, it is assigned the value
zero. If we let M; = 1 denote the former case, and M; = 0 denote the latter case,
the hereditary version of this strategy dictates that we consider only such thresholding

patterns for which the { M} satisfy (H1) and (H2).

This approach is equivalent to using a complexity-penalized least-squares estimator, with
a penalty of the form pen(@(P; X)) = A2 #(P), where #(P) denotes the number of
piecewise constant regions dictated by P (e.g., Donoho 1997, section 6.1). A simple
argument shows that #(P) = 3 /cyp(p+) M1 Therefore, written with respect to the
multiscale coefficients wy, it can be shown that the optimal hard-thresholding estimator

is produced by solving the optimization problem

max{ Y WP MiP) 1] - (z—,’>MI(P>}, (15)

PCP*
= IENT(P*)
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where w§ = ¢f (Xch(I),'r/Nch(I),T — Xch(I),l/Nch(I),l) is the empirical version of wy.

. Poisson Data and Minimum Description Length.

Take X; ~ Poisson(u;), as in part (ii) of Corollary 1. Note that, again, # = u, and
in this case the multiscale parameters are related to the UHB coefficients of p accord-
ing to (13). Complexity-penalized estimators based on Rissanen’s Minimum Description
Length (MDL) criterion have been devised in the context of dyadic multiscale analysis
and Poisson data (Nowak and Figueiredo, 1999). MDL leads to a “keep-or-kill” estimator
quite similar to the hard thresholding operation considered in the Gaussian case above.
Although originally formulated for dyadic partitions, it is a straightforward matter to ex-
tend the MDL procedure of Nowak and Figueiredo to an arbitrary non-dyadic partition.
Specifically, the MDL criterion leads to the following penalized likelihood optimization

problem

max { > logp (Xch(l),l|XIapI) [1—M(P)] — M(P)log(X; + 1)} . (16)

PCP*
= TENT(P*)

Each term multiplied by a [1 — M/] is a conditional log-likelihood of a “child” sum, given
the “parent” sum, under a homogeneous (constant mean) model i.e., binomial(Xy; p;),
where p; = Nep(r),/Ni. Note that under the hereditary constraint (H2), the total log-
likelihood of the vector (Xj,,...,X; NI)’ under homogeneity over all of I, is equal to the
sum of such conditional binomial log-likelihoods corresponding to the complete partition-
ing of I. This in turn is equivalent to the log-likelihood of the vector conditional on its
sum, which is a multinomial log-likelihood. The negative of this latter log-likelihood value
is the so-called Shannon code-length for this vector given its sum. The terms multiplied by
M are the penalty terms. Each non-trivial multiscale coefficient i.e., in which the pro-
portion pr in the homogeneous model is replaced with the empirical estimate wf = X%(II”

of wy, is encoded with log(X;+1) bits (the cost of encoding X (1), given X;). The objec-
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tive of the MDL criterion is to minimize the description length (sum of the code-lengths
for data and non-trivial multiscale coefficients) or equivalently, as stated above in (16),

to maximize the negative of the total code-length.

. SSPSD Data and Bayesian Priors.

Suppose the data X are distributed according to a SSPSD, as defined in Theorem 5, and
consider taking a Bayesian approach wherein we estimate @ by the maximum aposteriori
(MAP) value. Analogous to most Bayesian wavelet shrinkage methods for Gaussian data
(e.g., see the recent volume edited by B. Vidakovic and P. Miiller 1999) in which inde-
pendent priors are specified for the wavelet coefficients, we “penalize” the likelihood here
through the prior distribution on @ induced by assigning independent prior distributions

to the multiscale parameters w; = O.p(1):/01-

The hereditary constraints (H1) and (H2) suggest using priors of the form

O w), i =
P {f, (@), if Mi(P) =0, )

W), if MiP)=1,

where fI(O) is narrow and concentrated around pr = Nep(p); /Ny and fl(l) is broader and
more dispersed. For example, because the wy arise as parameters of independent binomial
distributions, the family of beta distributions (conjugate to the binomial) is an obvious

choice for the fr.

Regardless of the specific choice of fr, the multiscale factorization of the SSPSD proba-
bility mass function and the use of independent priors in the multiscale parameter space
lead to a similar factorization of the posterior p(u|X), and hence a MAP optimization

problem of the form

max{ > logp(wI(P;X)|Xch(I),laXch(I),r)}a (18)

PEP™ \tent(P*)
where wr(P; X) is the MAP estimate for wy deriving from the “local” model with data

25



likelihood p(Xcp(1y,1| X1, wr) and prior fr.

Note that in each of the three examples above the estimator is linked to the solution P for
an optimization problem of the general form
max > h(D(X); M(P)) , (19)

PCP*
=" IeNT(P*)

for some function h(-), where D;(X) =% X.u1);|X;. That is, § = 8(P; X). Equivalently, we
could pose the problem as a maximization over the multipliers Mr(P) € {0, 1}, subject to the
hereditary constraint. This problem may be solved in an efficient manner, as summarized in

the following
Theorem 8 The problem in (19) may be solved using an O(N) “tree-pruning” algorithm.

Proof of Theorem 8: The proof follows in a manner analogous to an argument in Donoho (1997),
section 6.1. Due to additivity in I € NT(P*) and the nature of the hereditary constraints on the
M, the objective function in (19) has a so-called inheritance property, by which the optimal
partition P may be obtained in association with an optimal pruning 7 of the full tree 7*.
Specifically, for any interval I € NT(P*), the optimal subpartition P(I) on I is either (i) the
union of the optimal subpartitions ﬁ(Ich(I),l) and ’IS(ICh(I),T) on the children of I, or (ii) the
trivial subpartition in which I is partitioned no further. Therefore, moving from fine scales to
coarse (i.e., from the leaves of 7 to the root), we employ this strategy recursively at each stage
which, upon completion (i.e., reaching the root of 7*) leaves us with the optimal partition of
(0, N]. But this is the same as the optimal pruning algorithm for CART (Algorithm 10.1, pg.

294), which requires on the order of N operations. [J

Remark 1. —In Donoho (1997), the same ideas as found above are used to compute a
certain penalized least-squares estimator (analogous to that in equation (15)) using
the CART algorithm. Proof of that result relies on the fact that the underlying
basis (an anisotropic Haar basis, specifically) is orthogonal and that the £ norm is

invariant under transformation with respect to an orthogonal basis (i.e., Parseval’s
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relation). The equivalent behavior is provided in our own setting by the multiscale
likelihood factorizations. Both there and here the optimization problem, due to the
connection with orthogonal bases, may be thought of as selection of a (hereditary)

best-subset within a fixed basis.

Remark 2. — In the case that the optimization in (19) derives from a Bayesian
framework, implicit in the use of an objective function like that in (18) is the as-
sumption that all partitions P C P* are equally likely. If one instead wishes to
place a non-uniform prior on this space, a convenient mechanism through which
to do this is via the My’s, for example using distributions of the form Pr(P) =
[Lientp+) Pr(Men(r) [ Mr). However, although this choice of prior retains the tree-
like indexing inherent in the data likelihood and parameter prior, the model now
has the character of a hidden Markov model (on a binary tree), and the algorithm
of Theorem 8 is no longer adequate. Instead, a type of “forward-backward” (or
“upward-downward”) algorithm can be used, but at the expense of an increase in
computational complexity (see Nowak 1999 for an overview of hidden Markov mod-

els in the context of wavelet analysis).

4.2.2 Libraries of C-RP’s P*.

Of course, use of a single, fixed C-RP P* can be limiting in some problems. For exam-

ple, suppose that interest is mainly in the optimal recursive partition P itself, rather than the
corresponding estimate é, and that accuracy in the locations of the points of partition is partic-
ularly desirable (e.g., in the sense of changepoints). In this case, there may be no subpartitions
within a single, fixed C-RP (e.g., such as the common choice of P}By) with sufficient flexibility
to localize a given point of partition in an efficient manner. As an illustration, suppose that
data observed on the interval (0, 1] arise from a process with piecewise constant mean on the
subintervals (0,1/3] and (1/3,1]. Then, assuming sufficiently strong evidence in the data for
this point of partition (i.e., changepoint) to be detected, a method based on recursive dyadic

partitioning, say, necessarily will choose each of the points 1/2, 1/4, 3/8, etc. in an effort to
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localize the point 1/3.
In response to this concern, it makes sense to consider working within the larger library £
of all possible C-RPs. It is easy to check that there are (N — 1)! unique (as defined by the

sequence of recursive partitionings) C-RPs of N points. Consider the optimization problem

max {%ag IEJ\;(’P*) h(Dr(X); MI(P))} : (20)

Rather remarkably, this problem too may be solved in an efficient manner, as summarized

in the following

Theorem 9 The problem in (20) may be solved using an O(N3) “message-passing” algorithm.

Proof of Theorem 9: First note there are a total of w

unique intervals I C (0, N],
and that of this total there are exactly N — Nj + 1 intervals of length Nj. Also note that
any interval of cardinality Ny = m may be partitioned into two children intervals in ex-

actly m — 1 ways. Therefore, in total, among the (NN — 1)! possible C-RPs, there are only

2
SN m(N —m) = N (J;H'l) — N(NH%(QNH) ~ NTS unique parent-child pairs. Our message

passing algorithm exploits both this redundancy and the inheritance property underlying the
algorithm of Theorem 8. Here, however, the end result of the algorithm is not only an optimal
partition 2, but an accompanying C-RP P*(P) as well. Beginning with intervals I of cardinal-
ity Ny = 2, and working recursively over Ny = 3,4, ..., we compute h (D;(X); Mj) for each
of My =0 and 1, and pass the optimal decisions (i.e., partition or not — My =1 or 0) for each
interval “upward” (i.e., towards the coarsest interval (0, N]). That is, for a given interval I of
length N7 = m (which may or may not appear in the definition of the final C-RP P*(P)), we
determine and record the optimal subpartition 75(1 ) on I and the associated optimal sub-C-RP

~

P*(P(I)), and we record the complexity value

> h(Dp(X); Mp) . (21)
I'ENT(P*(P(I))
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This optimal (sub)partition and its complexity value can be found via a maximization over O(m)
terms involving the corresponding optimal subpartitions and complexity values determined
previously for each of the m — 1 pairs of possible children of I. The maximization over all
possible blocks in all possible C-RP’s therefore requires roughly N3/6 comparisons. Once we
reach the top, we are left with P and P*(P). A detailed description of the actual underlying

algorithm is given in the appendix. [

Remark 1: Non-uniqueness — There may be “ties” in the comparisons made in the
maximization steps above. In such cases, multiple C-RPs (corresponding to the
same final partition, but having different recursive refinements) will achieve the

maximum (20).

Remark 2: Library of UHBs — Recalling the material in section 4.1, there is a one-
to-one correspondence between the library £ of C-RP’s in our maximization above
and the library of all possible UHBs. Furthermore, Theorem 9 implies that more
general versions of the CART/Best-Ortho-Basis problem of Donoho (1997), in which
the optimization with respect to a fixed partition is replaced by optimization over

the library of all possible partitions, can be solved in O(N?3) calculations.

Remark 3: Computational Complexity — Although the optimal partition can be
calculated in O(N?3) operations, in many applications one may be interested in sub-
optimal solutions that require fewer calculations. Constraining the partition to be
dyadic leads to an O(N) optimization problem, according to Theorem 8. However,
it also is possible to obtain mid complexity algorithms e.g., O(N?), by searching for
(and then combining) optimal partitions in each of a handful of subregions of the
data domain, which still allows for more flexibility than a strictly dyadic structure.
Yet another possibility is to consider all possible partitions, but rather than search
for the optimal partition, employ a greedy top-down algorithm that operates in a
sequential, coarse-to-fine fashion. A greedy algorithm like this was proposed for

partitioning Poisson data in Nowak and Figueiredo (1999). It is easy to show that
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greedy algorithms such as this require O(LN) calculations, where L < N is the

number of intervals in the final partition.

Remark 4: Libraries of Partitions and Priors — Similar to Remark 2 following Theo-
rem 8, for the optimization (20) to arise in a Bayesian context (i.e., through exten-
sion of equation (18) to maximization over L), there is the implicit assumption that
a uniform prior has been placed on the space £ and on all partitions P C P* € L.
Formulation of a non-uniform (and possibly less informative) prior here is a non-
trivial task, as evidenced by recent work on Bayesian CART (Denison, Mallick,
and Smith 1998; Chipman, George, and McCulloch 1998) and related tree models
(Chipman, George, and McCulloch 2000). At issue is the fact that many partitions
may have very similar structures, and hence uniformly assigning prior mass may in
fact lead to “clumps” of mass on nearly equivalent partitions. It may be possible
(and desirable) to devise non-uniform priors that more evenly distribute prior mass

over the space of partitions.

Remark 5: Finally, we comment on an intriguing opportunity for adapting our
framework to the problem of density estimation, using our results for SSPSD’s.
Specifically, beginning with a sample of size M from an unknown density and the
definition of N bins at some very fine resolution, by combining a multiscale likelihood
factorization for the multinomial distribution with the algorithms of Theorems 8
or 9, there results a method of histogram-based density estimation, with adaptive
selection of (potentially varying) bin-widths. Such estimators would seem to be
multiscale analogues of the various generalized histogram estimators proposed in

the literature, such as those of Rissanen, Speed, and Yu (1992).

4.3 Evaluation of Estimator Performance.

Our interest in this paper has been in the existence and derivation of a certain class of

multiscale likelihood factorizations and their usage for problems of nonparametric inference.
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In this section we have proposed a general class of estimators deriving from maximization of
complexity-penalized likelihoods, all of which may be viewed as instances of a certain proto-
typical optimization over either a fixed C-RP P* or the library £. Through exploitation of
fundamental connections between partitions, bases, and factorizations in our particular mul-
tiscale context, we were able to show that these optimizations may in fact be solved using
computationally feasible algorithms. Recalling the characterization results of section 3, we see
that this single, unified framework pertains equally to a variety of models that include cases of
continuous, count, and categorical data.

In the same spirit, it is desirable to pursue a similarly unified approach to other related
issues, such as the determination of risk bounds describing estimator performance. Of course,
for the special case of a Gaussian model and hard thresholding, there are results in the literature
on wavelets that may be adapted with little change. For example, the proof of Theorem 7.1
in Donoho (1997) is in fact general enough to yield an immediate oracle inequality for the
estimator defined by the optimization in (15) and its obvious extension to (20). But for the
level of generality we seek, a more natural approach is to use adaptations of the methods
of Barron, Birgé, and Massart (1999), which overcome a number of technical difficulties in
producing analogues of the Gaussian/¢? risk bounds in fairly general non-Gaussian settings
(including, in particular, likelihood-based contexts). Risk bounds for certain estimators of the

sort introduced above appear in the companion to this paper (Kolaczyk and Nowak 2000).

5 A Numerical Illustration.

As an illustration of the potential for applications inherent in the results of the previous
section, consider the problem of segmenting a Poisson time series. Such time series are common
to the field of high-energy astrophysics (e.g., X-ray and ~-ray), for example, where they are
produced typically through aggregation of photon arrival times into intervals of equal length
at some fine resolution (generally dictated by both instrumental and scientific considerations).

Figure 1 shows an example generated by a so-called gamma-ray burst (GRB), recorded by
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the BATSE instruments on board NASA’s late Compton Gamma Ray Observatory (CGRO).
Widely described as one of modern astronomy’s greatest mysteries, the physical mechanisms
underlying GRB’s still remain poorly understood. In fact, the time series resulting from these
phenomena often have been compared to snowflakes, in that “no two are alike.” Therefore,
segmentation of these and other similar time series, under minimal model assumptions, can be
an important part of their analysis, either as a pre-processing step (e.g., for detecting potentially
interesting structure in long data streams) or at later stages (during which such structure might
receive closer attention). See, for example, Scargle (1998) for a recent characterization of the
segmentation problem in astronomy.

The time series in Figure 1 is shown with the optimal segmentation produced by the MDL
method described in Example 2 of section 4.2, using the fully adaptive method of section 4.2.2
(i.e., library search over all C-RP’s). This method in fact corresponds to a MAP estimator
within the context of Example 3 as well, in the special case where the SSPSD is the Poisson
distribution, and where f I(O) is taken to be a point mass at p; and f 1(1) is the uniform distribution
on [0, 1] for all I. A number of closely spaced segmentation points have been chosen to describe
the sharply varying structure in the interval between 0.5 and 1.0 seconds. Yet, at the same
time, the relatively slow rate of change in the intervals prior to 0.5 seconds and after 1.0 seconds
is captured through the use of just two points. This sort of flexibility in producing the overall
segmentation results from the multiscale nature of the underlying modeling framework, as well
as the use of a full library of C-RP’s (i.e., as opposed to, say, simply a dyadic C-RP).

As a means of gaining some insight into the reliability of such segmentations, we performed
a small simulation study. The standard ‘Blocks’ test signal of Donoho and Johnstone (1994)
was scaled so as to have a dynamic range more similar to that underlying the data in Figure 1
(resulting in a minimum of 60, maximum of 132). Poisson times series were sampled from the
resulting intensity using n = 256 equispaced bins, over a total of 1000 trials, and the location
of declared segmentation points was noted for each trial. Figure 2(a) shows, for those locations
having been declared a point of segmentation at least once during the 1000 trials, the relative

frequency with which such a declaration was made. For comparison, in Figure 2(b) is shown the
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analogous results from the use of the same estimation method restricted to dyadic partitioning.
The dyadic method uses a much greater proportion of locations much more frequently in arriving
at a segmentation for the ‘Blocks’ signal than does the fully adaptive method. The fully adaptive
method is found to be quite accurate, in that it finds almost all segmentation points in ‘Blocks’
the vast majority of the time, although it would seem in turn to have a greater degree of highly
infrequent but spurious declarations than in the dyadic case. Both results arguably can be seen
as stemming from the presence or lack of constraints associated with the use or not of a single

C-RP.

6 Discussion.

6.1 A Basic Paradigm.

At the heart of this paper is the fundamental idea of pursuing factorizations of a likelihood in
analogy to orthonormal wavelet decompositions. Such factorizations have been used previously
by the authors and colleagues in designing specific methodologies for analysis of Poisson time
series (Kolaczyk 1999b) and images (Timmerman and Nowak 1999), Poisson linear inverse
problems (Nowak and Kolaczyk 2000), and the spatial analysis of continuous and count data
in Geography (Kolaczyk and Huang 2000). Our aim in this present paper has been to establish
a general conceptual foundation for such methods.

In doing so, we clearly have been influenced not only by the technical structure associated
with wavelet decompositions, but also by the basic underlying paradigm, something that has
come to be called by some authors the computational harmonic analysis (CHA) paradigm (e.g.,
Donoho 1999). The principle put forth by advocates is that, given a class of “objects,” one
pursues an “optimal” representation for these objects and accompanying “fast” algorithms for
computational tasks. In the field of CHA, “objects” generally are members of some functional
class, and therefore representations/algorithms deriving from this community (e.g., wavelets,
wavelet packets, etc.) have been put to immediate use by statisticians, signal/image processors,

and the like in various tasks associated with the standard “signal plus noise” model. In a similar
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spirit, we have worked from the premise that, if the specification of a likelihood is a natural
first step in a given statistical problem (surely not an uncommon event!), then arguably that
itself is the relevant “object” when considering alternative representations — particularly if the
efficiency of algorithms is an accompanying concern.

On a related note, we point out the interesting distinction between models deriving from
analysis, and those from synthesis (borrowing terminology from the signal processing literature).
For example, from this perspective, a method beginning with the standard “signal plus noise”
model and then transforming to the “wavelet domain” (i.e., in the spirit of CHA) is intrinsically
a method of “analysis”. On the other hand, one may specify a model in the “time domain”
implicitly as the result of applying an inverse wavelet transform to a collection of random
coefficients — i.e., the model is “synthesized” (e.g., Nason, von Sachs, and Kroisandt 2000). In
the same spirit, the framework described herein may be viewed as a formalism for obtaining
multiscale probability models on graphs by “analysis” while, conversely, similar structures may
be derived via a priori specification as well. Such models by “synthesis” have been described
in a number of papers by Alan Willsky and colleagues (e.g., see Basseville et al. 1992), and by
Huang and Cressie (2000).

6.2 Connections to Other Areas.

Our multiscale likelihood factorizations, and their accompanying MRA, arise at the inter-
section of ideas and structures from a variety of areas and hence, in turn, would seem to have
the potential for some degree of reciprocal impact in those areas. For example, the role played
by recursive partitioning and tree-based structures in our framework, and the existence of sim-
ple, scalable algorithms for searching over spaces of varying complexity (with inversely varying
efficiency), suggest the potential for developing similar likelihood-based methods of relevance
to the machine learning and data mining communities.

Similarly, if the multiple changepoint problem is viewed from the perspective of partitioning
(e.g., Barry and Hartigan 1993), the extraction of a set of changepoints from a dataset is implicit

in our framework, as illustrated in section 5. The multiscale perspective can be viewed in this
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context as “decoupling” the decision process inherent in choosing successive changepoints. In
fact, it is interesting to note that the asymptotic method proposed by Akman and Raftery
(1986) for the detection of a single changepoint in a Poisson process actually is based on the
size of what turns out to be the maximum empirical UHB coefficient of the process among all
such coeflicients that can be formed at the coarsest scale (i.e., from UHB wavelets of full support
on (0, N] ). As noted in section 4.2, however, to obtain the decoupling that accompanies our
likelihood factorizations, one is pointed toward certain functions of the UHB coeflicients instead
of the coefficients themselves (e.g., equation (13)).

Finally, likelihood factorizations in general, of course, have an extensive history in the
graphical models literature (e.g., see Lauritzen 1996, and the references therein). From the
perspective of this literature, our MRA may be viewed as a set of sufficient conditions for
ensuring a particular type of recursive factorization. And on a related note, if our factorizations
are paired with an appropriate prior probability structure, one may view the result as a type

of so-called Bayesian network, with an inherent multiscale structure.

6.3 Extensions of the Basic MRA.

As mentioned previously, just as the notion of an MRA for wavelets has undergone various
generalizations, so too might one entertain variations on the conditions underlying our MRA for
likelihoods. For example, the notion of reproducibility in condition (B*) might be loosened, such
as was the case implicitly with the factorization of SSPSD likelihoods detailed in Theorem 5.
Alternatively, one might envision replacing the hierarchy of partitions of (0, N| in condition (A*)
by a similar hierarchy of coverings (i.e., allowing overlap of the intervals I). In conjunction with
such a move might go as well the replacement of the definition of the X; as simple summations
of data X; with indices ¢ € I by more general schemes of weighted summation (or even nonlinear
aggregations).

An obvious example in which such a framework would arise is the case in which a likeli-
hood factorization is sought with respect to the wavelet coefficients of a vector X, for wavelets

smoother than those of a Haar system. The overlapping support of orthogonal wavelets of
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neighboring locations and scales generally implies a statistical dependency among the coeffi-
cients (though not in the special case of independent Gaussian data, due to orthogonality of
the wavelets). Hence, we cannot expect a factorization of the likelihood with respect to a graph
whose nodes are indexed by the (j, k) location-scale indexing of the wavelets. Instead, a natural
extension is to pursue factorizations with respect to a so-called clique tree (e.g., Pearl 1988),
in which the nodes now are occupied by subsets of coefficients with “localized” non-empty
intersections.

There also remains the notion of “cuts” in condition (D*). It is this condition that induces
the multiscale parameterization to “decouple” in parallel with the likelihood factorization, and
from which in part, therefore, the efficiency of the algorithms in section 4.2 derives. Although
it is not clear that such a complete decoupling is necessary (i.e., in one-to-one correspondence
with the components in the factorization), it would seem that some sort of restriction to only
localized coupling (i.e., with respect to the topology of the underlying graph) of parameter
components is desirable.

Lastly, although we have concentrated on one-dimensional (sequential) settings here, much
of our framework can be extended to two or more dimensions (e.g., images). For example,
the recursive partitioning of the interval (0, N — 1] has a straightforward extension to the two-
dimensional lattice (0, N —1] x (0, N —1], in which each rectangular block (rather than interval)
may be partitioned into four smaller rectangles (Donoho 1997 considers the special dyadic case
in detail). With appropriate modifications of (A*)-(D*) (replace intervals I with blocks B),
a factorization analogous to that in Theorem 2 holds in the two-dimensional case, with the
scalar parameters {wr} replaced by three-dimensional vector parameters {wp}, reflecting the
three degrees of freedom at one’s disposal in splitting the total sum over a block into four
partial sums over the four sub-blocks. A CART-type algorithm analogous to the one described
in Theorem 8 can also be devised for higher dimensional problems. In this case, we have an
O(M) complexity, where M = N x N, the total number of pixels in the image. Another
intriguing possibility is to take advantage of the additional flexibility in splitting that one has

in higher dimensions. For example, the wedgelet analysis developed by Donoho (1999) allows
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one to incorporate non-rectangular splitting (split a square block into two half “wedges” rather
than four square sub-blocks) at the terminal nodes of a dyadic partition structure. The CART-
based wedgelet analysis algorithm developed there can be employed in conjunction with our
multiscale likelihood factorizations as well. Moreover, the optimization over the library of all
possible (interval) partitions in equation (20) also can be extended to higher dimensions. For
instance, in two dimensions one has a library of partitions containing a total of (N (N +1)/2)?
unique rectangles. Arguing along similar lines to the proof of Theorem 9, its not difficult to see

that an O(M?) algorithm can be used to find the optimal two-dimensional partition.

7 Appendix A — Message Passing Algorithm

We describe here in detail the algorithm underlying Theorem 9, which computes the optimal
partition in the set of all possible partitions. We adopt a two-step procedure. In Step 1,
the maximization in (20) is computed for every possible subinterval, and the maximum value
is recorded. By working from short subintervals to long subintervals (bottom-up), the maxi-
mization can be computed for each subinterval I C (0, N] using results previously computed
for smaller subintervals contained within a given subinterval. This reduces the computation
to O(NN) operations for each subinterval and, as shown in the proof of Theorem 9, there are
O(N?) subintervals. Thus, the overall complexity of this first step is O(N?3). In Step 2, we work
from top-down, extracting the optimal partition by comparing the maximal values computed in
Step 1. The algorithm is reminiscent of a message passing algorithm (Pearl 1988); in Step 1 we
pass information up from short subintervals to long subintervals, and in Step 2 we work back

down to extract the optimal partition. Pseudo-code for the algorithm is given below.

Up Step O(N?):

Initialize: For i = 1,...,n, set Cy(X;) = 0, C1(X;) = 0, and C(X;) = 0. For all

1<i<k<j<n,setI=][i...,j] and ch(I) =[i,...,k], and define

lo(i : k|’l ]) = h(D[(X);M[ = 0),
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(22)

Li(i:kli:j) = h(D(X);M;=1),

where the precise form of h(D;(X); M) depends on the specific optimization prob-

lem at hand (see (19) and related discussion). Also define

XZ] = {X,, ,XJ}

Compute: The (local) maximization over each subinterval I = [i,...,j] can be com-

puted recursively (bottom-up) as follows. C(X ., ) denotes the corresponding max-

imum value.
Form=1,...,n—1 (m = “scale” = length of subinterval)
Fori=1,...,n—m (i = “position” = start of subinterval)

Inhomogeneous Case: The “block” X; ., is partitioned into two or more “sub-

blocks”. The optimal partition point is given by

argk:nil:?nx_lll(i ki i+ m) + C(Xig) + C(Xkt1,m)

* —
kim =

where C'(X; ) and C(X41,,) are the maximum values for the two sub-blocks

computed at scales < m, as defined below in (23). The maximum value achieved

by splitting X; », into two sub-blocks is then

Ci(Xim) = LGk ,lii+m)+ C(Xi,k;‘,m) + C(Xk;"m—l—l,m)a

Homogeneous Case: The maximization over k is unnecessary since the block

X; m will not be partitioned. Thus, the value we assign for not splitting X; ,,

is given by

l()(’L : Z|’L 1+ m) + C()(Xi,k,) + CO(Xk+1,m)-

Co(Xim)
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Note that we do not make use of ly(i : k|i : i+m), k # i, and so these quantities
need not be computed in (22) above.

Maximum of Two Cases: Define

C(Xim) = ;I:l%’i Co(Xim) (23)
Down Step O(N):
Initialize: partition_points = empty
Extract: partition_points = get_partition_points(partition_points,1,n)

The function get_partition_points recursively extracts the optimal partition points.
get_partition_points starts by finding the first optimal partition point for full se-
quence X1, = {Xi,...,X,} (unless it is the Cyp(X1,) > C(X1y), in which
case the function terminates), and then calls itself to test the resulting sub-blocks.
get_partition_points(partition_points, 1,n) returns a vector of the optimal parti-

tion points (unordered).

function get_partition_points:

partition_points = get_partition_points(partition_points,i,m)
if Co(Xim) < C(Xim)
partition_points = [partition_points, B(X;.,)]
partition_points =
get_partition_points(partition_points,i, B(X.m))
partition_points =
get_partition_points(partition_points, B(X;.,) + 1,m)

end
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Caption for Table 1.

Table 1. — Side-by-side comparison of conditions for a wavelet MRA (left) and likelihood MRA
(right).

Wavelet MR A Likelihood MRA

A) Hierarchy of Nested Subspaces (A*) Hierarchy of Recursive Partitions

B) Orthonormal Basis within Vj B*) Independence within Py

( (A7)
( (B%)
( (C*) Reproducibility Between Subpartitions
( (D¥)

)
)

C) Scalability Between Subspaces
) D*

D) Translation within Subspaces “Decoupling” of Parameters with

Partitions (i.e. Cuts)

Table 1:

44



CAPTIONS FOR FIGURES.

Figure 1. — Fully adaptive segmentation of an astronomical gamma-ray burst (GRB). Time
series results from aggregation of original photon arrival times into n = 256 equispaced bins
for burst #845 (photon energies 25 keV - 1 MeV), collected by the BATSE instruments of
NASA’s Compton Gamma Ray Observatory. Segmentation is based upon a Poisson model and
minimum description length criterion, as in Example 2 of section 4.2, using the library search

described in section 4.2.2.

Figure 2. — Stem plots of the relative frequency with which locations were declared a change-
point, over a total of 1000 trials, in a simulation study of the segmentation of ‘Blocks’ from
Poisson observations. (a) Results from fully adaptive method (i.e., library search); (b) results
from dyadic method. On both plots there is overlaid a scaled plot of the ‘Blocks’ function

(dotted) for reference.
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