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A multiscale method for disease mapping in spatial epidemiology
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SUMMARY

The effects of spatial scale in disease mapping are well-recognized, in that the information conveyed by
such maps varies with scale. Here we provide an inferential framework, in the context of tract count
data, for describing the distribution of relative risk simultaneously across a hierarchy of multiple
scales. In particular, we offer a multiscale extension of the canonical standardized mortality ratio
(SMR), consisting of Bayesian posterior-based strategies for both estimation and characterization of
uncertainty. As a result, a hierarchy of informative disease and confidence maps can be produced,
without the need to first try to identify a single appropriate scale of analysis. We explore the behavior
of the proposed methodology in a small simulation study, and we illustrate its usage through an
application to data on gastric cancer in Tuscany. Copyright c© 2004 John Wiley & Sons, Ltd.

1. Introduction

In epidemiology, interest generally centers on understanding how the occurrence of a disease
relates to potential explanatory factors. Furthermore, it is not uncommon to include for
consideration, when available, the spatial locations at which cases of the disease occur. This
area of study and its associated tools are known as ‘spatial epidemiology’. And arguably one
of the most fundamental tasks in spatial epidemiology is the characterization of the spatial
distribution of disease through the creation of a map(s).

Statistical models play an important role in disease mapping, typically being used to ‘clean’
the map of noise and to help extract structure in the underlying measurements. Yet disease
mapping is not a purely statistical exercise – various concepts and principles from Geography
are critical as well. Perhaps foremost among these is the concept of scale, as the use of a
comparatively coarser or finer scale in a map generally entails a correspondingly greater or
lesser degree of aggregation of the information underlying the data. The effects of scale on
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the analysis and inference of geo-spatial data are known to be many and varied, and often
are referred to collectively under the label of the so-called modifiable areal unit problem [1].
Disease mapping is by no means immune to such effects, of course. See [2], for example.

The data encountered in spatial epidemiology tend to take either of two forms: (i) the
locations at which cases of the disease occurred or (ii) aggregate counts of cases that occurred
within geographical subregions of some overall region of study. The latter form is arguably
that in which spatial disease data are most readily available, and will be the focus of our
attention in this paper. In the event of the former, our methods will of course still apply if
the investigator has available and is willing to use some degree of aggregation. The choice of
subregions over which aggregation is done typically is influenced by geo-political considerations,
and the conventions adopted by relevant government statistical agencies tend to dominate.
Census tracts are often used, for example.

Usually there are a number of levels at which the data either could have been aggregated
or may be further aggregated. In addition, these levels frequently are nested in a hierarchical
fashion. For example, in an analysis of male gastric cancer data, presented in Section 6, we
considered aggregations at regional, provincial, and municipal levels, as depicted in Figure 3.
Since with each successive degree of aggregation there comes a corresponding coarsening of
spatial scale, the issue of scale arises in a natural and explicit manner in such contexts. Note,
however, that it is quite possible that the data contain useful information at more than just
one level of aggregation. Even in the event that the information at one scale dominates in its
relevance, it may not be clear a priori just which is that scale. Therefore, what is needed is a
capability to conduct multiscale statistical analyses.

Multiscale methods have been the focus of intense development by researchers in a variety
of disciplines over the last 15 years, including mathematics, statistics, signal and image
processing, and computer vision. This work is based primarily on the use of wavelets and
variations thereof, and pertains largely to data that are regularly spaced over some domain,
such as are commonly obtained through instrumental measuring devices. Unfortunately, the
spatially irregular and typically aggregated nature of most geographical data sets (such as
the tract count data considered in this paper) precludes the application of such methods.
The framework of Kolaczyk and Huang [4] seeks to address this shortcoming, using multiscale
likelihood factorizations to extend the standard wavelet-based paradigm to a class of polygon-
based geographical data structures. The subsequent work of Louie and Kolaczyk [5] further
explores this framework, and coins the term multiscale spatial process models (MSSpP). These
two papers together explore the design, usage, and properties of such models for modeling
and inference with generic Gaussian and Poisson measurements. In this paper we extend the
Poisson-based MSSpP model to the context of tract count data for the purpose of creating
disease maps.

It is standard in epidemiology to quantify the occurrence of a disease through measures
of disease frequency, wherein the observed levels of the disease are related to the ‘at-risk’
population from which they arose, thereby controling for natural variation in the latter [6].
These quantities are termed ‘relative risks’. In disease mapping, one seeks to present a visual
representation of the manner in which the disease frequency varies with spatial location.
Therefore, in constructing a disease map it is necessary to incorporate some sense of a spatial
control distribution, so as to control for spatial variation in the ‘at-risk’ population. A canonical
quantity of this type is the standardized mortality ratio (SMR), defined to be the ratio within
each subregion of the observed counts to an estimate of the counts expected based on just the
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A MULTISCALE METHOD FOR DISEASE MAPPING IN SPATIAL EPIDEMIOLOGY 3

‘at-risk’ population. Currently, given disease counts over subregions at some single, fixed level
of aggregation, disease maps essentially characterize the spatial distribution of the disease at
just that level. We take as our goal in this paper to create a multiscale extension of the SMR
for tract count data.

The rest of this paper is organized as follows. In Section 2, we describe a Bayesian framework
for modeling disease count data at multiple scales. In Section 3, we present our multiscale
extension of the SMR estimator. Two versions are given, reflecting empirical and fully Bayesian
implementations of our framework. In Section 4 we provide methods for characterization of
posterior uncertainty. Section 5 contains results of a small simulation study, quantifying the
mean-squared error performance of our methods in comparison to a standard competitor in
the literature. Section 6 gives a summary of an analysis of a well-known dataset on male gastric
cancer from the Tuscan region of Italy. Additional discussion may be found in Section 7.

2. Multiscale Models of Relative Risk

The state of the art in wavelet-based statistical inference is primarily Bayesian in nature
(particularly empirical Bayesian) from both practical [9] and theoretical [10, 11] perspectives.
The standard framework consists of two key components: (i) a wavelet transformation of an
unknown function, yielding a set of wavelet coefficients, and (ii) the specification of a prior
probability structure on these coefficients. Our multiscale modeling framework for disease
count data rests similarly on two key components: (i) a factorization of the data likelihood in
the standard Poisson-based sampling model, yielding a multiscale reparameterization of the
underlying intensity process, and (ii) a prior probability structure defined with respect to the
resulting multiscale parameters.

2.1. Multiscale Representation of Data Likelihood

Let D ⊆ IR2 be an arbitrary spatial region, and define the collection B(J) = {{Bj,k}
Nj

k=1}
J
j=0 to

be a hierarchy of J +1 nested partitions of D. In particular, the Bj,k will represent subregions
in D at scales j = 0, 1, . . . , J and positions k = 1, . . . , Nj within scale, such that

⋃Nj

k=1Bj,k = D and
⋃

k′∈ ch(k)Bj+1,k′ = Bj,k , (1)

where for a given choice of j and k, ch(k) denotes the set of indices k′ for which Bj+1,k′ ⊆ Bj,k.
For example, in Figure 3 we have J + 1 = 3, and the Bj,k at scales j = 0, 1, and 2 correspond
to the overall Tuscan region, its nine provinces, and their 287 municipalities, respectively. For
convenience, and without loss of generality, we will assume that N0 = 1 in our development of
the methodology below.

We will let the occurrences of cases of a given disease be represented by a point process
{Y (s) : s ∈ D}. And as is common [2], we will assume conditional on an intensity process
{µ(s) : s ∈ D}, that Y (·) is Poisson. We then define Yj,k to be the aggregate count of
occurrences within the subregion Bj,k, for each (j, k). Clearly Yj,k ∼ Poisson(µj,k), where
µj,k ≡

∫

Bj,k
µ(s)ds. In addition, by (1), we have the relations

Yj,k =
∑

k′∈ ch(k) Yj+1,k′ and µj,k =
∑

k′∈ ch(k) µj+1,k′ . (2)
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What is important to note here is the inter-dependency among the {Yj,k} and {µj,k} among
themselves, which serves as an obstacle to an effective and interpretable analysis of the data
that incorporates information across multiple scales. However, this obstacle can be surmounted
through the use of an alternative representation, obtained by factorizing the data likelihood
in a multiscale fashion under the assumed Poisson model.

Specifically, let Yj = (Yj,1, . . . , Yj,Nj
)T and let Y j+1,ch(k) be those measurements Yj+1,k′

for whom Bj+1,k′ ⊆ Bj,k. Define µj and µj+1,ch(k) similarly. Then one can write

Pr (Y J |µJ) = Pr (Y0,1|µ0,1)

J−1
∏

j=0

Nj
∏

k=1

Pr
(

Y j+1,ch(k) |Yj,k,ωj,k

)

, (3)

where Y0,1|µ0,1 ∼ Poisson(µ0,1) and Y j+1,ch(k) |Yj,k,ωj,k ∼ Multinomial(Yj,k ; ωj,k), with

ωj,k = µ−1
j,k × µj+1,ch(k) . (4)

The derivation of this result is straightforward, and may be found in [4]. Multiscale
representations like that above are analogous to orthonormal wavelet basis decompositions
in many ways, and can be used to create methods of inference with analogous statistical risk
properties [8]. Note that the expression in (3) illustrates how the information in the original
measurements at the finest scale i.e., in Y J , can be effectively separated out into independent
components as those measurements are aggregated across each successively coarser scale.
Furthermore, each component Y j+1,ch(k)|Yj,k is equipped with its own unique parameter ωj,k,
which describes the corresponding local structure in the intensity process µ(·). Together, this
re-expression of data and parameters allows for the simultaneous localization of information
in both, relative to each Bj,k and its subregions.

2.2. Multiscale Prior Probability Structure

Suppose that the underlying intensity process µ is locally constant across much of the spatial
region D. Then the values of many of the aggregate intensity parameters µj,k will likely
be proportional to the areas |Bj,k|, and hence in turn many of the multiscale parameters
ωj,k in (4) should be approximately equal to the relative areas of the subregions Bj+1,k′

in Bj,k, for k′ ∈ ch(k). In taking a Bayesian approach to inference on µ, this knowledge
provides strong motivation to define the associated prior probability structure on the multiscale
parameterization, instead of on the original spatial parameterization, as has been done in [4].
A similar reasoning applies when the object of interest is relative risk, and not intensity, and
we define an analogous prior accordingly.

First, we introduce a measure of relative risk into the model, at the finest scale J , by re-
expressing the elements of the mean vector µJ as µJ,k = θJ,k eJ,k, where eJ,k denotes the
expected counts in the ‘at-risk’ population in BJ,k. The parameter θJ,k = µJ,k/eJ,k therefore
represents the relative risk in BJ,k. More generally, we define the relative risk in Bj,k, for
arbitrary scales j, as θj,k = µj,k/ej,k, where the values ej,k are defined recursively through the
expression ej,k = 1

T ej+1,ch(k), in analogy to the expressions in (2). We will assume the eJ,k,
and hence the entire collection {ej,k}, to be known or, more realistically, to have been assessed
separately.

Next, we specify independent prior distributions for the parameters ωj,k in the form

ωj,k ∼ Dirichlet(cjTej+1,ch(k)). (5)
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A MULTISCALE METHOD FOR DISEASE MAPPING IN SPATIAL EPIDEMIOLOGY 5

Here T is used to denote the global relative risk for D, and the cj > 0 are scale-dependent
hyperparameters. These hyperparameters may be considered either fixed or random, and we
explore both cases in this paper. In the latter case, we model the cj themselves as independent
draws from a Uniform(0, cmax) distribution, for some cmax � 0.

Lastly, it remains to specify a prior distribution for µ0,1. The distribution for such parameters
typically is left only vaguely specified or completely unspecified in the multiscale modeling
literature, due to the fact that the high degree of aggregation at coarser scales leads the data
to dominate posterior inferences under any reasonable choice of prior. Here we will proceed
similarly and simply specify that the prior distribution of µ0,1 be diffuse and independent of
the ωj,k’s, and that it have mean E[µ0,1] = T e0,1.

Our choice of the Dirichlet distribution for the ωj,k is motivated primarily by its conjugacy
to the multinomial distribution governing the components Y j+1,ch(k)|Yj,k. The motivation for
our choice of parameterization can be seen by noting that, due to the independence specified
between the ωj,k (conditionally, given the cj , when the cj are random) and the scale-recursive
nature of (4), the prior expectation for the intensities µj,k is just

E[µj,k] = E[µ0,1]

j−1
∏

j′=0

E[ωj′,aj′ (k)] = T ej,k , (6)

where aj′ (k) is used here and throughout the paper generically to denote the location index
of the ancestor of (j, k) at scale j ′. That is, for a given (j, k), the subregion Bj′ ,aj′ (k) is the

unique subregion at the coarser scale j ′ < j that contains Bj,k. As a result of (6), we have
E[θj,k] = E[µj,k]/ej,k ≡ T uniformly for all (j, k). In other words, the model we have defined
in the space of multiscale parameters ωj,k corresponds to an induced model for the intensity
process µ(·), through scales j ≤ J , such that upon normalization by the ej,k the corresponding
distribution on the relative risk parameters is homogeneous in expectation at each scale.

It is important to note that under our model, although the multiscale parameters ωj,k are
modeled as independent, the corresponding relative risk parameters θj,k are spatially correlated
within each scale and also across scales. Similarly, the original measurements YJ,1, . . . , YJ,NJ

are correlated (i.e., marginally). Generally speaking, the closer the nearest common ancestor
(as a function of scale) of two subregions, say BJ,k1

and BJ,k2
the more highly correlated

their measurements YJ,k1
, YJ,k2

. Scale thus serves as a proxy for distance in determining
correlation in our model. The reader is referred to [5] for a detailed analytic examination
of the correlation properties of µJ under models analogous to that defined here, for the case of
fixed cj , from which properties of our own model follow immediately. In particular, the role of
the hyperparameters cj is made clear and found to be not unlike that played by the canonical
parameters in a standard Dirichlet process model.

3. Multiscale Estimation of Relative Risk

We propose to estimate the collection of relative risk parameters θj,k = µj,k/ej,k through the
use of similarly normalized posterior expectations of the intensities µj,k. We present two such
multiscale SMR estimation strategies, distinguished by whether the hyperparameters cj are
taken as fixed or random.
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6 M. M. LOUIE, E. D. KOLACZYK

3.1. Empirical Bayes Estimation: Fixed cj

Consider first the case where the cj are taken as fixed and known. Recall that our model
then consists of (i) independent multiscale Dirichlet priors on the parameters ωj,k, and (ii)
a Poisson sampling model, given the finest scale intensity parameters µJ induced by the
multiscale parameters ωj,k. A key asset of multiscale factorizations like that in (3) is that, when
combined with independent prior distributions on the multiscale parameters, the posterior is
subject to an analogous factorization. In the context of the present paper, we have for our
posterior of the intensity parameters at a given scale j the expression

p
(

µj |Y j , c
)

= p (µ0,1 |Y0,1)

j−1
∏

j′=0

Nj′
∏

k′=1

p
(

ωj′,k′ |Y j′+1,ch(k′), cj′
)

, (7)

where

ωj′ ,k′ | Y j′+1,ch(k′), cj′ ∼ Dirichlet(cj′Tej′+1,ch(k′) + Y j′+1,ch(k′)) (8)

and recall that ch(k′) denotes the location indices of the children of subregion Bj′ ,k′ . Therefore,
we find that our proposed estimator takes the form

θ̂EB
j,k ≡

E[µj,k | Y j , c]

ej,k
=
E[µ0,1 | Y0,1]

ej,k
×





j−1
∏

j′=0

cj′ T ej′+1,aj′+1(k) + Yj′+1,aj′+1(k)

cj′ T ej′,aj′ (k) + Yj′ ,aj′ (k)



 . (9)

The entire collection {θ̂EB
j,k } may be calculated using a recursive algorithm of just O(NJ )

complexity, given values for T and the cj . We have found that useful values for these parameters
often may be elicited from the data. For example, the global SMR i.e., SMR0,1 = Y0,1/e0,1,
is a natural estimate for T . And in the case of the cj , we have used the method of
marginal maximum likelihood in this paper. The relevant likelihood formulas for the latter
are straightforward to derive, and their optimization may be accomplished through the use
of either a modified Newton-Raphson algorithm (as we have done for the implementations in

Sections 5 and 6) or an EM algorithm (as is detailed in [12]). The resulting estimators θ̂EB
j,k are

therefore empirical Bayes in nature. We note that in a purely spatial (single scale) Bayesian
analysis of disease maps, empirical Bayes methods have been shown to at times underestimate
the variability in the relative risks, since the uncertainty associated with the hyperparameters
is unaccounted for [13]. We therefore provide a fully Bayesian implementation of our multiscale
model (as found in the subsequent Section 3.2), and we conduct a simulation study aimed at
evaluating the performance of our estimator under both empirical Bayes and fully Bayesian
analysis. Details and results from the simulation study can be found in Section 5.

Note that due to the recursive nature of our estimators, a sequence of disease maps generated
by the collection {θ̂EB

j,k } will be coupled in a natural manner, with each map being a refinement

of those maps at coarser scales before it. In order to better interpret the quantities θ̂EB
j,k , we

can re-express them as follows. Define SMRj,k ≡ Yj,k/ej,k to be the canonical SMR statistic
for the data at scale j in location k i.e., the standard estimate of the relative risk θj,k on the
subregion Bj,k. Normalizing numerator and denomenator in (9) by ej′+1,aj′+1(k) and ej′,aj′ (k),

respectively, and noting the cancelation of the accompanying ratios ej′,aj′ (k)/ej′+1,aj′+1(k)
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A MULTISCALE METHOD FOR DISEASE MAPPING IN SPATIAL EPIDEMIOLOGY 7

successively across scales, the expression in (9) becomes

θ̂EB
j,k =

E[µ0,1 | Y0,1]

e0,1
×





j−1
∏

j′=0

cj′ T + SMRj′+1,aj′+1(k)

cj′ T + SMRj′,aj′ (k)



 . (10)

Additionally, recalling our specification of a diffuse prior for µ0,1, it follows that E[µ0,1|Y0,1] ≈
Y0,1, and therefore the first term in (10) is approximately equal to SMR0,1 = Y0,1/e0,1. So each

estimate θ̂EB
j,k essentially begins with an estimate of the global relative risk and modifies that

in a multiplicative fashion across scales j ′ < j, from coarse to fine. Ignoring the terms cj′T , the
multiplicative factors in (10) can be read as ratios of the SMR’s for the ancestral subregions of
each Bj,k. If consecutive SMR’s are equal, then the corresponding factor contributes no change
in moving between scales j ′ and j′+1. The terms cj′T in the numerator and denominator relate
directly to the degree of uncertainty associated with our specification of prior information at
scale j′, and play the role of shrinkage factors.

Three special cases are of interest. First, if cj → 0 for all j, then θ̂EB
j,k → SMRj,k for each

(j, k). That is, our estimators tend to the canonical SMR statistics at each scale. Second, if

cj → ∞ for all j, then θ̂EB
j,k → SMR0,1 for all (j, k). In other words, our estimators return the

same measure of global relative risk for all scales and locations. Lastly, if cj ≡ 1 for all j, and

if SMR0,1 ≈ T , then θ̂EB
j,k ≈ (SMR0,1 + SMRj,k)/2 for each (j, k), which is just an average

of the two previous cases. More generally, if the cj are quite large for some scales j and more
modest for others, then at those scales for which they are large, the corresponding factor will
be essentially equal to one, and as a result the refinement to estimates at finer scales than
those will be negligible.

3.2. Fully Bayesian Inference: Random cj

Now consider the case where the hyperparameters in c are random. Recall that our full model
then consists of (i) independent hyperparameters cj , drawn with respect to a Uniform(0, cmax)
distribution, (ii) independent multiscale Dirichlet priors on the parameters ωj,k, given the cj ,
and (iii) a Poisson sampling model, given the finest scale intensity parameters µJ induced by
the multiscale parameters ωj,k.

The relevant posterior under this model has the form

p
(

µj |Y j

)

=

∫

p
(

µj |Y j , c
)

p (c |Y j) dc , (11)

which is just a combination of the conditional posteriors p
(

µj |Y j , c
)

, weighted by the
posterior evidence for each possible value of c. However, note that while the conditional
posteriors inside the integral in (11) still possess the factorization (7), the densities p (c |Y j)
have no such property, and therefore the overall posterior p

(

µj |Y j

)

does not either.
We again propose to estimate the relative risk parameters θj,k = µj,k/ej,k by the analogous

normalization of the posterior expectation, yielding the estimators θ̂FB
j,k = E[µj,k|Y j ]/ej,k. In

order to calculate these values, we can sample from the posteriors p
(

µj |Y J

)

, at each scale
j, using an MCMC algorithm. We note that the factorization of the conditional posterior
p(µj | Y j , c), and the corresponding Dirichlet components in (7), result in easy composition

sampling. Given our MCMC samples, the values θ̂FB
j,k then follow upon dividing the empirical

marginal averages by the values ej,k.
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8 M. M. LOUIE, E. D. KOLACZYK

While the estimators θ̂FB
j,k of this section are not accompanied by nice analytic expressions,

like (9) and (10) for θ̂EB
j,k ≡ θ̂EB

j,k (c), intuitively it can be seen that there is a similar sharing of

information across scales, since θ̂FB
j,k =

∫

θ̂EB
j,k (c) p (c|Y J) dc is an average of the conditional

posterior expectations.

4. Quantification of Uncertainty

Having developed posterior-based, multiscale estimates of relative risk, we now turn our
attention to quantifying the uncertainty associated with these estimates. We take as our goal
the calculation of central marginal posterior intervals for the θj,k. Such intervals can then be
used to create maps accompanying a basic disease map that indicate upper and lower levels
of uncertainty.

The logical manner in which to obtain posterior intervals is through numerical sampling of
the posterior distribution. In the case of random hyperparameters cj , the intervals may be
constructed from the same samples of Pr(µj,k |Y j) that were used to obtain the estimates

θ̂FB
j,k . In the case of fixed cj , the recursive form of equation (7) may be exploited to sample

directly from the posteriors Pr(µj |Y j , c). Specifically, drawing samples from the posterior of
each of the multiscale parameters ωj,k, using the appropriate Dirichlet distributions dictated
by (8), samples from the marginal posterior for each intensity vector µj can be constructed
through recursive application of (4). Intervals for θj,k then follow from normalizing intervals
for µj,k by ej,k.

On the other hand, there are contexts in which an approach based on posterior simulation
may be computationally prohibitive. For example, for a user of a geographical information
system wishing to generate a fluid succession of disease maps in an interactive fashion, such
an approach can present a bottleneck to the overall process. Therefore, since the calculation
of the empirical Bayes estimates θ̂EB

j,k is itself computationally efficient, we present here a
computationally efficient method for calculating accurate approximations to the corresponding
posterior intervals, based on the use of Johnson curves [14].

The system of Johnson curves is similar in principle to that of the frequency curves developed
by Pearson. (See [15].) Consisting of tranformations of the standard normal distribution, the
Johnson curves fall into three categories – termed lognormal, unbounded, and bounded – and
can be expressed as densities

g(x) = δ f ′((x− ξ)/λ) p(z)|z=γ+δf( x−ξ
λ

) . (12)

Here x is the Johnson variable, z is the standard normal variable, and f((x − ξ)/λ) is
log{(x− ξ)/λ}, sinh−1{(x− ξ)/λ}, and log{(x− ξ)/(ξ+λ−x)} for the lognormal, unbounded
and bounded Johnson curves respectively. The parameter ξ is a location factor and λ a scale
factor, while γ and δ help determine the shape of the distribution of x. The solution for
these four parameters with respect to a defined relationship with the cumulants of a given
distribution, results in an analytic approximation to the latter.

For our purposes, the distribution of interest is a given marginal posterior distribution
θj,k|Y j , c, for which we have found the lognormal Johnson curve may be usefully employed.

To sketch the method, define, as is standard, β
1/2
1 = κ3/κ

3/2
2 and β2 = κ4/κ

2
2, where

κr ≡ κr(θj,k|Y j) denotes the r-th cumulant of θj,k, conditional on Y j and c. Then the

Copyright c© 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 00:1–17
Prepared using simauth.cls



A MULTISCALE METHOD FOR DISEASE MAPPING IN SPATIAL EPIDEMIOLOGY 9

lognormal curves lie on the line in the (β1, β2) plane where

β1 = (τ − 1)(τ + 2)2 and β2 = τ4 + 2τ3 + 3τ2 − 3 , (13)

for τ = eδ−2

. For these curves, knowing β1 determines β2. The parameters of the lognormal
Johnson curves are then related to τ and the cumulants through the equations

δ = (ln τ)−
1
2 , γ = 1

2 ln{τ(τ − 1)/κ2}
ξ = ±κ1 − exp{(1/2δ − γ)/δ}, λ = ±1,

(14)

where the ± is the sign of κ3 [16].
Values for the cumulants κr of θj,k|Y j , c are necessary to solve for the Johnson curve

parameters. Under our model, these may be obtained in closed form from the cumulant
generating function, the details for which are provided in the appendix. Having solved for
these parameters, in order to obtain 100(1 − α)% approximate central marginal posterior
intervals for θj,k, we need only solve the equation

x = ξ + λf−1{(±zα/2 − γ)/δ}, (15)

where zα/2 is the α/2 percentile of the standard normal distribution and f is as defined
above for the lognormal curve. Simulation studies have found the approximation to be quite
accurate [12].

Details on the use of Johnson curves, including efficient iterative algorithms for performing
the necessary calculations, may be found in Hill, Hill and Holder [16], Elderton and Johnson
[15], and Draper [17]. We note too that Barber, Nason and Silverman [18] have used this same
approach to approximating posterior confidence intervals in the context of wavelet shrinkage
estimation, and would appear to be the first to have done so in the literature on multiscale
statistical methods. They cite reasons similar to those given here for pursuing this approach.
However, the details necessarily differ and in fact they find, for technical reasons, that the
cumulants in their setting must be estimated. These authors too find the method to yield
quite accurate approximations.

5. Simulation Study

We conducted a simulation study, aimed at evaluating the performance of our multiscale SMR
framework under a handful of scenarios. For simplicity, the initial dataspace D was taken to
be a square region, and the nested hierarchy B(J) was defined through the generic quad-tree
structure common in image processing and computer vision. Specifically, D was partitioned
into 2j × 2j = 22j identical subregions, for j = 0, 1, . . . , 4, so that each square subregion at
scale j consisted of four sub-subregions at scale j + 1. At the finest scale J = 4, there were a
total of 16× 16 = 256 subregions, which we refer to as ‘pixels’, as is standard.

Simulations were conducted under a total of eleven different scenarios of landscape design.
The first landscape has uniform relative risk; that is, each pixel has a relative risk of one.
The next nine landscapes each contain a single area of elevated relative risk. This area, which
we will refer to as A4, is comprised of 4 × 4 = 16 pixels, each pixel with a relative risk of
2.5. The nine landscapes differ in the location of A4 within each. The different locations were
chosen so as to allow for the examination of the effect on our multiscale framework of different
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degrees of nesting of the elevated area within the elements of the nested hierarchy. The final
landscape design combines five different patterns of elevated risk found in the aforementioned
9 landscapes.

Figure 1 illustrates all 11 landscape designs. If we call the pixels at scale J = 4 ‘children’,
and subregions at scales j = 3, 2, and 1, ‘parents’, ‘grandparents’, and ‘great-grandparents’,
respectively, then landscapes 2 through 10 may be characterized as follows. Landscapes 2 and
3 show A4 on the border and in the interior respectively, each of whose 16 children form
four parents and a single grandparent. The A4 in landscapes 4 and 5 each form four parents
who originate from two distinct grandparents. Landscapes 6, 7 and 8 each form four parents
from four different grandparents who in turn are from one, two or four great-grandparents
respectively. The A4 in landscapes 9 and 10 have the least amount of nesting (none, in fact,
in the case of landscape 10). In these two landscapes, the children originate from nine distinct
parents, four distinct grandparents, and one and four distinct great-grandparents, respectively.

We chose the pixel-level expected counts eJ,k to be uniformly equal to 5, which resulted
in pixel-level mean parameters µJ,k = θJ,k eJ,k of either 5 or 12.5. We then generated 100
independent Poisson samples with intensity µJ,k for every location k, resulting in 100 datasets
of 256 observations for each of the eleven landscapes onD. For each dataset, for each landscape,
the empirical Bayes and fully Bayes multiscale SMR estimators θ̂EB

j,k and θ̂FB
j,k were calculated

at the finest scale j = J = 4, according to the formulas and methods described in Sections 3.1
and 3.2, respectively.

By way of comparison, we also computed estimates of the relative risks under a hierarchical
Bayes Poisson-lognormal model. Specifically, in this model Yk ∼ Poisson(µk), as in our
multiscale model, but the log relative risk is expressed as log µk = log ek + α + uk + vk,
where α captures the overall level of the log relative risk, and uk and vk are respectively the
unstructured heterogeneity and clustering components of extra-Poisson variation. Under this
framework, uk is modeled as a zero mean Gaussian, and vk as a conditionally autoregressive
(CAR) Gaussian. Specifying a CAR prior for vk allows one to model the assumption that
pixels near each other will tend to be more similar than pixels that are farther apart. That is,
the spatial correlation structure is based on the adjacency of pixels as opposed to the nested
hierarchy. Further details on this type of model can be found in [19]. The posterior estimator
under this model takes the form

θ̂PL
k = E[µk | Y ]/ek. (16)

Note that this model is location-sensitive only, being defined entirely at the finest scale J .
The performance of each of our three estimators was evaluated using an (approximate)

integrated mean-squared-error (IMSE) criterion i.e.,

IMSE =
1

162
×

1

100
×

162

∑

k=1

100
∑

i=1

(θ̂k(i) − θJ,k)2, (17)

where θ̂k(i) corresponds to the estimator θ̂EB
J,k , θ̂FB

J,k , or θ̂PL
k at the i-th trial. The resulting

IMSE numbers, as well as their breakdown into bias and variance components, may be found
in Table I. Similarly, a plot of the IMSE numbers alone is shown in Figure 2.

Consider first just the two multiscale estimators. While there is a slight improvement in
performance from the fully Bayesian over the empirical Bayes analysis in the absence of any
elevated risk (i.e., landscape 1), the empirical Bayes estimator consistently out-performs the
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A MULTISCALE METHOD FOR DISEASE MAPPING IN SPATIAL EPIDEMIOLOGY 11

fully Bayesian estimator in the presence of elevated risk (i.e., landscapes 2 through 11). For
both estimators, in the presence of elevated risk, the performance generally improves as the
nesting of A4 within the hierarchy moves closer to the pixel level (i.e., roughly moving from
right to left in Figure 2).

In comparison, since the spatial correlation for the CAR prior depends on the adjacency of
pixels rather than on a nested hierarchy, we would expect little to no effect on the Poisson-
lognormal estimator when the pattern of adjacencies remains the same. This is confirmed by
the closeness of the results for landscapes 3 through 10. Note that the A4 in landscape 2 is
located on the border, which changes the number of adjacencies, since the pixels have less
neighbors than those of an A4 located in the interior. Similar to the multiscale estimators,
landscape 11 exhibits the highest IMSE.

In comparing the multiscale estimators and the Poisson-lognormal estimator, with the
exception of landscape 7, for θ̂FB

J,k in the fully Bayesian analysis, the former were found to
out-perform the latter when the the spatial patterns of elevation were nested to some degree
(i.e., landscapes 2 through 8), but the reverse was true when the spatial patterns were primarily
or entirely non-nested (i.e., landscapes 9 and 10). In landscape 11, which combines both nested
and non-nested areas of elevation, the multiscale estimators outperform the Poisson-lognormal
estimator. Overall, these results suggest that our multiscale SMR framework offers estimators
at the finest scale of observation that are competitive with standard monoscale estimators,
while at the same time being accompanied by an entire hierarchy of inter-related estimators
at the other coarser scales.

6. Analysis of Tuscany Gastric Cancer Mortality Data

We applied our multiscale method to male gastric cancer mortality data obtained from the
Tuscan region of Italy during the period 1980-1989 [2, 20]. For our hierarchy of nested partitions
we took the set of nested subregions displayed in Figure 3, corresponding to three of the
five geo-political statistical units defined under the NUTS system (Nomenclature des Units
Territoriales Statistiques) used by the European community. In particular, shown in Figure 3
are the single Tuscan region itself (NUTS Level II), the nine provinces within that region
(NUTS Level III), and the 287 municipalities within those provinces (NUTS Level V). Italy
itself corresponds to a single subregion at NUTS Level I, while NUTS Level IV is not used in
that country. In the notation of this paper, the regional, provincial, and municipality levels
correspond to j = 0, 1, and 2, respectively. Data were obtained for males over 35 years of age
at the municipality level. Italian age specific rates for the same calendar period were used to
obtain expected numbers of deaths [20].

Disease maps summarizing the empirical Bayes estimates θ̂EB
j,k of the relative risks θj,k, at the

municipal (j = 1) and provincial (j = 2) levels, are shown in Figures 4a and 4b, respectively.
From Figure 4a it can be seen that there is evidence for some rough sense of a trend in relative
risk across provinces, increasing from southwest to northeast and achieving a maximum in
what is the province of Arrezo. Figure 4b provides a refinement of this information (i.e., recall
the scale-recursive nature of (10)), through which it is found that the increased relative risk
is particularly concentrated in spots along the northeast border, which is contained primarily
within Arrezo but also partially within the neighboring province of Firenze to the northwest.
This phenomenon was noted in [20] and judged not to be simply a distortion in rates due to the
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12 M. M. LOUIE, E. D. KOLACZYK

proximity of those municipalities to the edge of the study boundary. We refer the reader to [2,
Ch. 5.5] for background on the topic of edge effects and discussion of this particular dataset.
Exact values for the empirical Bayes estimates of relative risk, as well as estimates from a
full-Bayesian analysis and a Poisson-lognormal model, for the twelve municipalities along the
northeast border, are presented in Table II. Although empirical Bayes methods have been
shown to overshrink in some instances [13], the phenomenon is not reflected in the analysis of
this dataset, as estimates from the fully Bayesian implementation are extremely close to the
empirical Bayes estimates.

In Figures 5a and 5b are shown maps of the lower and upper bounds, respectively, of 95%
central marginal posterior intervals for the relative risk parameters θj,k at the provincial level,
computed using the method of approximation described in Section 4. The corresponding maps
of the lower and upper bounds at the municipal level are shown in Figures 6a and 6b. The
map in Figure 6b confirms the potential severity of the disease along the northeast border, as
the municipalities throughout that entire area are assigned upper bounds on relative risk in
excess of 2.3. The map of lower bounds in Figure 6a paints a somewhat less grim picture for
this area, wherein most of the municipalities in Arrezo and part of neighboring Firenze are
indicated as having at least slight elevations in risk (e.g., 1.15 - 1.72). However, there is also
still persistent evidence for a more severe level of elevation in the two border municipalities of
Poppi and Bibbiena (i.e., 1.92 - 2.10). At the provincial level, while Figures 5a and 5b do not
show a pronounced elevated risk in Firenze and Arrezo, the map of the upper bounds still show
Arrezo as having the highest elevated risk. Lower and upper bounds for all three methods of
analysis, for the twelve municipalities along the northeast border, are presented in Table II.

7. Discussion

We have introduced in this paper a framework within which it is possible to derive an inter-
related sequence of informative disease and confidence maps across a hierarchy of multiple
spatial scales. We have concentrated our development of this framework on the case of tract
count data, which is arguably the most commonly encountered in spatial epidemiology. The
tools we provide here may be viewed as multiscale extensions of the canonical SMR statistic.
We note, however, that our framework can be extended easily for estimating other measures
of relative risk in Poisson-based measurement models. For example, the relevant extension to
data arising in case-to-control studies may be found in [12].

There are various other manners in which it might be of interest to enhance the framework we
offer. First, as currently posed, our methods do not explicitly adjust for the potential problem
of edge-effects, caused by the use of a domain D that typically is artificially finite with respect
to actual underlying disease mechanisms. Simple methods of re-weighting the original count
data, based on some measure of distance of each region at scale J to the external boundary,
can likely be applied here successfully. More interesting is the question of whether and how
best to re-weight the data at more than just the original scale of measurement. It also seems
possible that methods based on external guard areas could be similarly extended, although
this would require that one consider how best to expand the original hierarchy of partitions.

Second, there is the issue of how to implement a multiscale analysis like that provided
here when there are multiple and/or non-nested spatial hierarchies (e.g., [21]). A step in this
direction likely would require that one begin with the use of multiple likelihood factorizations
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and/or an extension of the basic multiscale likelihood factorization itself.
Third, it is natural to conceive of certain standard augmentations to the model, such as the

incorporation of parameters for modeling over-dispersion. One might simply include a single,
global over-dispersion parameter as a multiplicative factor of the variance of the Poisson
sampling model or, alternatively, similarly modify the variances of each of the multinomial
components in the multiscale likelihood factorization by a set of common scale-indexed over-
dispersion parameters. The latter approach would be equivalent to specifying a single over-
dispersion parameter for the Poisson sampling model that was in fact a particular multiplicative
function of a sequence of scale-indexed parameters.

Fourth, on a related point, we note that our proposed methodology, with its emphasis on
extensions of SMR, is by no means immune to issues of standardization like those raised in [23],
and that the indirect standardization (as those authors call it) inherent in SMR-like statistics
requires validity of an assumption of multiplicative structure that may or may not be valid.
However, as the SMR is nevertheless a common, standard estimator, it is a natural place
to start in introducing multiscale estimation strategies into disease mapping. The impact
of standardization methods, and the possibility of extensions of our methodology to other
standardizations, merits further study.

Finally, we point out that while our focus here has been on the particular task of disease
mapping in spatial epidemiology, another task of equal importance is that of disease clustering
i.e., the analysis of unusual aggregations of disease. This task generally is pursued using
a hypothesis testing framework, as opposed to an estimation framework [22]. However, if
a likelihood-based perspective is adopted, one may exploit the same multiscale likelihood
factorization that underlies the work in this paper to develop a multiscale approach to disease
clustering. The multiscale re-parameterization i.e., the mapping from means µJ,k to parameters
ωj,k, allows for an analogous recasting in the multiscale parameterization of hypotheses in
the original spatial parameterization. It is shown in [12] how a Bayesian hypothesis testing
approach may be used to derive a framework for disease clustering that should be sensitive to
anomalies in both location and scale.

APPENDIX: CUMULANTS FOR LOG-µJ

Without loss of generality (and for simplicity), we will evaluate the CGF of logµj , instead of
µj , conditional on Yj and c. Let µ0,1 | Y0,1 ∼ Gamma(α+ Y0,1;β + 1), so that

Mlog µ0,1
(t) = (β + 1)−t ×

Γ(α+ t)

Γ(α)
. (18)

Similarly, the MGF of logωj,k conditional on Yj and c, when ωj,k | Yj , c ∼
Dirichlet(cj T ej+1,ch(k) + Yj+1,ch(k)) is

Mlog ωj,k
(t) =

Γ(cj T ej,k + Yj,k)
∏nj,k

i=1 Γ(cj T ej+1,ch(k,i) + Yj+1,ch(k,i))
×

∏nj,k

i=1 Γ(cj T ej+1,ch(k,i) + Yj+1,ch(k,i) + ti)

Γ(cj T ej,k + Yj,k + 1T
nj,k

t)
, (19)

where (j+1, ch(k, i)) denotes the ith child of parent (j, k) at scale j+1, and nj,k is the number
of subregions at scale j + 1 contained in Bj,k. It is not difficult to show that the MGF for
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logµj decouples across all scales and locations, that is,

Mlog µ
j
(t) = c×

Γ(α+ Y0,1 + 1
T
t)

(β + 1)
1T t

×

j−1
∏

j′=0

Nj′
∏

k′=1

∏nj′,k′

i=1 Γ(cj′ T ej′+1,ch(k′,i) + Yj′+1,ch(k′,i) + 1
T
tj′,k′,i)

Γ(cj′ T ej′,k′ + Yj′,k′ +
∑nj′ ,k′

i=1 1T tj′,k′,i)
, (20)

where c is a constant with respect to t, and the number of elements in tj′ ,k′,i reflects the
number of subregions of Bj′ ,k′ at scale j. The CGF is then given by

Klog µ
j
(t) = log c+ log Γ(α+ Y0,1 + 1

T
t) − 1

T
t log (β + 1) +

j−1
∑

j′=0

Nj
∑

k′=1

[nj′,k′

∑

i=1

log Γ(cj′ T ej′+1,ch(k′,i) + Yj′+1,ch(k′,i) + 1
T
tj′,k′,i)−

log Γ

(

cj′ T ej′,k′ + Yj′,k′ +

nj′,k′

∑

i=1

1
T
tj′,k′,i

)]

, (21)

with the r-th marginal cumulant of log µj,k as

drKlog µj,k
(t)

dtrk

∣

∣

∣

∣

t=0

= ψ(r−1)(α+ Y0,1) − I(r=1)[log (β + 1)] +

j−1
∑

j′=0

[

ψ(r−1)
(

cj′ T ej′+1,aj′ (k) + Yj′+1,aj′ (k)

)

− ψ(r−1)
(

cj′ T ej′,aj′ (k) + Yj′,aj′ (k)

)]

,(22)

where aj′(k) denotes the ancestor of (j, k) at scale j ′. Therefore, the cumulants for each µj,k

are scale sensitive, containing information only from its ancestors.
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Table I. Integrated squared bias, variance and mean-squared error for the multiscale estimator

under empirical Bayes analysis θ̂
EB
J,k , and fully Bayesian analysis θ̂

FB
J,k , and for the Poisson-

lognormal estimator θ̂
PL
k , based on 100 trials per landscape design. Values are times 10−2.

Bias2 Variance MSE

Landscape θ̂
EB
J,k θ̂

FB
J,k θ̂

PL
k θ̂

EB
J,k θ̂

FB
J,k θ̂

PL
k θ̂

EB
J,k θ̂

FB
J,k θ̂

PL
k

1 1.8 ×10−3 0.0 0.0 0.3 0.1 0.2 0.3 0.1 0.2
2 0.3 0.6 1.6 1.4 1.3 1.9 1.7 1.9 3.5
3 0.3 0.5 2.8 1.3 1.2 2.4 1.5 1.8 5.1
4 1.6 2.8 2.9 2.2 2.0 2.4 3.8 4.8 5.3
5 1.6 2.8 2.7 2.3 2.0 2.4 3.9 4.8 5.2
6 1.2 1.7 2.8 2.2 2.0 2.4 3.4 3.7 5.2
7 1.9 3.5 2.7 2.4 2.0 2.3 4.3 5.5 5.1
8 1.8 2.7 2.8 2.5 2.2 2.4 4.3 4.8 5.2
9 4.4 6.5 2.7 2.6 1.8 2.4 7.0 8.3 5.2
10 4.6 6.7 2.7 2.5 1.6 2.4 7.1 8.3 5.1
11 3.9 5.2 4.3 5.4 4.7 7.7 9.3 9.9 12.0

Table II. Comparison of different estimators and lower and upper bounds of 95% central
marginal posterior for the twelve municipalities on the northeastern border of Tuscany, ordered
from north to south. The estimates are based on the multiscale model using empirical Bayes

(θ̂EB
J,k ) and fully Bayesian (θ̂FB

J,k ) analysis, and a Poisson-lognormal model (θ̂PL
k ).

θ̂
EB
J,k θ̂

FB
J,k θ̂

PL
k

Municipality SMR (lower,upper) (lower,upper) (lower,upper)
Firenzuola 2.74 2.08 2.07 2.21

(1.605, 2.654) (1.579, 2.625) (1.687, 2.829)
Palazzuolo 1.71 1.54 1.54 1.91

(0.770, 2.740) (0.744, 2.607) (1.270, 2.716)
Marradi 2.41 1.91 1.89 2.03

(1.388, 2.560) (1.367, 2.519) (1.525, 2.636)
S. Godenzo 2.39 1.90 1.89 2.13

(1.253, 2.756) (1.229, 2.690) (1.522, 2.870)
Stia 2.50 2.21 2.19 2.24

(1.531, 3.075) (1.508, 3.015) (1.602, 3.030)
Pratovecchio 2.00 1.91 1.90 2.07

(1.240, 2.800) (1.219, 2.733) (1.539, 2.693)
Poppi 3.08 2.56 2.54 2.67

(1.971, 3.256) (1.941, 3.220) (2.096, 3.331)
Bibbiena 3.09 2.56 2.54 2.85

(2.094, 3.092) (2.066, 3.066) (2.301, 3.468)
Chiusi Verna 1.61 1.67 1.68 2.01

(1.003, 2.621) (0.983, 2.542) (1.497, 2.610)
Pieve S. Stefano 1.72 1.74 1.74 1.80

(1.162, 2.499) (1.149, 2.450) (1.321, 2.359)
Badia Tedalda 1.70 1.73 1.73 1.83

(0.960, 2.859) (0.941, 2.746) (1.216, 2.624)
Sestino 2.16 2.00 1.99 2.01

(1.192, 3.142) (1.174, 3.038) (1.181, 3.115)
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(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11)

Figure 1. Simulated landscape designs for assessing the performance of the multiscale
estimators to changes in the hereditary structure of the spatial pattern, and for
comparison with a spatial (uni-scale) estimator. Design (1) corresponds to uniform relative
risk of one. Designs (2) through (10) each contain a (shaded) area of elevated relative risk,
comprised of 4x4 pixels. The locations of these areas were chosen to reflect the different
hereditary structures. Design (11) combines patterns from (2), (4), (5), (6), and (10).
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Figure 2. Plots of the integrated mean-squared errors in Table I
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(a)

(b)

(c)

Figure 3. Hierarchy of three nested partitionings of the Tuscan region
of Italy: (a) region level, (b) provincial level, and (c) municipality level.
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Figure 4. Posterior-based multiscale SMR estimates of relative risk for male
gastric cancer in Tuscany at the (a) provincial and (b) municipality levels.

Copyright c© 2004 John Wiley & Sons, Ltd. Statist. Med. 2004; 00:1–17
Prepared using simauth.cls



A MULTISCALE METHOD FOR DISEASE MAPPING IN SPATIAL EPIDEMIOLOGY 21

(a) (b)

��� ����� �	� � 
��
���� ������� ���
��� �	�����������
��� �	���������! 
��� �� "����� #� 
��� #	 "�$ ������
�$%�&��	�� '� �	�

(

)

*

Figure 5. (a) Lower and (b) upper bounds of 95% central marginal posterior
intervals for provincial-level relative risk, corresponding to the provincial-
level posterior mean map of Figure 4a, obtained by analytic approximation

to posterior distributions.
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Figure 6. (a) Lower and (b) upper bounds of 95% central marginal posterior
intervals for municipal-level relative risk, corresponding to the municipal-
level posterior mean map of Figure 4b, obtained by analytic approximation

to posterior distributions.
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